1
|
Tahmasebi M, Perez RR, Marques A, Soenjaya Y, Khoobani M, Keshavarz M, Kayssi A, Dueck A, Kraemer D, Demore C, Miller RJD, Wright G, Tavallaei MA. CathCam-Guided Picosecond Infrared Laser Ablation in Peripheral Artery Disease Revascularization. IEEE Trans Biomed Eng 2025; 72:725-733. [PMID: 39325603 DOI: 10.1109/tbme.2024.3468889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
OBJECTIVE Endovascular revascularization of peripheral arterial occlusions has a high technical failure rate of 15-20%, mainly due to difficulties in crossing the occlusion with a guidewire. This study evaluates the use of a Picosecond mid-Infrared Laser (PIRL) to facilitate occlusion crossing. METHODS Popliteal artery lesion samples were obtained from a donated limb of a patient with critical limb ischemia (CLI). A customized system advanced the PIRL fiber at controlled speeds toward the occlusion. The fiber was tested with its source OFF and ON at either 500 mW or 1000 mW power, 2.96 µm wavelength, and 1 kHz repetition rate. Lesions were scanned using µ-CT before and after the test, and post-ablated tissues were analyzed histologically. The feasibility of using PIRL with the CathCam, an optical image-guided steerable catheter, was also assessed under X-ray fluoroscopy in an OR suite. RESULTS Tests showed a significant crossing success improvement with the laser ON vs. OFF (95.6% vs. 73.9%, p << 0.05) and a significant reduction in maximum force (5.5 ± 9.8 gr vs. 17.2 ± 12.3 gr; p << 0.05). Success rates generally decreased with increased fiber speed, ranging from 100% at 0.019 mm/s to 30% at 0.5 mm/s, while force increased. The results showed that 0.1 mm/s fiber advancement speed is the fastest speed with the highest crossing success rate. Histological analysis showed sub -50 µm tissue trauma post-PIRL-ablation. CONCLUSION PIRL plaque ablation is minimally invasive, and 0.1 mm/s was identified as the optimal fiber advancement speed. SIGNIFICANCE PIRL, guided with CathCam, demonstrates high potential for endovascular revascularization procedures.
Collapse
|
2
|
Friedrich RE, Kohlrusch FK, Ricken T, Grimm J, Gosau M, Hahn M, von Kroge S, Hahn J. Nanosecond infrared laser (NIRL) for cutting roots of human teeth: thermal effects and quality of cutting edges. Lasers Med Sci 2024; 39:227. [PMID: 39207512 PMCID: PMC11362296 DOI: 10.1007/s10103-024-04173-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
A nanosecond infrared laser (NIRL) was investigated in cutting dental roots. The focus of the investigation was defining the preparation accuracy and registration of thermal effects during laser application. Ten teeth were processed in the root area using a NIRL in several horizontal, parallel incisions to achieve tooth root ablation as in an apicoectomy. Temperature change was monitored during ablation and the quality of the cutting edges in the roots were studied by means of micro-CT, optical coherence tomography, and histology of decalcified and undecalcified specimens. NIRL produced clearly defined cut surfaces in dental hard tissues. The automated guidance of the laser beam created regular, narrow dentin defects that tapered in a V-shape towards the ablation plane. A biologically significant increase in the temperature of the object and its surroundings did not occur during the laser application. Thermal dentin damage was not detected in histological preparations of treated teeth. Defined areas of the tooth root may be ablated using a NIRL. For clinical translation of NIRL in apicoectomy, it would be necessary to increase energy delivered to hard tissue and develop beam application facilitating beam steering for oral treatment.
Collapse
Affiliation(s)
- Reinhard E Friedrich
- Oral and Craniomaxillofacial Surgery, Eppendorf University Hospital, University of Hamburg, Martinistr. 52, 20246, Hamburg, Germany
| | - Felix K Kohlrusch
- Oral and Craniomaxillofacial Surgery, Eppendorf University Hospital, University of Hamburg, Martinistr. 52, 20246, Hamburg, Germany
| | - Thomas Ricken
- Section Mass Spectrometry and Proteomics, Center for Diagnostics, University Medical Center Hamburg-Eppendorf (UKE), Martinistr. 52, 20246, Hamburg, Germany
| | - Julian Grimm
- Section Mass Spectrometry and Proteomics, Center for Diagnostics, University Medical Center Hamburg-Eppendorf (UKE), Martinistr. 52, 20246, Hamburg, Germany
| | - Martin Gosau
- Oral and Craniomaxillofacial Surgery, Eppendorf University Hospital, University of Hamburg, Martinistr. 52, 20246, Hamburg, Germany
| | - Michael Hahn
- Institute of Osteology and Biomechanics, Eppendorf University Hospital, University of Hamburg, Martinistr. 52, 20246, Hamburg, Germany
| | - Simon von Kroge
- Institute of Osteology and Biomechanics, Eppendorf University Hospital, University of Hamburg, Martinistr. 52, 20246, Hamburg, Germany
| | - Jan Hahn
- Section Mass Spectrometry and Proteomics, Center for Diagnostics, University Medical Center Hamburg-Eppendorf (UKE), Martinistr. 52, 20246, Hamburg, Germany.
| |
Collapse
|
3
|
Egbejiogu BC, Donnarumma F, Dong C, Murray KK. Infrared Laser Ablation and Capture of Biological Tissue. Methods Mol Biol 2024; 2817:9-18. [PMID: 38907143 DOI: 10.1007/978-1-0716-3934-4_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
Sampling thin tissue sections with cellular precision can be accomplished using laser ablation microsampling for mass spectrometry analysis. In this work, the use of a pulsed mid-infrared (IR) laser for selecting small regions of interest (ROI) in tissue sections for offline liquid chromatography-tandem mass spectrometry (LC-MS/MS) is described. The laser is focused onto the tissue section, which is rastered as the laser is fired. The ablated tissue is captured in a microwell array and processed in situ through reduction, alkylation, and digestion with a low liquid volume workflow. The resulting peptides from areas as small as 0.01 mm2 containing 5 ng of protein are analyzed for protein identification and quantification using offline LC-MS/MS.
Collapse
Affiliation(s)
| | | | - Chao Dong
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, USA
| | - Kermit K Murray
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, USA.
| |
Collapse
|
4
|
Katz L, Kiyota T, Woolman M, Wu M, Pires L, Fiorante A, Ye LA, Leong W, Berman HK, Ghazarian D, Ginsberg HJ, Das S, Aman A, Zarrine-Afsar A. Metabolic Lipids in Melanoma Enable Rapid Determination of Actionable BRAF-V600E Mutation with Picosecond Infrared Laser Mass Spectrometry in 10 s. Anal Chem 2023; 95:14430-14439. [PMID: 37695851 DOI: 10.1021/acs.analchem.3c02901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Rapid molecular profiling of biological tissues with picosecond infrared laser mass spectrometry (PIRL-MS) has enabled the detection of clinically important histologic types and molecular subtypes of human cancers in as little as 10 s of data collection and analysis time. Utilizing an engineered cell line model of actionable BRAF-V600E mutation, we observed statistically significant differences in 10 s PIRL-MS molecular profiles between BRAF-V600E and BRAF-wt cells. Multivariate statistical analyses revealed a list of mass-to-charge (m/z) values most significantly responsible for the identification of BRAF-V600E mutation status in this engineered cell line that provided a highly controlled testbed for this observation. These metabolites predicted BRAF-V600E expression in human melanoma cell lines with greater than 98% accuracy. Through chromatography and tandem mass spectrometry analysis of cell line extracts, a 30-member "metabolite array" was characterized for determination of BRAF-V600E expression levels in subcutaneous melanoma xenografts with an average sensitivity and specificity of 95.6% with 10 s PIRL-MS analysis. This proof-of-principle work warrants a future large-scale study to identify a metabolite array for 10 s determination of actionable BRAF-V600E mutation in human tissue to guide patient care.
Collapse
Affiliation(s)
- Lauren Katz
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, Toronto, ON M5G 1L7, Canada
- Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Taira Kiyota
- Ontario Institute for Cancer Research (OICR), 661 University Avenue, Suite 510, Toronto, ON M5G 0A3, Canada
| | - Michael Woolman
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, Toronto, ON M5G 1L7, Canada
- Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Megan Wu
- Peter Gilgan Centre for Research and Learning & Arthur and Sonia Labatt Brain Tumor Research Centre, Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada
| | - Layla Pires
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Alexa Fiorante
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, Toronto, ON M5G 1L7, Canada
- Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Lan Anna Ye
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Wey Leong
- Princess Margaret Cancer Centre, University Health Network, 610 University Avenue, Toronto, ON M5G 2C1, Canada
- Department of Surgery, University of Toronto, 149 College Street, Toronto, ON M5T 1P5, Canada
| | - Hal K Berman
- Princess Margaret Cancer Centre, University Health Network, 610 University Avenue, Toronto, ON M5G 2C1, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto and the Laboratory Medicine Program, University Health Network, 200 Elizabeth Street, Toronto, ON M5G 2C4, Canada
| | - Danny Ghazarian
- Keenan Research Center for Biomedical Science & the Li Ka Shing Knowledge Institute, St. Michael's Hospital, 30 Bond Street, Toronto, ON M5B 1W8, Canada
| | - Howard J Ginsberg
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, Toronto, ON M5G 1L7, Canada
- Department of Surgery, University of Toronto, 149 College Street, Toronto, ON M5T 1P5, Canada
- Keenan Research Center for Biomedical Science & the Li Ka Shing Knowledge Institute, St. Michael's Hospital, 30 Bond Street, Toronto, ON M5B 1W8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Sixth Floor, Toronto, ON M5S 1A8, Canada
| | - Sunit Das
- Peter Gilgan Centre for Research and Learning & Arthur and Sonia Labatt Brain Tumor Research Centre, Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada
- Department of Surgery, University of Toronto, 149 College Street, Toronto, ON M5T 1P5, Canada
| | - Ahmed Aman
- Ontario Institute for Cancer Research (OICR), 661 University Avenue, Suite 510, Toronto, ON M5G 0A3, Canada
- Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College St, Toronto, ON M5S 3M2, Canada
| | - Arash Zarrine-Afsar
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, Toronto, ON M5G 1L7, Canada
- Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada
- Department of Surgery, University of Toronto, 149 College Street, Toronto, ON M5T 1P5, Canada
- Keenan Research Center for Biomedical Science & the Li Ka Shing Knowledge Institute, St. Michael's Hospital, 30 Bond Street, Toronto, ON M5B 1W8, Canada
| |
Collapse
|
5
|
Wu KZ, Adine C, Mitriashkin A, Aw BJJ, Iyer NG, Fong ELS. Making In Vitro Tumor Models Whole Again. Adv Healthc Mater 2023; 12:e2202279. [PMID: 36718949 PMCID: PMC11469124 DOI: 10.1002/adhm.202202279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 01/04/2023] [Indexed: 02/01/2023]
Abstract
As a reductionist approach, patient-derived in vitro tumor models are inherently still too simplistic for personalized drug testing as they do not capture many characteristics of the tumor microenvironment (TME), such as tumor architecture and stromal heterogeneity. This is especially problematic for assessing stromal-targeting drugs such as immunotherapies in which the density and distribution of immune and other stromal cells determine drug efficacy. On the other end, in vivo models are typically costly, low-throughput, and time-consuming to establish. Ex vivo patient-derived tumor explant (PDE) cultures involve the culture of resected tumor fragments that potentially retain the intact TME of the original tumor. Although developed decades ago, PDE cultures have not been widely adopted likely because of their low-throughput and poor long-term viability. However, with growing recognition of the importance of patient-specific TME in mediating drug response, especially in the field of immune-oncology, there is an urgent need to resurrect these holistic cultures. In this Review, the key limitations of patient-derived tumor explant cultures are outlined and technologies that have been developed or could be employed to address these limitations are discussed. Engineered holistic tumor explant cultures may truly realize the concept of personalized medicine for cancer patients.
Collapse
Affiliation(s)
- Kenny Zhuoran Wu
- Department of Biomedical EngineeringCollege of Design and EngineeringNational University of SingaporeSingapore119276Singapore
| | - Christabella Adine
- Department of Biomedical EngineeringCollege of Design and EngineeringNational University of SingaporeSingapore119276Singapore
| | - Aleksandr Mitriashkin
- Department of Biomedical EngineeringCollege of Design and EngineeringNational University of SingaporeSingapore119276Singapore
| | - Benjamin Jun Jie Aw
- Department of Biomedical EngineeringCollege of Design and EngineeringNational University of SingaporeSingapore119276Singapore
| | - N. Gopalakrishna Iyer
- Department of Head and Neck Surgery, Division of Surgery and Surgical OncologyDuke‐NUS Medical SchoolSingapore169857Singapore
- Department of Head and Neck SurgeryNational Cancer Centre SingaporeSingapore169610Singapore
| | - Eliza Li Shan Fong
- Department of Biomedical EngineeringCollege of Design and EngineeringNational University of SingaporeSingapore119276Singapore
- The N.1 Institute for HealthNational University of SingaporeSingapore117456Singapore
- Cancer Science Institute (CSI)National University of SingaporeSingapore117599Singapore
| |
Collapse
|
6
|
Katz L, Woolman M, Kiyota T, Pires L, Zaidi M, Hofer SO, Leong W, Wouters BG, Ghazarian D, Chan AW, Ginsberg HJ, Aman A, Wilson BC, Berman HK, Zarrine-Afsar A. Picosecond Infrared Laser Mass Spectrometry Identifies a Metabolite Array for 10 s Diagnosis of Select Skin Cancer Types: A Proof-of-Concept Feasibility Study. Anal Chem 2022; 94:16821-16830. [DOI: 10.1021/acs.analchem.2c03918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Lauren Katz
- Techna Institute for the Advancement of Technology for Health, University Health Network, 100 College Street, Toronto, Ontario M5G 1P5, Canada
- Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Michael Woolman
- Techna Institute for the Advancement of Technology for Health, University Health Network, 100 College Street, Toronto, Ontario M5G 1P5, Canada
- Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Taira Kiyota
- Ontario Institute for Cancer Research (OICR), 661 University Ave Suite 510, Toronto, Ontario M5G 0A3, Canada
| | - Layla Pires
- Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada
- Princess Margaret Cancer Centre, University Health Network, 610 University Avenue, Toronto, Ontario M5G 2C1, Canada
| | - Mark Zaidi
- Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Stefan O.P. Hofer
- Techna Institute for the Advancement of Technology for Health, University Health Network, 100 College Street, Toronto, Ontario M5G 1P5, Canada
- Department of Surgery, University of Toronto, 149 College Street, Toronto, Ontario M5T 1P5, Canada
- Division of Plastic and Reconstructive Surgery, Department of Surgery and Surgical Oncology, University Health Network, University of Toronto. Toronto General Hospital, 200 Elizabeth Street, Toronto, Ontario M5G 2C4, Canada
| | - Wey Leong
- Princess Margaret Cancer Centre, University Health Network, 610 University Avenue, Toronto, Ontario M5G 2C1, Canada
- Department of Surgery, University of Toronto, 149 College Street, Toronto, Ontario M5T 1P5, Canada
- Department of Surgical Oncology, Princess Margaret Cancer Centre, University Health Network, Toronto Ontario M5G 2C1, Canada
| | - Brad G. Wouters
- Techna Institute for the Advancement of Technology for Health, University Health Network, 100 College Street, Toronto, Ontario M5G 1P5, Canada
- Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada
- Princess Margaret Cancer Centre, University Health Network, 610 University Avenue, Toronto, Ontario M5G 2C1, Canada
| | - Danny Ghazarian
- Department of Laboratory Medicine and Pathobiology, University of Toronto and University Health Network, 200 Elizabeth Street, Toronto, Ontario M5G 2C4, Canada
| | - An-Wen Chan
- Division of Dermatology, Department of Medicine, University of Toronto, Canada and Women’s College Research Institute, Women’s College Hospital, 76 Grenville St, Toronto, Ontario M5S 1B2, Canada
| | - Howard J. Ginsberg
- Techna Institute for the Advancement of Technology for Health, University Health Network, 100 College Street, Toronto, Ontario M5G 1P5, Canada
- Department of Surgery, University of Toronto, 149 College Street, Toronto, Ontario M5T 1P5, Canada
- Keenan Research Center for Biomedical Science & the Li Ka Shing Knowledge Institute, St. Michael’s Hospital, 30 Bond Street, Toronto, Ontario M5B 1W8, Canada
| | - Ahmed Aman
- Ontario Institute for Cancer Research (OICR), 661 University Ave Suite 510, Toronto, Ontario M5G 0A3, Canada
- Leslie Dan, Faculty of Pharmacy, University of Toronto, 144 College St, Toronto, Ontario M5S 3M2, Canada
| | - Brian C. Wilson
- Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada
- Princess Margaret Cancer Centre, University Health Network, 610 University Avenue, Toronto, Ontario M5G 2C1, Canada
| | - Hal K. Berman
- Princess Margaret Cancer Centre, University Health Network, 610 University Avenue, Toronto, Ontario M5G 2C1, Canada
- Laboratory Medicine Program, University Health Network, 200 Elizabeth Street, Toronto, Ontario M5G 2C4, Canada
| | - Arash Zarrine-Afsar
- Techna Institute for the Advancement of Technology for Health, University Health Network, 100 College Street, Toronto, Ontario M5G 1P5, Canada
- Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada
- Department of Surgery, University of Toronto, 149 College Street, Toronto, Ontario M5T 1P5, Canada
- Keenan Research Center for Biomedical Science & the Li Ka Shing Knowledge Institute, St. Michael’s Hospital, 30 Bond Street, Toronto, Ontario M5B 1W8, Canada
| |
Collapse
|
7
|
Orthopedics-Related Applications of Ultrafast Laser and Its Recent Advances. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12083957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The potential of ultrafast lasers (pico- to femtosecond) in orthopedics-related procedures has been studied extensively for clinical adoption. As compared to conventional laser systems with continuous wave or longer wave pulse, ultrafast lasers provide advantages such as higher precision and minimal collateral thermal damages. Translation to surgical applications in the clinic has been restrained by limitations of material removal rate and pulse average power, whereas the use in surface texturing of implants has become more refined to greatly improve bioactivation and osteointegration within bone matrices. With recent advances, we review the advantages and limitations of ultrafast lasers, specifically in orthopedic bone ablation as well as bone implant laser texturing, and consider the difficulties encountered within orthopedic surgical applications where ultrafast lasers could provide a benefit. We conclude by proposing our perspectives on applications where ultrafast lasers could be of advantage, specifically due to the non-thermal nature of ablation and control of cutting.
Collapse
|
8
|
Yuan F, Liang S, Lyu P. A Novel Method for Adjusting the Taper and Adaption of Automatic Tooth Preparations with a High-Power Femtosecond Laser. J Clin Med 2021; 10:3389. [PMID: 34362191 PMCID: PMC8347009 DOI: 10.3390/jcm10153389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/20/2021] [Accepted: 07/28/2021] [Indexed: 11/23/2022] Open
Abstract
This study explored the effect of the light-off delay setting in a robotically controlled femtosecond laser on the taper and adaption of resin tooth preparations. Thirty resin teeth (divided into six equal groups) were studied under different light-off delay conditions. Tapers from six vertical sections of the teeth were measured and compared among the light-off delay groups. The mean taper decreased from 39.268° ± 4.530° to 25.393° ± 5.496° as the light-off delay increased (p < 0.05). The average distance between the occlusal surfaces of the scanned data and the predesigned preparation data decreased from 0.089 ± 0.005 to 0.013 ± 0.030 μm as the light-off delay increased (p < 0.05). The light-off delay of the femtosecond laser is correlated with the taper and adaption of automatic tooth preparations; this setting needs to be considered during automatic tooth preparation.
Collapse
Affiliation(s)
- Fusong Yuan
- Center of Digital Dentistry, Peking University School and Hospital of Stomatology, Beijing 100081, China;
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing 100081, China
- NHC Key Laboratory of Digital Technology of Stomatology, Beijing 100081, China
- Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
- National Clinical Research Center for Oral Diseases, Beijing 100871, China
| | - Shanshan Liang
- Second Clinical Division, Peking University Hospital of Stomatology, Beijing 100081, China;
| | - Peijun Lyu
- Center of Digital Dentistry, Peking University School and Hospital of Stomatology, Beijing 100081, China;
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing 100081, China
- NHC Key Laboratory of Digital Technology of Stomatology, Beijing 100081, China
- Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
- National Clinical Research Center for Oral Diseases, Beijing 100871, China
| |
Collapse
|