1
|
Li Z, Meng Z, Xiao L, Du J, Jiang D, Liu B. Constructing and identifying an eighteen-gene tumor microenvironment prognostic model for non-small cell lung cancer. World J Surg Oncol 2024; 22:319. [PMID: 39609690 PMCID: PMC11603896 DOI: 10.1186/s12957-024-03588-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 11/17/2024] [Indexed: 11/30/2024] Open
Abstract
BACKGROUND The tumor microenvironment (TME) plays a crucial role in tumorigenesis and tumor progression. This study aimed to identify novel TME-related biomarkers and develop a prognostic model for patients with non-small-cell lung cancer (NSCLC). METHODS After downloading and preprocessing data from The Cancer Genome Atlas (TCGA) data portal and Gene Expression Omnibus (GEO) datasets, we classified the molecular subtypes using the "NMF" R package. We performed survival analysis and quantified immune scores between clusters. A Cox proportional hazards model was then constructed, and its formula was produced. We assessed model performance and clinical utility. A prediction nomogram was also constructed and validated. Additionally, we explored the potential regulatory mechanisms of our TME gene signature using Gene Set Enrichment Analysis (GSEA). RESULTS From data processing and univariate Cox regression analysis, 57 TME-related prognostic genes were identified, and two significantly distinct clusters were established. Using Cox regression and Lasso regression, an 18-gene TME-related prognostic model was developed. Patients were stratified into high- and low-risk groups based on the risk score, with survival analysis showing that the low-risk group had significantly better outcomes than the high-risk group (P < 0.01). ROC curve analysis demonstrated strong predictive performance, with 1-year, 3-year, and 5-year AUC values ranging from 0.654 to 0.702 across different cohorts. The model accurately predicted survival outcomes across subgroups with varying clinical features, and its predictive accuracy was validated through a nomogram. CONCLUSIONS We developed a prognostic model based on TME-related genes in NSCLC. Our 18-gene TME signature can effectively predict the prognosis of NSCLC with high accuracy.
Collapse
Affiliation(s)
- Zaishan Li
- Department of Thoracic Surgery, Linyi People's Hospital, Linyi, Shandong, 276000, China
| | - Zhenzhen Meng
- Department of Pain, Linyi People's Hospital, Linyi, Shandong, 276000, China
| | - Lin Xiao
- Department of Operation Management, Linyi People's Hospital, Linyi, Shandong, 276000, China
| | - Jiahui Du
- Department of Thoracic Surgery, Linyi People's Hospital, Linyi, Shandong, 276000, China
| | - Dazhi Jiang
- Department of Thoracic Surgery, Linyi People's Hospital, Linyi, Shandong, 276000, China
| | - Baoling Liu
- Department of Oncology, Linyi People's Hospital, Intersection of Wohushan Road and Wuhan Road, Lanshan District, Linyi, Shandong, 276000, China.
| |
Collapse
|
2
|
Budhwani KI, Patel ZH, Guenter RE, Charania AA. A hitchhiker's guide to cancer models. Trends Biotechnol 2022; 40:1361-1373. [PMID: 35534320 PMCID: PMC9588514 DOI: 10.1016/j.tibtech.2022.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/31/2022] [Accepted: 04/08/2022] [Indexed: 01/21/2023]
Abstract
Cancer is a complex and uniquely personal disease. More than 1.7 million people in the United States are diagnosed with cancer every year. As the burden of cancer grows, so does the need for new, more effective therapeutics and for predictive tools to identify optimal, personalized treatment options for every patient. Cancer models that recapitulate various aspects of the disease are fundamental to making advances along the continuum of cancer treatment from benchside discoveries to bedside delivery. In this review, we use a thought experiment as a vehicle to arrive at four broad categories of cancer models and explore the strengths, weaknesses, opportunities, and threats for each category in advancing our understanding of the disease and improving treatment strategies.
Collapse
Affiliation(s)
- Karim I Budhwani
- CerFlux, Inc., Birmingham, AL, USA; Department of Radiation Oncology, Heersink School of Medicine, University of Alabama at Birmingham (UAB), Birmingham, AL, USA; Department of Physics, Coe College, Cedar Rapids, IA, USA.
| | | | | | | |
Collapse
|
3
|
Kant Tripathi S, Kumar Sahoo R, Kumar Biswal B. SOX9 as an emerging target for anticancer drugs and a prognostic biomarker for cancer drug resistance. Drug Discov Today 2022; 27:2541-2550. [DOI: 10.1016/j.drudis.2022.05.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 05/16/2022] [Accepted: 05/24/2022] [Indexed: 12/23/2022]
|
4
|
Suwannakul N, Midorikawa K, Du C, Qi YP, Zhang J, Xiang BD, Murata M, Ma N. Subcellular localization of HMGB1 in human cholangiocarcinoma: correlation with tumor stage. Discov Oncol 2021; 12:49. [PMID: 35201494 PMCID: PMC8777519 DOI: 10.1007/s12672-021-00446-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/22/2021] [Indexed: 11/23/2022] Open
Abstract
Cholangiocarcinoma (CCA) is a malignant disease with a poor prognosis, and several studies have been conducted using different molecular markers as a tool for CCA diagnosis, including Clonorchis sinensis (CS)-CCA. We initially identified the expression profiles of the three markers of interest, HMGB1, SOX9, and YAP1, using GSE (GSE76297 and GSE32958) datasets. Upregulated levels of these three proteins were detected in CCA samples compared to those in normal samples. To clarify this issue, 24 human CCA tissues with paired adjacent normal tissues were evaluated using immunohistochemical staining. Of the three markers, the total cellular staining intensities were scanned, and subcellular localization was scored in the nuclear and cytoplasmic regions. The intensities of HMGB1, SOX9, and YAP1 were elevated in CCA tissues than the adjacent normal tissues. Individual scoring of subcellular localization revealed that the expression levels of HMGB1 (nucleus) and YAP1 (nucleus and cytoplasm) were significantly different from the pathologic M stage. Moreover, the translocation pattern was categorized using "site-index", and the results demonstrated that the overexpression of HMGB1 and SOX9 was mostly observed in both the nucleus and cytoplasm, whereas YAP1 was predominantly expressed in the cytoplasm of tumor cells. Interestingly, the site index of HMGB1 was moderately correlated with the tumor stage (r = 0.441, p = 0.031). These findings imply that the overexpression of subcellular HMGB1 could be associated with the metastatic status of patients with CS-CCA, which was shown to be effective for CS-CCA prognosis.
Collapse
Affiliation(s)
- Nattawan Suwannakul
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, 514-8507, Japan
| | - Kaoru Midorikawa
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, 514-8507, Japan
| | - Chunping Du
- Department of Pathology, Guangxi Medical University Cancer Hospital, Guangxi, China
| | - Ya-Peng Qi
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Guangxi, China
| | - Jie Zhang
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Guangxi, China
| | - Bang-De Xiang
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Guangxi, China
| | - Mariko Murata
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, 514-8507, Japan.
| | - Ning Ma
- Graduate School of Health Science, Suzuka University of Medical Science, 1001-1, Kishioka, Suzuka, Mie, 510-0293, Japan.
| |
Collapse
|
5
|
Haga K, Yamazaki M, Maruyama S, Kawaharada M, Suzuki A, Hoshikawa E, Chan NN, Funayama A, Mikami T, Kobayashi T, Izumi K, Tanuma JI. Crosstalk between oral squamous cell carcinoma cells and cancer-associated fibroblasts via the TGF-β/SOX9 axis in cancer progression. Transl Oncol 2021; 14:101236. [PMID: 34624685 PMCID: PMC8502776 DOI: 10.1016/j.tranon.2021.101236] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/07/2021] [Accepted: 10/01/2021] [Indexed: 12/24/2022] Open
Abstract
TGF-β1 secreted from CAFs promote the migration and invasion of OSCC cells. CAFs upregulate SOX9 expression of OSCC cells, possibly through inducing EMT. The presence of CAFs is correlated with SOX9 expression in the invasive cancer nests. The TGF-β/SOX9 axis between CAFs and OSCC cells facilitates cancer progression. Targeting the TGF-β/SOX9 axis could be a potential novel target for OSCC.
Cancer-associated fibroblasts (CAFs) have important roles in promoting cancer development and progression. We previously reported that high expression of sex-determining region Y (SRY)-box9 (SOX9) in oral squamous cell carcinoma (OSCC) cells was positively correlated with poor prognosis. This study developed three-dimensional (3D) in vitro models co-cultured with OSCC cells and CAFs to examine CAF-mediated cancer migration and invasion in vitro and in vivo. Moreover, we performed an immunohistochemical analysis of alpha-smooth muscle actin and SOX9 expression in surgical specimens from 65 OSCC patients. The results indicated that CAFs promote cancer migration and invasion in migration assays and 3D in vitro models. The invading OSCC cells exhibited significant SOX9 expression and changes in the expression of epithelial–mesenchymal transition (EMT) markers, suggesting that SOX9 promotes EMT. TGF-β1 signalling inhibition reduced SOX9 expression and cancer invasion in vitro and in vivo, indicating that TGF-β1-mediated invasion is dependent on SOX9. In surgical specimens, the presence of CAFs was correlated with SOX9 expression in the invasive cancer nests and had a significant impact on regional recurrence. These findings demonstrate that CAFs promote cancer migration and invasion via the TGF-β/SOX9 axis.
Collapse
Affiliation(s)
- Kenta Haga
- Division of Biomimetics, Faculty of Dentistry & Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan; Division of Reconstructive Surgery for Oral and Maxillofacial Region, Faculty of Dentistry & Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan; Division of Oral Pathology, Faculty of Dentistry & Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-ku, Niigata 951-8514, Japan
| | - Manabu Yamazaki
- Division of Oral Pathology, Faculty of Dentistry & Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-ku, Niigata 951-8514, Japan
| | - Satoshi Maruyama
- Division of Oral Pathology, Faculty of Dentistry & Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-ku, Niigata 951-8514, Japan
| | - Masami Kawaharada
- Division of Reconstructive Surgery for Oral and Maxillofacial Region, Faculty of Dentistry & Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan; Division of Oral Pathology, Faculty of Dentistry & Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-ku, Niigata 951-8514, Japan
| | - Ayako Suzuki
- Division of Biomimetics, Faculty of Dentistry & Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan
| | - Emi Hoshikawa
- Division of Biomimetics, Faculty of Dentistry & Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan
| | - Nyein Nyein Chan
- Division of Reconstructive Surgery for Oral and Maxillofacial Region, Faculty of Dentistry & Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan; Division of Oral Pathology, Faculty of Dentistry & Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-ku, Niigata 951-8514, Japan
| | - Akinori Funayama
- Division of Reconstructive Surgery for Oral and Maxillofacial Region, Faculty of Dentistry & Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan
| | - Toshihiko Mikami
- Division of Reconstructive Surgery for Oral and Maxillofacial Region, Faculty of Dentistry & Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan
| | - Tadaharu Kobayashi
- Division of Reconstructive Surgery for Oral and Maxillofacial Region, Faculty of Dentistry & Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan
| | - Kenji Izumi
- Division of Biomimetics, Faculty of Dentistry & Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan.
| | - Jun-Ichi Tanuma
- Division of Oral Pathology, Faculty of Dentistry & Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-ku, Niigata 951-8514, Japan.
| |
Collapse
|
6
|
Ueda S, Kanda M, Sato Y, Baba H, Nakamura S, Sawaki K, Shimizu D, Motoyama S, Fujii T, Kodera Y, Nomoto S. Chromobox 2 Expression Predicts Prognosis After Curative Resection of Oesophageal Squamous Cell Carcinoma. Cancer Genomics Proteomics 2021; 17:391-400. [PMID: 32576584 DOI: 10.21873/cgp.20198] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/06/2020] [Accepted: 04/07/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND/AIM To investigate the function of chromobox 2 (CBX2) in oesophageal squamous cell carcinoma (OSCC). MATERIALS AND METHODS We used real-time quantitative reverse transcription PCR (qRT-PCR) and immunohistochemistry to determine CBX2 expression levels in 13 human OSCC cell lines and clinical specimens of two independent cohorts of patients with OSCC. RESULTS PCR array analysis revealed that CBX2 was co-ordinately expressed with WNT5B in OSCC cell lines. RT-qPCR analysis of clinical samples revealed a high tumour-specific CBX2 expression compared with normal oesophageal tissues. High CBX2 expression was significantly associated with shorter disease-specific survival, hematogenous recurrence, and overall recurrence. Analysis of tissue microarrays of one cohort revealed that patients with higher CBX2 levels tended to have a shorter disease-specific survival. CONCLUSION CBX2 overexpression in OSCC tissues may serve as a novel biomarker for predicting survival and hematogenous recurrence.
Collapse
Affiliation(s)
- Sei Ueda
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Department of Maxillofacial Surgery, School of Dentistry, Aichi-gakuin University Graduate School of Medicine, Nagoya, Japan.,Department of Surgery, School of Dentistry, Aichi-gakuin University Graduate School of Medicine, Nagoya, Japan
| | - Mitsuro Kanda
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yusuke Sato
- Department of Thoracic Surgery, Akita University Graduate School of Medicine, Akita, Japan
| | - Hayato Baba
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Department of Surgery and Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Shunsuke Nakamura
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Koichi Sawaki
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Dai Shimizu
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Satoru Motoyama
- Department of Thoracic Surgery, Akita University Graduate School of Medicine, Akita, Japan
| | - Tsutomu Fujii
- Department of Thoracic Surgery, Akita University Graduate School of Medicine, Akita, Japan
| | - Yasuhiro Kodera
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shuji Nomoto
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Department of Surgery, School of Dentistry, Aichi-gakuin University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
7
|
Jia J, Wang J, Yin M, Liu Y. microRNA-605 directly targets SOX9 to alleviate the aggressive phenotypes of glioblastoma multiforme cell lines by deactivating the PI3K/Akt pathway. Onco Targets Ther 2019; 12:5437-5448. [PMID: 31360068 PMCID: PMC6625606 DOI: 10.2147/ott.s213026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Accepted: 06/17/2019] [Indexed: 12/30/2022] Open
Abstract
Background Aberrant microRNA (miRNA) expression has been widely reported to play a crucial role in the progression and development of glioblastoma (GBM). miR-605 has been identified as a tumor-suppressing miRNA in several types of human cancers. Nevertheless, the expression profile and detailed roles of miR-605 in GBM remain unclear and need to be further elucidated. Materials and methods RT-qPCR analysis was utilized for the determination of miR-605 expression in GBM tissues and cell lines. In addition, CCK-8 assay, transwell migration and invasion assays, as well as sub-cutaneous xenograft mouse models were utilized to evaluate the effects of miR-605 upregulation in GBM cells. Notably, the potential mechanisms underlying the activity of miR-605 in the malignant phenotypes of GBM were explored. Results We observed that expression of miR-605 was reduced in GBM tissues and cell lines. Decreased miR-605 expression exhibited significant correlation with KPS score. The overall survival rate in GBM patients with low miR-605 expression was lower than that of patients with high miR-605 expression. Increased miR-605 expression suppressed the proliferation, migration, and invasion of U251 and T98 cells. In addition, miR-605 upregulation impaired tumor growth in vivo. Furthermore, SRY-Box 9 (SOX9) was identified as a direct target gene of miR-605 in U251 and T98 cells. SOX9 expression was shown to exhibit an inverse correlation with miR-605 expression in GBM tissues. Moreover, silencing of SOX9 expression mimicked the tumor-suppressing roles of miR-605 in U251 and T98 cells, while SOX9 restoration rescued the suppressive effects of miR-605 overexpression in the same. Notably, miR-605 suppressed the PI3K/Akt pathway in GBM in vitro and in vivo. Conclusion These results demonstrated that miR-605 acts as a tumor suppressor in the development of GBM by directly targeting SOX9 and inhibiting the activation of the PI3K/Akt pathway, suggesting its potential role as a therapeutic target for GBM.
Collapse
Affiliation(s)
- Jianwu Jia
- Department of Neurosurgery, Yidu Central Hospital of Weifang, Weifang, Shandong 262500, People's Republic of China
| | - Jing Wang
- Department of Neurosurgery, Yidu Central Hospital of Weifang, Weifang, Shandong 262500, People's Republic of China
| | - Meifeng Yin
- Department of Neurosurgery, Yidu Central Hospital of Weifang, Weifang, Shandong 262500, People's Republic of China
| | - Yongdong Liu
- Department of Pediatrics, Weifang People's Hospital, Weifang, Shandong 261041, People's Republic of China
| |
Collapse
|