1
|
Masood MBE, Shafique I, Rafique MI, Iman A, Abbasi A, Rafiq M, Habib U. Integrated pan-cancer analysis revealed therapeutic targets in the ABC transporter protein family. PLoS One 2025; 20:e0308585. [PMID: 40445912 PMCID: PMC12124511 DOI: 10.1371/journal.pone.0308585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 02/19/2025] [Indexed: 06/02/2025] Open
Abstract
Next-generation sequencing technology enables uniform and impartial assessment of cancer diagnoses and prognosis. However, such studies are mostly type-specific, and capturing shared genomic abnormalities responsible for neoplastic transformation and progression is a challenging task. Pan-cancer analysis offers insights into the shared and unique molecular mechanisms driving cancer. We conducted an integrated gene-expression analysis using 10,629 samples from 30 distinct cancer types characterized by The Cancer Genome Atlas (TCGA). A gene co-expression network was constructed and genes overlapping between the selected modules and Differentially Expressed Genes (DEGs) were designated as genes of interest. Following a comprehensive literature review, ATP binding cassette subfamily A member 10 (ABCA10) and ATP binding cassette subfamily B member 5 (ABCB5) were selected as key candidates for downstream analysis due to the absence of systematic pan-cancer analysis of these genes. This study presents a unique contribution as the first comprehensive pan-cancer analysis of ABCA10 and ABCB5, highlighting their roles in tumor biology and clinical outcomes. We employed a variety of bioinformatics tools to explore the role of these genes across different tumors. Our research demonstrated that ABCA10 shows reduced expression, while ABCB5 displays variable expression patterns across tumors, indicating their opposing roles and flexible functions in pan-cancer. In many cancer patients, these expression patterns are correlated with worse survival outcomes. Furthermore, immunotherapy responses and immune infiltration across a variety of tumor types are associated with the expression levels of both ABCA10 and ABCB5. These results imply that ABCA10 and ABCB5 could serve as valuable predictive markers and potential therapeutic targets across various cancers.
Collapse
Affiliation(s)
- Madahiah Bint E Masood
- School of Interdisciplinary Engineering & Sciences (SINES), National University of Sciences & Technology, Islamabad, Pakistan
| | - Iqra Shafique
- Department of Biomedical Engineering and Sciences, School of Mechanical & Manufacturing Engineering, National University of Sciences & Technology, Islamabad, Pakistan
| | - Muhammad Inam Rafique
- School of Interdisciplinary Engineering & Sciences (SINES), National University of Sciences & Technology, Islamabad, Pakistan
| | - Ayesha Iman
- School of Interdisciplinary Engineering & Sciences (SINES), National University of Sciences & Technology, Islamabad, Pakistan
| | - Ariba Abbasi
- School of Interdisciplinary Engineering & Sciences (SINES), National University of Sciences & Technology, Islamabad, Pakistan
| | - Mehak Rafiq
- School of Interdisciplinary Engineering & Sciences (SINES), National University of Sciences & Technology, Islamabad, Pakistan
| | - Uzma Habib
- School of Interdisciplinary Engineering & Sciences (SINES), National University of Sciences & Technology, Islamabad, Pakistan
| |
Collapse
|
2
|
Gerard L, Gillet JP. The uniqueness of ABCB5 as a full transporter ABCB5FL and a half-transporter-like ABCB5β. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2024; 7:29. [PMID: 39267923 PMCID: PMC11391348 DOI: 10.20517/cdr.2024.56] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/26/2024] [Accepted: 08/01/2024] [Indexed: 09/15/2024]
Abstract
The ABCB5 gene encodes several isoforms, including two transporters (i.e., ABCB5FL, ABCB5β) and several soluble proteins, such as ABCB5α which has been hypothesized to have a regulatory function. ABCB5FL is a full ABC transporter and is expressed in the testis and prostate, whereas ABCB5β is an atypical half-transporter with a ubiquitous expression pattern. ABCB5β has been shown to mark cancer stem cells in several cancer types. In addition, ABCB5β and ABCB5FL have been shown to play a role in tumorigenesis and multidrug resistance. However, ABCB5β shares its entire protein sequence with ABCB5FL, making them difficult to distinguish. It cannot be excluded that some biological effects described for one transporter may be mediated by the other isoform. Therefore, it is difficult to interpret the available data and some controversies remain regarding their function in cancer cells. In this review, we discuss the data collected on ABCB5 isoforms over the last 20 years and propose a common ground on which we can build further to unravel the pathophysiological roles of ABCB5 transporters.
Collapse
Affiliation(s)
- Louise Gerard
- Laboratory of Molecular Cancer Biology, URPhyM, NARILIS, University of Namur, Namur 5000, Belgium
| | - Jean-Pierre Gillet
- Laboratory of Molecular Cancer Biology, URPhyM, NARILIS, University of Namur, Namur 5000, Belgium
| |
Collapse
|
3
|
Ding Y, Zhao F, Hu J, Zhao Z, Shi B, Li S. A conjoint analysis of renal structure and omics characteristics reveal new insight to yak high-altitude hypoxia adaptation. Genomics 2024; 116:110857. [PMID: 38729453 DOI: 10.1016/j.ygeno.2024.110857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/17/2024] [Accepted: 05/05/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND Yaks have unique adaptive mechanisms to the hypoxic environment, in which the kidney plays an important role. The aim of this study was to explore the histological changes of yak kidney at different altitudes and the metabolites and genes associated with adaptation to the hypoxic environment. METHODS We analyzed the tissue structure and transcriptomic metabolomic data of yak kidney tissue at two altitudes, 2600 and 4400 m. We compared and identified the morphological adaptations of the kidney and the metabolites and genes associated with hypoxia adaptation in yaks. Changes in renal morphological adaptations, differential metabolites and genes were compared and identified, combining the two in a joint analysis. RESULTS High-altitude yak kidneys showed significant adaptive changes: increased mitochondria, increased glomerular thylakoid area, and decreased localized ribosomes. Transcriptomics and metabolomics identified 69 DAMs (Differential metabolites) and 594 DEGs (differential genes). Functional enrichment analysis showed that the DAMs were associated with protein digestion and absorption, ABC transporter, and MTOR signaling pathway; the DEGs were significantly enriched in Cholesterol metabolism and P53 signaling pathway. The joint analysis indicated that metabolites such as lysine and arginine, as well as key genes such as ABCB5 and COL1A2, were particularly affected under hypoxic conditions, whereas changes in mitochondria in the tissue structure may be related to the expression of MFN1 and OPA1, and changes in glomerular thylakoid membranes are related to VEGFA and TGFB3. CONCLUSION The kidney regulates metabolites and gene expression related to hormone synthesis, protein metabolism, and angiogenesis by adjusting the mitochondrial and glomerular thylakoid membrane structure to support the survival of yaks in high-altitude environments.
Collapse
Affiliation(s)
- Yuan Ding
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Fangfang Zhao
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.
| | - Jiang Hu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhidong Zhao
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Bingang Shi
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Shaobin Li
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.
| |
Collapse
|
4
|
Cavicchioli Azevedo V, Johnston CU, Kennedy CJ. Ivermectin Toxicokinetics in Rainbow Trout (Oncorhynchus mykiss) following P-glycoprotein Induction. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2024; 86:58-72. [PMID: 38103085 DOI: 10.1007/s00244-023-01045-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/14/2023] [Indexed: 12/17/2023]
Abstract
Alterations in ivermectin (IVM, 22,23-dihydro avermectin B1a+22,23-dihydro avermectin B1b) toxicokinetics following P-glycoprotein (P-gp) induction by clotrimazole (CTZ) were examined in rainbow trout (Oncorhynchus mykiss) to assess the potential importance of P-gp activity levels in xenobiotic distribution and kinetics in fish. Control and fish pretreated with CTZ (30 µmol/kg) were administered 175 µg/kg 3H-IVM into the caudal vasculature. At various time points (0.25, 0.5, 1, 3, 24, 48, 96, and 168 h) following injection, tissues (blood, liver, kidney, gill, intestines, brain [5 regions], eye, gonad and fat) were removed analyzed for IVM-derived radioactivity. IVM concentration declined in blood, liver, kidney and gill, and concentrations in other tissues remained constant over the sampling period. The highest measured concentrations were found in kidney, followed by liver, with the lowest values found in brain, eye and gonad. The highest % of the administered dose was found in the liver and kidney in the immediate hours post-administration, and in the intestines and fat at 24 h post-administration. P-gp induction by CTZ did not alter IVM distribution or any calculated toxicokinetic parameter (AUC, mean residence time, T1/2, clearance rate, volume of distribution), suggesting that P-gp induction may be limited or that P-gp plays a lesser role in xenobiotic kinetics in fish compared to mammals.
Collapse
Affiliation(s)
| | - Christina U Johnston
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada
| | - Christopher J Kennedy
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada.
| |
Collapse
|
5
|
Azevedo VC, Kennedy CJ. The effects of P-glycoprotein induction on ivermectin-induced behavioural alterations in zebrafish (Danio rerio) under varying diets. Comp Biochem Physiol C Toxicol Pharmacol 2023; 274:109740. [PMID: 37689171 DOI: 10.1016/j.cbpc.2023.109740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/24/2023] [Accepted: 09/03/2023] [Indexed: 09/11/2023]
Abstract
The neuroprotective effects of inducing the blood-brain barrier ATP-binding cassette protein transporter P-glycoprotein (P-gp) with clotrimazole (CTZ) in both fed and fasted zebrafish (Danio rerio) against the CNS-toxicant ivermectin (IVM, 22,23-dihydro avermectin B1a + 22,23-dihydro avermectin B1b) were examined. Zebrafish were administered 2 μmol/kg IVM intraperitoneally, and various behavioural assays (swimming performance, exploratory behaviour, olfactory responses, motor coordination, and escape responses) were used to measure neurological dysfunction. IVM administration alone caused a decrease in mean swim speed (91 % of controls), maximal speed (71 %), passage rate (81 %), 90° turns (81 %), and response to food stimulus (39 %). IVM exposure also increased the percent time that fish spent immobile (45 % increase over controls) and the percent of lethargic fish (40 % increase). Fish administered 30 μmol/kg of the P-gp inducer CTZ intraperitoneally 3 d prior to IVM exposure exhibited a change in only the % time spent immobile. These data indicate that P-gp induction may be limited in protecting the zebrafish CNS from IVM over baseline. Fasted fish did not differ from fed fish in the effects of IVM on behaviour, and no differences were seen following P-gp induction with CTZ. These results suggest that this chemical defence system is not downregulated when fish are challenged with limited energy availability.
Collapse
Affiliation(s)
- Vinicius Cavicchioli Azevedo
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada. https://twitter.com/vini_cazevedo
| | - Christopher J Kennedy
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada.
| |
Collapse
|
6
|
Boulos JC, Omer EA, Rigano D, Formisano C, Chatterjee M, Leich E, Klauck SM, Shan LT, Efferth T. Cynaropicrin disrupts tubulin and c-Myc-related signaling and induces parthanatos-type cell death in multiple myeloma. Acta Pharmacol Sin 2023; 44:2265-2281. [PMID: 37344563 PMCID: PMC10618500 DOI: 10.1038/s41401-023-01117-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/28/2023] [Indexed: 06/23/2023]
Abstract
The majority of blood malignancies is incurable and has unforeseeable remitting-relapsing paths in response to different treatments. Cynaropicrin, a natural sesquiterpene lactone from the edible parts of the artichoke plant, has gained increased attention as a chemotherapeutic agent. In this study, we investigated the effects of cynaropicrin against multiple myeloma (MM) cells in vitro and assessed its in vivo effectiveness in a xenograft tumor zebrafish model. We showed that cynaropicrin exerted potent cytotoxicity against a panel of nine MM cell lines and two leukemia cell lines with AMO1 being the most sensitive cell line (IC50 = 1.8 ± 0.3 µM). Cynaropicrin (0.8, 1.9, 3.6 µM) dose-dependently reduced c-Myc expression and transcriptional activity in AMO1 cells that was associated with significant downregulation of STAT3, AKT, and ERK1/2. Cell cycle analysis showed that cynaropicrin treatment arrested AMO1 cells in the G2M phase along with an increase in the sub-G0G1 phase after 24 h. With prolonged treatment times, cells accumulated more in the sub-G0G1 phase, implying cell death. Using confocal microscopy, we revealed that cynaropicrin disrupted the microtubule network in U2OS cells stably expressing α-tubulin-GFP. Furthermore, we revealed that cynaropicrin promoted DNA damage in AMO1 cells leading to PAR polymer production by PARP1 hyperactivation, resulting in AIF translocation from the mitochondria to the nucleus and subsequently to a novel form of cell death, parthanatos. Finally, we demonstrated that cynaropicrin (5, 10 µM) significantly reduced tumor growth in a T-cell acute lymphoblastic leukemia (T-ALL) xenograft zebrafish model. Taken together, these results demonstrate that cynaropicrin causes potent inhibition of hematopoietic tumor cells in vitro and in vivo.
Collapse
Affiliation(s)
- Joelle C Boulos
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128, Mainz, Germany
| | - Ejlal A Omer
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128, Mainz, Germany
| | - Daniela Rigano
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| | - Carmen Formisano
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| | - Manik Chatterjee
- University Hospital Würzburg, Translational Oncology, Comprehensive Cancer Center Mainfranken, Würzburg, Germany
| | - Ellen Leich
- Julius Maximilian University, Institute of Pathology, Würzburg, Germany
- Comprehensive Cancer Center Mainfranken, Translational Oncology, University Hospital of Würzburg, Würzburg, Germany
| | - Sabine M Klauck
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Le-Tian Shan
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128, Mainz, Germany.
| |
Collapse
|
7
|
Boulos JC, Chatterjee M, Shan L, Efferth T. In Silico, In Vitro, and In Vivo Investigations on Adapalene as Repurposed Third Generation Retinoid against Multiple Myeloma and Leukemia. Cancers (Basel) 2023; 15:4136. [PMID: 37627164 PMCID: PMC10452460 DOI: 10.3390/cancers15164136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/09/2023] [Accepted: 08/13/2023] [Indexed: 08/27/2023] Open
Abstract
The majority of hematopoietic cancers in adults are incurable and exhibit unpredictable remitting-relapsing patterns in response to various therapies. The proto-oncogene c-MYC has been associated with tumorigenesis, especially in hematological neoplasms. Therefore, targeting c-MYC is crucial to find effective, novel treatments for blood malignancies. To date, there are no clinically approved c-MYC inhibitors. In this study, we virtually screened 1578 Food and Drug Administration (FDA)-approved drugs from the ZINC15 database against c-MYC. The top 117 compounds from PyRx-based screening with the best binding affinities to c-MYC were subjected to molecular docking studies with AutoDock 4.2.6. Retinoids consist of synthetic and natural vitamin A derivatives. All-trans-retinoic acid (ATRA) were highly effective in hematological malignancies. In this study, adapalene, a third-generation retinoid usually used to treat acne vulgaris, was selected as a potent c-MYC inhibitor as it robustly bound to c-MYC with a lowest binding energy (LBE) of -7.27 kcal/mol, a predicted inhibition constant (pKi) of 4.69 µM, and a dissociation constant (Kd value) of 3.05 µM. Thus, we examined its impact on multiple myeloma (MM) cells in vitro and evaluated its efficiency in vivo using a xenograft tumor zebrafish model. We demonstrated that adapalene exerted substantial cytotoxicity against a panel of nine MM and two leukemic cell lines, with AMO1 cells being the most susceptible one (IC50 = 1.76 ± 0.39 µM) and, hence, the focus of this work. Adapalene (0.5 × IC50, 1 × IC50, 2 × IC50) decreased c-MYC expression and transcriptional activity in AMO1 cells in a dose-dependent manner. An examination of the cell cycle revealed that adapalene halted the cells in the G2/M phase and increased the portion of cells in the sub-G0/G1 phase after 48 and 72 h, indicating that cells failed to initiate mitosis, and consequently, cell death was triggered. Adapalene also increased the number of p-H3(Ser10) positive AMO1 cells, which is a further proof of its ability to prevent mitotic exit. Confocal imaging demonstrated that adapalene destroyed the tubulin network of U2OS cells stably transfected with a cDNA coding for α-tubulin-GFP, refraining the migration of malignant cells. Furthermore, adapalene induced DNA damage in AMO1 cells. It also induced apoptosis and autophagy, as demonstrated by flow cytometry and western blotting. Finally, adapalene impeded tumor growth in a xenograft tumor zebrafish model. In summary, the discovery of the vitamin A derivative adapalene as a c-MYC inhibitor reveals its potential as an avant-garde treatment for MM.
Collapse
Affiliation(s)
- Joelle C. Boulos
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany;
| | - Manik Chatterjee
- Translational Oncology, Comprehensive Cancer Center Mainfranken, University Hospital Würzburg, 97080 Würzburg, Germany;
| | - Letian Shan
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou 310053, China;
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany;
| |
Collapse
|
8
|
Niebergall-Roth E, Frank NY, Ganss C, Frank MH, Kluth MA. Skin-Derived ABCB5 + Mesenchymal Stem Cells for High-Medical-Need Inflammatory Diseases: From Discovery to Entering Clinical Routine. Int J Mol Sci 2022; 24:66. [PMID: 36613507 PMCID: PMC9820160 DOI: 10.3390/ijms24010066] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
The ATP-binding cassette superfamily member ABCB5 identifies a subset of skin-resident mesenchymal stem cells (MSCs) that exhibit potent immunomodulatory and wound healing-promoting capacities along with superior homing ability. The ABCB5+ MSCs can be easily accessed from discarded skin samples, expanded, and delivered as a highly homogenous medicinal product with standardized potency. A range of preclinical studies has suggested therapeutic efficacy of ABCB5+ MSCs in a variety of currently uncurable skin and non-skin inflammatory diseases, which has been substantiated thus far by distinct clinical trials in chronic skin wounds or recessive dystrophic epidermolysis bullosa. Therefore, skin-derived ABCB5+ MSCs have the potential to provide a breakthrough at the forefront of MSC-based therapies striving to fulfill current unmet medical needs. The most recent milestones in this regard are the approval of a phase III pivotal trial of ABCB5+ MSCs for treatment of recessive dystrophic and junctional epidermolysis bullosa by the US Food and Drug Administration, and national market access of ABCB5+ MSCs (AMESANAR®) for therapy-refractory chronic venous ulcers under the national hospital exemption pathway in Germany.
Collapse
Affiliation(s)
| | - Natasha Y. Frank
- Department of Medicine, VA Boston Healthcare System, Boston, MA 02132, USA
- Division of Genetics, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
- Transplant Research Program, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Christoph Ganss
- TICEBA GmbH, 69120 Heidelberg, Germany
- RHEACELL GmbH & Co. KG, 69120 Heidelberg, Germany
| | - Markus H. Frank
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
- Transplant Research Program, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Dermatology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- School of Medical and Health Sciences, Edith Cowan University, Perth 6027, Australia
| | - Mark A. Kluth
- TICEBA GmbH, 69120 Heidelberg, Germany
- RHEACELL GmbH & Co. KG, 69120 Heidelberg, Germany
| |
Collapse
|
9
|
Identification of Gedunin from a Phytochemical Depository as a Novel Multidrug Resistance-Bypassing Tubulin Inhibitor of Cancer Cells. Molecules 2022; 27:molecules27185858. [PMID: 36144591 PMCID: PMC9501561 DOI: 10.3390/molecules27185858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 11/17/2022] Open
Abstract
The chemotherapy of tumors is frequently limited by the development of resistance and severe side effects. Phytochemicals may offer promising candidates to meet the urgent requirement for new anticancer drugs. We screened 69 phytochemicals, and focused on gedunin to analyze its molecular modes of action. Pearson test-base correlation analyses of the log10IC50 values of 55 tumor cell lines of the National Cancer Institute (NCI), USA, for gedunin with those of 91 standard anticancer agents revealed statistically significant relationships to all 10 tested microtubule inhibitors. Thus, we hypothesized that gedunin may be a novel microtubule inhibitor. Confocal microscopy, cell cycle measurements, and molecular docking in silico substantiated our assumption. Agglomerative cluster analyses and the heat map generation of proteomic data revealed a subset of 40 out of 3171 proteins, the expression of which significantly correlated with sensitivity or resistance for the NCI cell line panel to gedunin. This indicates the complexity of gedunin’s activity against cancer cells, underscoring the value of network pharmacological techniques for the investigation of the molecular modes of drug action. Finally, we correlated the transcriptome-wide mRNA expression of known drug resistance mechanism (ABC transporter, oncogenes, tumor suppressors) log10IC50 values for gedunin. We did not find significant correlations, indicating that gedunin’s anticancer activity might not be hampered by classical drug resistance mechanisms. In conclusion, gedunin is a novel microtubule-inhibiting drug candidate which is not involved in multidrug resistance mechanisms such as other clinically established mitotic spindle poisons.
Collapse
|