1
|
Sun L, Li X, Xiao Y, Yu W, Chen X, Wang Z, Xia N, Chen X, Chen M, Zhu H, Li J, Wei J, Han S, Pu L. Mfsd2a suppresses colorectal cancer progression and liver metastasis via the S100A14/STAT3 axis. J Transl Med 2025; 23:59. [PMID: 39806334 PMCID: PMC11726956 DOI: 10.1186/s12967-024-05994-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 12/13/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Colorectal cancer (CRC) exhibits a high incidence globally, with the liver being the most common site of distant metastasis. At the time of diagnosis, 20-30% of CRC patients already present with liver metastases. Colorectal liver metastasis (CRLM) is a major cause of mortality among CRC patients. The pathogenesis of CRLM involves complex molecular mechanisms and the hepatic immune microenvironment, but current clinical prevention and treatment are significantly limited. Recent studies have revealed that the major facilitator superfamily domain containing protein-2a (Mfsd2a) plays a pivotal role in the development and metastasis of various cancers. For instance, Mfsd2a inhibits gastric cancer initiation and progression and may impact angiogenesis. However, the mechanisms by which Mfsd2a influences CRC progression and liver metastasis remain unclear. METHODS In this study, we conducted a survival analysis of Mfsd2a in colorectal cancer using data from the GEPIA and GEO databases, and examined the expression differences between primary tumor (PT) and liver metastasis (LM). We further assessed the clinical significance and prognostic relevance of Mfsd2a through immunohistochemical analysis of tissue samples from 70 CRLM patients. Moreover, Kaplan-Meier analysis was used to perform survival analysis on these patients. The biological function of Mfsd2a in CRLM was confirmed by a series of experiments conducted both in vitro and in vivo. Additionally, we investigated downstream molecular pathways using western blot, Co-immunoprecipitation, immunofluorescence, and mass spectrometry techniques. RESULTS We observed that Mfsd2a expression is reduced in LM compared to PT, and higher Mfsd2a levels are associated with better prognosis in CRLM patients. Furthermore, function assays demonstrated that Mfsd2a suppresses CRC cells proliferation, migration, invasion, and EMT in vitro, while also delaying tumor growth and liver metastasis in vivo. Mechanistically, Mfsd2a interacts with S100A14, enhancing its expression and inhibiting phosphorylation of STAT3. In addition, the STAT3 activator colivelin partially reversed the inhibitory effect of Mfsd2a overexpression on the progression of colorectal cancer and liver metastasis. CONCLUSION In summary, Mfsd2a inhibits colorectal cancer progression and liver metastasis by interacting with S100A14, thereby suppressing the phosphorylation of STAT3. Mfsd2a functions as a tumor suppressor in CRLM and could be a promising therapeutic target for treating CRC patients with liver metastasis.
Collapse
Affiliation(s)
- Linfeng Sun
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, 210029, China
- NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, 210029, China
| | - Xiangdong Li
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, 210029, China
- NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, 210029, China
| | - Yuhao Xiao
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, 210029, China
- NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, 210029, China
| | - Wenjie Yu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, 210029, China
- NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, 210029, China
| | - Xuyang Chen
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Ziyi Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, 210029, China
- NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, 210029, China
| | - Nan Xia
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, 210029, China
- NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, 210029, China
| | - Xuejiao Chen
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, 210029, China
- NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, 210029, China
| | - Minhao Chen
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, 210029, China
- NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, 210029, China
| | - Haoliang Zhu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, 210029, China
- NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, 210029, China
| | - Jie Li
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, 210029, China
- NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, 210029, China
| | - Jie Wei
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, 210029, China
- NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, 210029, China
| | - Sheng Han
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, 210029, China.
- NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, 210029, China.
| | - Liyong Pu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, 210029, China.
- NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, 210029, China.
| |
Collapse
|
2
|
Arif SH. Correlation of S100A4 and S100A14 Expression With Clinico-Pathological Features and Tumor Location in Colorectal Cancer Patients. Cureus 2024; 16:e65615. [PMID: 39205741 PMCID: PMC11350396 DOI: 10.7759/cureus.65615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Background Colorectal cancer (CRC) remains a major cause of morbidity and mortality worldwide. Understanding the clinical and pathological characteristics of CRC patients is essential for improving diagnosis, treatment, and prognostication. S100 proteins play a crucial role in CRC by promoting tumor growth, metastasis, and inflammation through their involvement in various cellular processes such as proliferation, migration, and immune response modulation. Elevated levels of specific S100 proteins have been associated with poor prognosis and serve as potential biomarkers for early detection and therapeutic targets in CRC. This study aims to analyze the general and medical characteristics of CRC patients, with a particular focus on the expression patterns of S100A4 and S100A14 proteins and their correlation with tumor location and various clinical parameters. Methods This cross-sectional study included 98 CRC patients aged 21 to 92 years. Clinical data were collected from Vajeen Hospital (Duhok/ Iraq), including age, gender, and presenting symptoms. Pathological data such as tumor site, tumor size, tumor, node, and metastasis (TNM) stage, tumor grade angio-lymphatic invasion, perineural invasion, and metastasis were analyzed. The expression of S100A4 and S100A14 proteins was assessed using immunohistochemistry, and their correlation with clinico-pathological features and tumor location was evaluated using statistical analysis. Results The 98 patients with a mean age of 57.27 years. The majority were over 50 years old (68, 69.39%) with a nearly equal gender distribution. The most common symptom was bleeding per rectum (36, 36.74%). TNM staging revealed 25.51% (n=25) of patients at stage I, 32.65% (n=32) at stage II, 24.49% (n=24) at stage III, and 17.35% (n=17) at stage IV. Angio-lymphatic invasion was present in 65.31% (n=64) of patients, and lymph node invasion in 38.78% (n=38). All tumors were adenocarcinomas, with 82.65% (n=81) being intermediate grade. S100A4 expression was low in early-stage tumors but significantly higher in advanced stages (P < 0.0001). High S100A4 expression was associated with vascular invasion (P = 0.0006), perineural invasion (P = 0.0002), lymph node invasion (P < 0.0001), and metastasis (P = 0.0010). S100A14 expression was inversely correlated with disease severity. Low S100A14 expression was more common in advanced stages (P < 0.0001) and was associated with higher rates of vascular invasion (P = 0.0018), lymph node invasion (P < 0.0001), and metastasis (P = 0.0001). Conclusion This study highlights significant correlations between S100A4 and S100A14 expression with various clinico-pathological features in CRC patients. High S100A4 expression is linked with tumor aggressiveness, whereas low S100A14 expression is associated with advanced disease stages and increased metastasis. However, there is no observed correlation between the expression of these proteins and the tumor site.
Collapse
Affiliation(s)
- Sardar H Arif
- Surgery, College of Medicine, University of Duhok, Duhok, IRQ
| |
Collapse
|
3
|
Min H, Cho J, Sim JY, Boo H, Lee J, Lee S, Lee Y, Kim SJ, Kim K, Park I, Hong S, Zhang X, Zhang Z, Park R, Lee H. S100A14: A novel negative regulator of cancer stemness and immune evasion by inhibiting STAT3-mediated programmed death-ligand 1 expression in colorectal cancer. Clin Transl Med 2022; 12:e986. [PMID: 35858011 PMCID: PMC9299575 DOI: 10.1002/ctm2.986] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 06/10/2022] [Accepted: 07/03/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Programmed death-ligand 1 (PD-L1) has functional roles in cancer stem-like cell (CSC) phenotypes and chemoresistance besides immune evasion. Chemotherapy is a common treatment choice for colorectal cancer (CRC) patients; however, chemoresistance limits its effectiveness of treatment. METHODS We examined the role of S100A14 (SA14) in CRC by adopting PD-L1high subpopulations within CRC cell lines and patient tumours, by establishing PD-L1high chemoresistant CRC sublines through prolonged exposure to 5-fluorouracil/oxaliplatin-based chemotherapy in vitro and in vivo, and by analysing a public database. RESULTS We identified a novel function of SA14 as a regulator of immune surveillance, major CSC phenotypes, and survival capacity under hostile microenvironments, including those harbouring chemotherapeutics, and as a prognostic biomarker in CRC. Mechanistically, SA14 inhibits PD-L1 expression by directly interacting with signal transducer and activator of transcription 3 (STAT3) and inducing its proteasome-mediated degradation. While gain-of-SA14 causes loss of PD-L1 expression and tumourigenic potential and sensitisation to chemotherapy-induced apoptosis in chemoresistant CRC cells, loss-of-SA14 causes increases in PD-L1 expression, tumourigenic potential, and chemoresistance in vitro and in vivo. We further show that a combinatorial treatment with chemotherapy and recombinant SA14 protein effectively induces apoptosis in PD-L1high chemoresistant CRC cells. CONCLUSIONS Our results suggest that SA14-based therapy is an effective strategy to prevent tumour progression and that SA14 is a predictive biomarker for anti-PD-L1 immunotherapy and chemotherapy in combination.
Collapse
Affiliation(s)
- Hye‐Young Min
- Creative Research Initiative Center for Concurrent Control of Emphysema and Lung Cancer, College of PharmacySeoul National UniversitySeoulRepublic of Korea
- College of Pharmacy and Research Institute of Pharmaceutical SciencesSeoul National UniversitySeoulRepublic of Korea
| | - Jaebeom Cho
- Creative Research Initiative Center for Concurrent Control of Emphysema and Lung Cancer, College of PharmacySeoul National UniversitySeoulRepublic of Korea
- College of Pharmacy and Research Institute of Pharmaceutical SciencesSeoul National UniversitySeoulRepublic of Korea
| | - Jeong Yeon Sim
- Creative Research Initiative Center for Concurrent Control of Emphysema and Lung Cancer, College of PharmacySeoul National UniversitySeoulRepublic of Korea
| | - Hye‐Jin Boo
- Creative Research Initiative Center for Concurrent Control of Emphysema and Lung Cancer, College of PharmacySeoul National UniversitySeoulRepublic of Korea
- College of Pharmacy and Research Institute of Pharmaceutical SciencesSeoul National UniversitySeoulRepublic of Korea
| | - Ji‐Sun Lee
- Creative Research Initiative Center for Concurrent Control of Emphysema and Lung Cancer, College of PharmacySeoul National UniversitySeoulRepublic of Korea
| | - Seon‐Boon Lee
- Department of Biochemistry and Cell Biology, School of Medicine, Cell & Matrix Research InstituteKyungpook National UniversityDaeguRepublic of Korea
| | - Young‐Jin Lee
- Department of Biochemistry and Cell Biology, School of Medicine, Cell & Matrix Research InstituteKyungpook National UniversityDaeguRepublic of Korea
| | - Sung Joo Kim
- Department of Pathology, Asan Medical CenterUniversity of Ulsan College of MedicineSeoulRepublic of Korea
| | - Kyu‐Pyo Kim
- Department of Oncology, Asan Medical CenterUniversity of Ulsan College of MedicineSeoulRepublic of Korea
| | - In‐Ja Park
- Department of Surgery, Asan Medical CenterUniversity of Ulsan College of MedicineSeoulRepublic of Korea
| | - Seung‐Mo Hong
- Department of Pathology, Asan Medical CenterUniversity of Ulsan College of MedicineSeoulRepublic of Korea
| | - Xue‐Li Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiP.R. China
| | - Zhi‐Gang Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiP.R. China
| | - Rang‐Woon Park
- Department of Biochemistry and Cell Biology, School of Medicine, Cell & Matrix Research InstituteKyungpook National UniversityDaeguRepublic of Korea
| | - Ho‐Young Lee
- Creative Research Initiative Center for Concurrent Control of Emphysema and Lung Cancer, College of PharmacySeoul National UniversitySeoulRepublic of Korea
- College of Pharmacy and Research Institute of Pharmaceutical SciencesSeoul National UniversitySeoulRepublic of Korea
| |
Collapse
|
4
|
Jiang S, Zhu Y, Chen Z, Huang Z, Liu B, Xu Y, Li Z, Lin Z, Li M. S100A14 inhibits cell growth and epithelial-mesenchymal transition (EMT) in prostate cancer through FAT1-mediated Hippo signaling pathway. Hum Cell 2021; 34:1215-1226. [PMID: 33890248 DOI: 10.1007/s13577-021-00538-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 04/16/2021] [Indexed: 11/30/2022]
Abstract
Prostate cancer (PCA) is an epithelial malignant tumor occurring in the prostate gland. It is the second most common male cancer in the world and one of the top five cancer deaths in men. To combat this disease, it is needed to identify important tumor suppressor genes and elucidate the molecular mechanisms. S100 calcium-binding protein A14 (S100A14), a member of the S100 family, is located on chromosome 1q21.3 and contains an EF-hand motif that binds calcium. S100A14 is involved in a variety of tumor biological processes in several types of cancers. Its expression level and related biological functions are tissue or tumor specific. However, its possible effects on prostate cancer are still unclear. Herein, we found the low expression of S100A14 in human prostate cancer tissues and cell lines. S100A14 suppressed the proliferation of prostate cancer cells and promoted cell apoptosis. Additionally, S100A14 suppressed the motility and EMT processes of prostate cancer cells. We further found S100A14 promoted the expression of FAT1 and activated the Hippo pathway, which, therefore, suppressed the prostate cancer progression. The in vivo assays confirmed that S100A14 suppressed tumor growth of prostate cancer cells through FAT1-mediated Hippo pathway in mice. In conclusion, we clarified the mechanism underlying S100A14 suppressing prostate cancer progression and, therefore, we thought S100A14 could serve as a tumor suppressor protein.
Collapse
Affiliation(s)
- Shaoqin Jiang
- Department of Urology, Fujian Medical University Union Hospital, No. 29, Xinquan Road, Gulou District, Fuzhou, 350001, Fujian, China
| | - Yaru Zhu
- Intensive Care Unit, Fujian Provincial Governmental Hospital, Fuzhou, 350001, Fujian, China
| | - Zhenlin Chen
- Department of Urology, Fujian Medical University Union Hospital, No. 29, Xinquan Road, Gulou District, Fuzhou, 350001, Fujian, China
| | - Zhangcheng Huang
- Department of Urology, Fujian Medical University Union Hospital, No. 29, Xinquan Road, Gulou District, Fuzhou, 350001, Fujian, China
| | - Bingqiao Liu
- Department of Urology, Fujian Medical University Union Hospital, No. 29, Xinquan Road, Gulou District, Fuzhou, 350001, Fujian, China
| | - Yue Xu
- Department of Urology, Fujian Medical University Union Hospital, No. 29, Xinquan Road, Gulou District, Fuzhou, 350001, Fujian, China
| | - Zhihao Li
- Department of Urology, Fujian Medical University Union Hospital, No. 29, Xinquan Road, Gulou District, Fuzhou, 350001, Fujian, China
| | - Zequn Lin
- Department of Urology, Fujian Medical University Union Hospital, No. 29, Xinquan Road, Gulou District, Fuzhou, 350001, Fujian, China
| | - Mengqiang Li
- Department of Urology, Fujian Medical University Union Hospital, No. 29, Xinquan Road, Gulou District, Fuzhou, 350001, Fujian, China.
| |
Collapse
|