1
|
Kurdi C, Schmidt J, Horváth-Szalai Z, Mauchart P, Gödöny K, Várnagy Á, Kovács GL, Kőszegi T. Follicular Fluid Proteomic Analysis of Women Undergoing Assisted Reproduction Suggests That Apolipoprotein A1 Is a Potential Fertility Marker. Int J Mol Sci 2023; 25:486. [PMID: 38203658 PMCID: PMC10778837 DOI: 10.3390/ijms25010486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/23/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024] Open
Abstract
Infertility affects millions worldwide, posing a significant global health challenge. The proteomic analysis of follicular fluid provides a comprehensive view of the complex molecular landscape within ovarian follicles, offering valuable information on the factors influencing oocyte development and on the overall reproductive health. The follicular fluid is derived from the plasma and contains various proteins that can have different roles in oocyte health and infertility, and this fluid is a critical microenvironment for the developing oocytes as well. Using the high-performance liquid chromatography-mass spectrometry method, we investigated the protein composition of the follicular fluid, and after classification, we carried out relative quantification of the identified proteins in the pregnant (P) and non-pregnant (NP) groups. Based on the protein-protein interaction analysis, albumin and apolipoprotein A1 (ApoA1) were found to be hub proteins, and the quantitative comparison of the P and NP groups resulted in a significantly lower concentration of ApoA1 and high-density lipoprotein cholesterol in the P group. As both molecules are involved in the cholesterol transport, we also investigated their role in the development of oocytes and in the prediction of fertility.
Collapse
Affiliation(s)
- Csilla Kurdi
- János Szentágothai Research Center, University of Pécs, 7624 Pécs, Hungary; (C.K.)
- Department of Laboratory Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary (Á.V.)
| | - János Schmidt
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary (Á.V.)
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Zoltán Horváth-Szalai
- János Szentágothai Research Center, University of Pécs, 7624 Pécs, Hungary; (C.K.)
- Department of Laboratory Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Péter Mauchart
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary (Á.V.)
- Department of Obstetrics and Gynecology, Medical School, University of Pécs, 7624 Pécs, Hungary
- MTA-PTE Human Reproduction Scientific Research Group, University of Pécs, 7624 Pécs, Hungary
| | - Krisztina Gödöny
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary (Á.V.)
- Department of Obstetrics and Gynecology, Medical School, University of Pécs, 7624 Pécs, Hungary
- MTA-PTE Human Reproduction Scientific Research Group, University of Pécs, 7624 Pécs, Hungary
| | - Ákos Várnagy
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary (Á.V.)
- Department of Obstetrics and Gynecology, Medical School, University of Pécs, 7624 Pécs, Hungary
- MTA-PTE Human Reproduction Scientific Research Group, University of Pécs, 7624 Pécs, Hungary
| | - Gábor L. Kovács
- János Szentágothai Research Center, University of Pécs, 7624 Pécs, Hungary; (C.K.)
- Department of Laboratory Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary (Á.V.)
| | - Tamás Kőszegi
- János Szentágothai Research Center, University of Pécs, 7624 Pécs, Hungary; (C.K.)
- Department of Laboratory Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary (Á.V.)
| |
Collapse
|
2
|
Jiang X, Li Z, Chang X, Lian Z, Wang A, Lin P, Chen H, Zhou D, Tang K, Jin Y. A Comparative Proteomic Analysis to Explore the Influencing Factors on Endometritis Using LC-MS/MS. Int J Mol Sci 2023; 24:10018. [PMID: 37373165 PMCID: PMC10298677 DOI: 10.3390/ijms241210018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/04/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
The inflammatory system activated by uterine infection is associated with decreased fertility. Diseases can be detected in advance by identifying biomarkers of several uterine diseases. Escherichia coli is one of the most frequent bacteria that is involved in pathogenic processes in dairy goats. The purpose of this study was to investigate the effect of endotoxin on protein expression in goat endometrial epithelial cells. In this study, the LC-MS/MS approach was employed to investigate the proteome profile of goat endometrial epithelial cells. A total of 1180 proteins were identified in the goat Endometrial Epithelial Cells and LPS-treated goat Endometrial Epithelial Cell groups, of which, 313 differentially expressed proteins were accurately screened. The proteomic results were independently verified by WB, TEM and IF techniques, and the same conclusion was obtained. To conclude, this model is suitable for the further study of infertility caused by endometrial damage caused by endotoxin. These findings may provide useful information for the prevention and treatment of endometritis.
Collapse
Affiliation(s)
- Xingcan Jiang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang 712100, China; (X.J.)
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Ziyuan Li
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang 712100, China; (X.J.)
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Xiyv Chang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang 712100, China; (X.J.)
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Zhengjie Lian
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang 712100, China; (X.J.)
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Aihua Wang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang 712100, China; (X.J.)
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Pengfei Lin
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang 712100, China; (X.J.)
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Huatao Chen
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang 712100, China; (X.J.)
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Dong Zhou
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang 712100, China; (X.J.)
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Keqiong Tang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang 712100, China; (X.J.)
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Yaping Jin
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang 712100, China; (X.J.)
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang 712100, China
| |
Collapse
|
3
|
Rather RA, Saha SC. Reappraisal of evolving methods in non-invasive prenatal screening: Discovery, biology and clinical utility. Heliyon 2023; 9:e13923. [PMID: 36879971 PMCID: PMC9984859 DOI: 10.1016/j.heliyon.2023.e13923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 01/16/2023] [Accepted: 02/15/2023] [Indexed: 02/24/2023] Open
Abstract
Non-invasive prenatal screening (NIPS) offers an opportunity to screen or determine features associated with the fetus. Earlier, prenatal testing was done with cytogenetic procedures like karyotyping or fluorescence in-situ hybridization, which necessitated invasive methods such as fetal blood sampling, chorionic villus sampling or amniocentesis. Over the last two decades, there has been a paradigm shift away from invasive prenatal diagnostic methods to non-invasive ones. NIPS tests heavily rely on cell-free fetal DNA (cffDNA). This DNA is released into the maternal circulation by placenta. Like cffDNA, fetal cells such as nucleated red blood cells, placental trophoblasts, leukocytes, and exosomes or fetal RNA circulating in maternal plasma, have enormous potential in non-invasive prenatal testing, but their use is still limited due to a number of limitations. Non-invasive approaches currently use circulating fetal DNA to assess the fetal genetic milieu. Methods with an acceptable detection rate and specificity such as sequencing, methylation, or PCR, have recently gained popularity in NIPS. Now that NIPS has established clinical significance in prenatal screening and diagnosis, it is critical to gain insights into and comprehend the genesis of NIPS de novo. The current review reappraises the development and emergence of non-invasive prenatal screen/test approaches, as well as their clinical application, with a focus, on the scope, benefits, and limitations.
Collapse
Affiliation(s)
- Riyaz Ahmad Rather
- Department of Biotechnology, College of Natural and Computational Science, Wachemo University, Ethiopia
| | - Subhas Chandra Saha
- Department of Obstetrics and Gynecology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
4
|
Pedrosa ML, Furtado MH, Ferreira MCF, Carneiro MM. Sperm selection in IVF: the long and winding road from bench to bedside. JBRA Assist Reprod 2020; 24:332-339. [PMID: 32155013 PMCID: PMC7365522 DOI: 10.5935/1518-0557.20190081] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Spermatozoa wage battle to conquer fertilization but the traits needed to succeed remain elusive. The natural advantageous qualities that enable only a few selected sperm cells to reach the site of fertilization remain unknown. Although in vitro fertilization (IVF) facilitates the job of spermatozoa, a universally acceptable means of sperm selection is yet to be developed. No objective or reliable sperm quality indicators have been established and sperm selection is, to a great extent, based on subjective qualitative evaluation. The best method for sperm selection in IVF presents several challenges: intrinsic sperm qualities cannot be evaluated and the ideal endpoint for these studies is debatable. An ideal method for sperm selection in ART should be noninvasive and cost-effective, and allow the identification of high-quality spermatozoa and yield better outcomes in terms of pregnancy and live birth rates. This narrative review included 85 papers and focused on the new available methods and technologies that might shed some light on sperm selection in IVF. It discusses the available data on microfluidic devices, omics profiling, micronuclei studies, sperm plasma membrane markers, and other techniques, such as Magnetic Activated Cell Sorting (MACS), Raman micro-spectroscopy, and artificial intelligence systems. The new techniques herein reviewed offer fresh approaches to an old problem, for which a definite solution has yet to cross the bridge from bench to IVF clinics around the world, since clinical usefulness and application remain unproven.
Collapse
Affiliation(s)
- Moisa Lucia Pedrosa
- Centro de Reprodução Humana Hospital MATER DEI, Belo Horizonte, MG, Brazil.,Departamento de Ginecologia e Obstetrícia e Obstetrícia da Faculdade de Medicina da UFMG, Belo Horizonte, MG, Brazil
| | | | - Márcia Cristina França Ferreira
- Centro de Reprodução Humana Hospital MATER DEI, Belo Horizonte, MG, Brazil.,Departamento de Ginecologia e Obstetrícia e Obstetrícia da Faculdade de Medicina da UFMG, Belo Horizonte, MG, Brazil
| | - Márcia Mendonça Carneiro
- Centro de Reprodução Humana Hospital MATER DEI, Belo Horizonte, MG, Brazil.,Departamento de Ginecologia e Obstetrícia e Obstetrícia da Faculdade de Medicina da UFMG, Belo Horizonte, MG, Brazil
| |
Collapse
|
5
|
Agarwal A, Baskaran S, Panner Selvam MK, Barbăroșie C, Master K. Unraveling the Footsteps of Proteomics in Male Reproductive Research: A Scientometric Approach. Antioxid Redox Signal 2020; 32:536-549. [PMID: 31861964 DOI: 10.1089/ars.2019.7945] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Significance: Male reproductive research at molecular level has gained more attention as it offers the cellular mechanisms and biological pathways implicated in the reproductive physiology. Several researchers across the world have used global proteomic approach in conjunction with advanced bioinformatics software to identify putative biomarkers for various male infertility conditions. Recent Advances: Introduction of advance proteomic platforms has made it easier to generate enormous amount of data in a short period of time. In this article, we have reviewed the functional and comparative proteomic studies in the area of male reproductive research. We have discussed the key proteins and associated cellular pathways such as oxidative phosphorylation and mitochondrial dysfunction implicated in the various male infertility conditions. Furthermore, for the first time scientometric approach was used to analyze the publication trends and hot topics in proteomics of male reproductive research. Critical Issues: Analysis of publication trends revealed that majority of the published studies were focused on varicocele and asthenozoospermia, while very limited research has been conducted on assisted reproductive technology (ART). This area of research requires more attention as it would facilitate identification of novel biomarkers to catalogue proteomic characteristics of spermatozoa for achieving better results in ART. Future Directions: Future research should be focused on the development and validation of a biomarker panel for specific male infertility scenarios based on etiology. Translation of validated proteomic biomarkers into tests or assays for male infertility conditions would enable the physician to provide better management for the patients.
Collapse
Affiliation(s)
- Ashok Agarwal
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, Ohio
| | - Saradha Baskaran
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, Ohio
| | | | - Cătălina Barbăroșie
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, Ohio.,Department of Genetics, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Kruyanshi Master
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, Ohio
| |
Collapse
|
6
|
Yılmaz F. Sperm function tests from past to present. JOURNAL OF HEALTH SCIENCES AND MEDICINE 2020. [DOI: 10.32322/jhsm.660649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
7
|
Fu L, An Q, Zhang K, Liu Y, Tong Y, Xu J, Zhou F, Wang X, Guo Y, Lu W, Liang X, Gu Y. Quantitative proteomic characterization of human sperm cryopreservation: using data-independent acquisition mass spectrometry. BMC Urol 2019; 19:133. [PMID: 31842847 PMCID: PMC6916233 DOI: 10.1186/s12894-019-0565-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 12/02/2019] [Indexed: 01/09/2023] Open
Abstract
Background Human sperm cryopreservation is a simple and effective approach for male fertility preservation. Methods To identify potential proteomic changes in this process, data-independent acquisition (DIA), a technology with high quantitative accuracy and highly reproducible proteomics, was used to quantitatively characterize the proteomics of human sperm cryopreservation. Results A total of 174 significantly differential proteins were identified between fresh and cryoperservated sperm: 98 proteins decreased and 76 proteins increased in the cryopreservation group. Bioinformatic analysis revealed that metabolic pathways play an important role in cryopreservation, including: propanoate metabolism, glyoxylate and dicarboxylate metabolism, glycolysis/gluconeogenesis, and pyruvate metabolism. Four different proteins involved in glycolysis were identified by Western blotting: GPI, LDHB, ADH5, and PGAM1. Conclusions Our work will provide valuable information for future investigations and pathological studies involving sperm cryopreservation.
Collapse
Affiliation(s)
- Longlong Fu
- National Health Commission Key Laboratory of Male Reproductive Health, National Research Institute for Family Planning, Beijing, 100081, China.,Department of Male Clinical Research/Human sperm bank, National Research Institute for Family Planning & WHO Collaborating Center for Research in Human Reproduction, Beijing, 100081, China
| | - Qi An
- National Health Commission Key Laboratory of Male Reproductive Health, National Research Institute for Family Planning, Beijing, 100081, China.,Department of Male Clinical Research/Human sperm bank, National Research Institute for Family Planning & WHO Collaborating Center for Research in Human Reproduction, Beijing, 100081, China.,Graduate School of Peking Union Medical College, Beijing, 100730, China
| | - Kaishu Zhang
- Department of Reproductive Medicine, The Afliated Hospital of Qingdao University, Qingdao, Shandong, 266000, People's Republic of China
| | - Ying Liu
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, Jiangsu Province, 215025, China
| | - Yue Tong
- National Health Commission Key Laboratory of Male Reproductive Health, National Research Institute for Family Planning, Beijing, 100081, China.,Department of Male Clinical Research/Human sperm bank, National Research Institute for Family Planning & WHO Collaborating Center for Research in Human Reproduction, Beijing, 100081, China.,Graduate School of Peking Union Medical College, Beijing, 100730, China
| | - Jianfeng Xu
- National Health Commission Key Laboratory of Male Reproductive Health, National Research Institute for Family Planning, Beijing, 100081, China.,Department of Male Clinical Research/Human sperm bank, National Research Institute for Family Planning & WHO Collaborating Center for Research in Human Reproduction, Beijing, 100081, China
| | - Fang Zhou
- National Health Commission Key Laboratory of Male Reproductive Health, National Research Institute for Family Planning, Beijing, 100081, China.,Department of Male Clinical Research/Human sperm bank, National Research Institute for Family Planning & WHO Collaborating Center for Research in Human Reproduction, Beijing, 100081, China
| | - Xiaowei Wang
- National Health Commission Key Laboratory of Male Reproductive Health, National Research Institute for Family Planning, Beijing, 100081, China.,Department of Male Clinical Research/Human sperm bank, National Research Institute for Family Planning & WHO Collaborating Center for Research in Human Reproduction, Beijing, 100081, China
| | - Ying Guo
- National Health Commission Key Laboratory of Male Reproductive Health, National Research Institute for Family Planning, Beijing, 100081, China.,Department of Male Clinical Research/Human sperm bank, National Research Institute for Family Planning & WHO Collaborating Center for Research in Human Reproduction, Beijing, 100081, China
| | - Wenhong Lu
- National Health Commission Key Laboratory of Male Reproductive Health, National Research Institute for Family Planning, Beijing, 100081, China. .,Graduate School of Peking Union Medical College, Beijing, 100730, China.
| | - Xiaowei Liang
- Department of Male Clinical Research/Human sperm bank, National Research Institute for Family Planning & WHO Collaborating Center for Research in Human Reproduction, Beijing, 100081, China
| | - Yiqun Gu
- National Health Commission Key Laboratory of Male Reproductive Health, National Research Institute for Family Planning, Beijing, 100081, China. .,Department of Male Clinical Research/Human sperm bank, National Research Institute for Family Planning & WHO Collaborating Center for Research in Human Reproduction, Beijing, 100081, China. .,Graduate School of Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
8
|
Walter J, Huwiler F, Fortes C, Grossmann J, Roschitzki B, Hu J, Naegeli H, Laczko E, Bleul U. Analysis of the equine "cumulome" reveals major metabolic aberrations after maturation in vitro. BMC Genomics 2019; 20:588. [PMID: 31315563 PMCID: PMC6637639 DOI: 10.1186/s12864-019-5836-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 05/23/2019] [Indexed: 12/12/2022] Open
Abstract
Background Maturation of oocytes under in vitro conditions (IVM) results in impaired developmental competence compared to oocytes matured in vivo. As oocytes are closely coupled to their cumulus complex, elucidating aberrations in cumulus metabolism in vitro is important to bridge the gap towards more physiological maturation conditions. The aim of this study was to analyze the equine “cumulome” in a novel combination of proteomic (nano-HPLC MS/MS) and metabolomic (UPLC-nanoESI-MS) profiling of single cumulus complexes of metaphase II oocytes matured either in vivo (n = 8) or in vitro (n = 7). Results A total of 1811 quantifiable proteins and 906 metabolic compounds were identified. The proteome contained 216 differentially expressed proteins (p ≤ 0.05; FC ≥ 2; 95 decreased and 121 increased in vitro), and the metabolome contained 108 metabolites with significantly different abundance (p ≤ 0.05; FC ≥ 2; 24 decreased and 84 increased in vitro). The in vitro “cumulome” was summarized in the following 10 metabolic groups (containing 78 proteins and 21 metabolites): (1) oxygen supply, (2) glucose metabolism, (3) fatty acid metabolism, (4) oxidative phosphorylation, (5) amino acid metabolism, (6) purine and pyrimidine metabolism, (7) steroid metabolism, (8) extracellular matrix, (9) complement cascade and (10) coagulation cascade. The KEGG pathway “complement and coagulation cascades” (ID4610; n = 21) was significantly overrepresented after in vitro maturation. The findings indicate that the in vitro condition especially affects central metabolism and extracellular matrix composition. Important candidates for the metabolic group oxygen supply were underrepresented after maturation in vitro. Additionally, a shift towards glycolysis was detected in glucose metabolism. Therefore, under in vitro conditions, cumulus cells seem to preferentially consume excess available glucose to meet their energy requirements. Proteins involved in biosynthetic processes for fatty acids, cholesterol, amino acids, and purines exhibited higher abundances after maturation in vitro. Conclusion This study revealed the marked impact of maturation conditions on the “cumulome” of individual cumulus oocyte complexes. Under the studied in vitro milieu, cumulus cells seem to compensate for a lack of important substrates by shifting to aerobic glycolysis. These findings will help to adapt culture media towards more physiological conditions for oocyte maturation. Electronic supplementary material The online version of this article (10.1186/s12864-019-5836-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jasmin Walter
- Clinic of Reproductive Medicine, Vetsuisse Faculty, University of Zurich, 8057, Zurich, Switzerland.
| | - Fabian Huwiler
- Clinic of Reproductive Medicine, Vetsuisse Faculty, University of Zurich, 8057, Zurich, Switzerland
| | - Claudia Fortes
- Functional Genomics Center Zurich, University and ETH Zurich, 8057, Zurich, Switzerland
| | - Jonas Grossmann
- Functional Genomics Center Zurich, University and ETH Zurich, 8057, Zurich, Switzerland
| | - Bernd Roschitzki
- Functional Genomics Center Zurich, University and ETH Zurich, 8057, Zurich, Switzerland
| | - Junmin Hu
- Functional Genomics Center Zurich, University and ETH Zurich, 8057, Zurich, Switzerland
| | - Hanspeter Naegeli
- Institute of Pharmacology and Toxicology, Vetsuisse Faculty, University of Zurich, 8057, Zurich, Switzerland
| | - Endre Laczko
- Functional Genomics Center Zurich, University and ETH Zurich, 8057, Zurich, Switzerland
| | - Ulrich Bleul
- Clinic of Reproductive Medicine, Vetsuisse Faculty, University of Zurich, 8057, Zurich, Switzerland
| |
Collapse
|
9
|
Panner Selvam MK, Agarwal A, Dias TR, Martins AD, Baskaran S, Samanta L. Round cells do not contaminate or mask human sperm proteome in proteomic studies using cryopreserved samples. Andrologia 2019; 51:e13325. [PMID: 31168855 DOI: 10.1111/and.13325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/21/2019] [Accepted: 05/05/2019] [Indexed: 12/14/2022] Open
Abstract
Semen contains leucocytes and round cells, besides spermatozoa. The objective of this study was to identify whether the proteins from round cells and leucocytes affect the proteomic analysis of spermatozoa. Cryopreserved human sperm samples were divided into four groups: (1) samples with ≥1 × 106 /ml leucocytes unprocessed; (2) samples with ≥1 × 106 /ml leucocytes processed by 65% density centrifugation; (3) samples with round cells <1 × 106 /ml unprocessed; and (4) samples with round cells <1 × 106 /ml processed by 65% density centrifugation. Samples from each group (1, 2, 3 and 4) were pooled (n = 5) for quantitative proteomic analysis using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Comparative analysis revealed nine differentially expressed proteins (DEPs) groups 1 and 2. Moreover, five DEPs were identified between groups 3 and 4. We observed that cylicin-1, Atlastin-1 and vesicle transport protein SFT2B are specific to spermatozoa, and none of them were associated with leucocytes. The number of DEPs in spermatozoa of processed and unprocessed cryopreserved semen samples was negligible. Our results indicate that the presence of round cells (<1 × 106 /ml) in the seminal ejaculation does not interfere in the accurate detection of spermatozoa proteome by LC-MS/MS.
Collapse
Affiliation(s)
| | - Ashok Agarwal
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, Ohio
| | - Tânia R Dias
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, Ohio.,Universidade da Beira Interior, Covilhã, Portugal.,Department of Microscopy, Laboratory of Cell Biology, Institute of Biomedical Sciences Abel Salazar and Unit for Multidisciplinary Research in Biomedicine, University of Porto, Porto, Portugal
| | - Ana D Martins
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, Ohio.,Department of Microscopy, Laboratory of Cell Biology, Institute of Biomedical Sciences Abel Salazar and Unit for Multidisciplinary Research in Biomedicine, University of Porto, Porto, Portugal
| | - Saradha Baskaran
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, Ohio
| | - Luna Samanta
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, Ohio.,Redox biology Laboratory, Department of Zoology, Ravenshaw University, Cuttack, India
| |
Collapse
|
10
|
Panner Selvam MK, Agarwal A, Pushparaj PN. A quantitative global proteomics approach to understanding the functional pathways dysregulated in the spermatozoa of asthenozoospermic testicular cancer patients. Andrology 2019; 7:454-462. [DOI: 10.1111/andr.12620] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 03/04/2019] [Accepted: 03/05/2019] [Indexed: 12/21/2022]
Affiliation(s)
| | - A. Agarwal
- American Center for Reproductive Medicine Cleveland Clinic Cleveland OH USA
| | - P. N. Pushparaj
- Center of Excellence in Genomic Medicine Research King Abdulaziz University Jeddah Saudi Arabia
| |
Collapse
|
11
|
Panner Selvam MK, Baskaran S, Agarwal A. Proteomics of reproduction: Prospects and perspectives. Adv Clin Chem 2019; 92:217-243. [PMID: 31472755 DOI: 10.1016/bs.acc.2019.04.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In recent years, proteomics has been used widely in reproductive research in order to understand the molecular mechanisms related to gametes at the cellular level and the role of proteins involved in fertilization. Network and pathway analysis using bioinformatic tools have paved way to obtain a wider picture on the possible pathways associated with the key differentially expressed proteins (DEPs) and its implication in various infertility scenarios. A brief overview of advanced techniques and bioinformatic tools used for reproductive proteomics is presented. Key findings of proteomic-based studies on male and female reproduction are also presented. Furthermore, the chapter sheds light on the cellular pathways and potential biomarkers associated with male and female infertility. Proteomics coupled with bioinformatic analysis provides an ideal platform for non-invasive management of infertility in couples.
Collapse
|
12
|
Licciardi F, Lhakhang T, Kramer YG, Zhang Y, Heguy A, Tsirigos A. Human blastocysts of normal and abnormal karyotypes display distinct transcriptome profiles. Sci Rep 2018; 8:14906. [PMID: 30297919 PMCID: PMC6175822 DOI: 10.1038/s41598-018-33279-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 09/26/2018] [Indexed: 12/13/2022] Open
Abstract
Unveiling the transcriptome of human blastocysts can provide a wealth of important information regarding early embryonic ontology. Comparing the mRNA production of embryos with normal and abnormal karyotypes allows for a deeper understanding of the protein pathways leading to viability and aberrant fetal development. In addition, identifying transcripts specific for normal or abnormal chromosome copy number could aid in the search for secreted substances that could be used to non-invasively identify embryos best suited for IVF embryo transfer. Using RNA-seq, we characterized the transcriptome of 71 normally developing human blastocysts that were karyotypically normal vs. trisomic or monosomic. Every monosomy and trisomy of the autosomal and sex chromosomes were evaluated, mostly in duplicate. We first mapped the transcriptome of three normal embryos and found that a common core of more than 3,000 genes is expressed in all embryos. These genes represent pathways related to actively dividing cells, such as ribosome biogenesis and function, spliceosome, oxidative phosphorylation, cell cycle and metabolic pathways. We then compared transcriptome profiles of aneuploid embryos to those of normal embryos. We observed that non-viable embryos had a large number of dysregulated genes, some showing a hundred-fold difference in expression. On the contrary, sex chromosome abnormalities, XO and XXX displayed transcriptomes more closely mimicking those embryos with 23 normal chromosome pairs. Intriguingly, we identified a set of commonly deregulated genes in the majority of both trisomies and monosomies. This is the first paper demonstrating a comprehensive transcriptome delineation of karyotypic abnormalities found in the human pre-implantation embryo. We believe that this information will contribute to the development of new pre-implantation genetic screening methods as well as a better understanding of the underlying developmental abnormalities of abnormal embryos, fetuses and children.
Collapse
Affiliation(s)
- Frederick Licciardi
- Department of Obstetrics and Gynecology, NYU School of Medicine, New York, 10016, USA.
| | - Tenzin Lhakhang
- Applied Bioinformatics Laboratories, NYU School of Medicine, New York, 10016, USA
| | - Yael G Kramer
- NYU Fertility Center, NYU School of Medicine, New York, 10016, USA
| | - Yutong Zhang
- Genome Technology Center, NYU School of Medicine, New York, 10016, USA
| | - Adriana Heguy
- Genome Technology Center, NYU School of Medicine, New York, 10016, USA. .,Department of Pathology, NYU School of Medicine, New York, 10016, USA. .,Laura and Isaac Perlmutter Cancer Center and Helen L. and Martin S. Kimmel Center for Stem Cell Biology, NYU School of Medicine, New York, 10016, USA.
| | - Aristotelis Tsirigos
- Applied Bioinformatics Laboratories, NYU School of Medicine, New York, 10016, USA. .,Department of Pathology, NYU School of Medicine, New York, 10016, USA. .,Laura and Isaac Perlmutter Cancer Center and Helen L. and Martin S. Kimmel Center for Stem Cell Biology, NYU School of Medicine, New York, 10016, USA.
| |
Collapse
|
13
|
Genexpressions- und Proteomanalyse – Reif für die klinische Anwendung? GYNAKOLOGISCHE ENDOKRINOLOGIE 2018. [DOI: 10.1007/s10304-018-0195-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|