1
|
Feher G, Kapus K, Tibold A, Banko Z, Berke G, Gacs B, Varadi I, Nyulas R, Matuz A. Mental issues, internet addiction and quality of life predict burnout among Hungarian teachers: a machine learning analysis. BMC Public Health 2024; 24:2322. [PMID: 39192279 PMCID: PMC11348772 DOI: 10.1186/s12889-024-19797-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024] Open
Abstract
BACKGROUND Burnout is usually defined as a state of emotional, physical, and mental exhaustion that affects people in various professions (e.g. physicians, nurses, teachers). The consequences of burnout involve decreased motivation, productivity, and overall diminished well-being. The machine learning-based prediction of burnout has therefore become the focus of recent research. In this study, the aim was to detect burnout using machine learning and to identify its most important predictors in a sample of Hungarian high-school teachers. METHODS The final sample consisted of 1,576 high-school teachers (522 male), who completed a survey including various sociodemographic and health-related questions and psychological questionnaires. Specifically, depression, insomnia, internet habits (e.g. when and why one uses the internet) and problematic internet usage were among the most important predictors tested in this study. Supervised classification algorithms were trained to detect burnout assessed by two well-known burnout questionnaires. Feature selection was conducted using recursive feature elimination. Hyperparameters were tuned via grid search with 10-fold cross-validation. Due to class imbalance, class weights (i.e. cost-sensitive learning), downsampling and a hybrid method (SMOTE-ENN) were applied in separate analyses. The final model evaluation was carried out on a previously unseen holdout test sample. RESULTS Burnout was detected in 19.7% of the teachers included in the final dataset. The best predictive performance on the holdout test sample was achieved by random forest with class weigths (AUC = 0.811; balanced accuracy = 0.745, sensitivity = 0.765; specificity = 0.726). The best predictors of burnout were Beck's Depression Inventory scores, Athen's Insomnia Scale scores, subscales of the Problematic Internet Use Questionnaire and self-reported current health status. CONCLUSIONS The performances of the algorithms were comparable with previous studies; however, it is important to note that we tested our models on previously unseen holdout samples suggesting higher levels of generalizability. Another remarkable finding is that besides depression and insomnia, other variables such as problematic internet use and time spent online also turned out to be important predictors of burnout.
Collapse
Affiliation(s)
- Gergely Feher
- Centre for Occupational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Krisztian Kapus
- Centre for Occupational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Antal Tibold
- Centre for Occupational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Zoltan Banko
- Department of Labour Law and Social Security Law, Faculty of Law, University of Pécs, Pécs, Hungary
| | - Gyula Berke
- Department of Labour Law and Social Security Law, Faculty of Law, University of Pécs, Pécs, Hungary
| | - Boroka Gacs
- Department of Behavioural Sciences, Medical School, University of Pécs, Szigeti str. 12, Pécs, 7624, Hungary
| | - Imre Varadi
- Centre for Occupational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Rita Nyulas
- Baranya County SZC Zipernowsky Károly Technical School, Pécs, Hungary
| | - Andras Matuz
- Department of Behavioural Sciences, Medical School, University of Pécs, Szigeti str. 12, Pécs, 7624, Hungary.
- Szentágothai Research Centre, University of Pécs, Pécs, Hungary.
| |
Collapse
|
2
|
Guo YF, Wang SJ, Plummer V, Du Y, Song TP, Wang N. Effects of Job Crafting and Leisure Crafting on Nurses' Burnout: A Machine Learning-Based Prediction Analysis. J Nurs Manag 2024; 2024:9428519. [PMID: 40224863 PMCID: PMC11919151 DOI: 10.1155/2024/9428519] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/26/2024] [Accepted: 06/10/2024] [Indexed: 04/15/2025]
Abstract
Aim To explore the status of job crafting, leisure crafting, and burnout among nurses and to examine the impact of job crafting and leisure crafting variations on burnout using machine learning-based models. Background The prevalence of burnout among nurses poses a severe risk to their job performance, quality of healthcare, and the cohesiveness of nurse teams. Numerous studies have explored factors influencing nurse burnout; however, few involved job crafting and leisure crafting synchronously and elucidated the effect differences of the two crafting behaviors on nurse burnout. Methods Multicentre cross-sectional survey study. Nurses (n = 1235) from four Chinese tertiary hospitals were included. The Maslach Burnout Inventory-General Survey, the Job Crafting Scale, and the Leisure Crafting Scale were employed for data collection. Four machine learning algorithms (logistic regression model, support vector machine, random forest, and gradient boosting tree) were used to analyze the data. Results Nurses experienced mild to moderate levels of burnout and moderate to high levels of job crafting and leisure crafting. The AUC (in full) for the four models was from 0.809 to 0.821, among which the gradient boosting tree performed best, with 0.821 AUC, 0.739 accuracy, 0.470 sensitivity, 0.919 specificity, and 0.161 Brier. All models showed that job crafting was the most important predictor for burnout, while leisure crafting was identified as the second important predictor for burnout in the random forest model and gradient boosting tree model. Conclusion Even if nurses experienced mild to moderate burnout, nurse managers should develop efficient interventions to reduce nurse burnout. Job crafting and leisure crafting may be beneficial preventative strategies against burnout among nurses at present. Implications for Nursing Management. Job and leisure crafting were identified as effective methods to reduce nurse burnout. Nurse managers should provide more opportunities for nurses' job crafting and encourage nurses crafting at their leisure time.
Collapse
Affiliation(s)
- Yu-Fang Guo
- School of Nursing and RehabilitationShandong University, Jinan, Shandong, China
| | - Si-Jia Wang
- School of Nursing and RehabilitationShandong University, Jinan, Shandong, China
| | - Virginia Plummer
- Institute of Health and WellbeingFederation University Australia, Victoria, Australia
| | - Yun Du
- School of Nursing and RehabilitationShandong University, Jinan, Shandong, China
| | - Tian-Ping Song
- Qilu Hospital of Shandong University Dezhou Hospital, Dezhou, Shandong, China
| | - Ning Wang
- Qilu Hospital of Shandong University Dezhou Hospital, Dezhou, Shandong, China
| |
Collapse
|
3
|
Chen MY, Huang SM, Chou W. Using Rasch Wright map to identify hospital employee satisfaction during and before COVID-19. Medicine (Baltimore) 2023; 102:e36490. [PMID: 38134069 PMCID: PMC10735066 DOI: 10.1097/md.0000000000036490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 11/15/2023] [Indexed: 12/24/2023] Open
Abstract
During the surge of the COVID-19 outbreak, medical personnel attended to countless patients, which adversely affected their mental well-being. To support their staff, hospitals implemented guidelines that focused on promoting mental health among medical professionals. The hypothesis that employee satisfaction declined during the COVID-19 pandemic needs confirmation. Several findings were derived from a series of visualizations using Rasch Wright map. The research sample was taken from a medical center in southern Taiwan based on satisfaction survey data from 2017 to 2022 (n = 1222). Perceptions on job satisfaction perceptions during and prior to COVID-19 in 2 stages of 2017 to 2019 and 2020 to 2022 were compared using Rasch Wright map. Through a series of visualizations, including the dimension with the highest satisfaction, the demographical category of hospital employees with the lowest satisfaction during the pandemic, and Rasch Wright map displaying employs' perfections on 4 domains over years. The results indicated: Employee satisfaction was significantly lower during the COVID-19 period in 2 domains: compensation and benefits, work atmosphere; among the 23 questions, Question 5 (regarding meals provided by the hospital to staff) scored the lowest, while Question 23 (regarding the hospital emergency response and disaster prevention capabilities) scored the highest. Among the 4 domains, organizational leadership had the highest satisfaction; out of 104 demographic variables, 21 groups showed that employee satisfaction during the pandemic was significantly (P < .05) lower than before the pandemic; the selection of specific demographic variables is for top-tier supervisors, and they showed that employee satisfaction during the pandemic was significantly (P < .05) lower than before the pandemic across all 4 dimensions. Therefore, this study accepts the hypothesis that employee satisfaction was negatively affected during the COVID-19 period on 2 domains only: compensation and benefits, work atmosphere. The study visual examination, especially using Rasch Wright map, offers a comparative perspective on hospital staff satisfaction and serves as a methodological guide for subsequent satisfaction research.
Collapse
Affiliation(s)
- Mei-Yi Chen
- Department of Planning and Management, Chi Mei Medical Center, Taiana, Taiwan
| | - Shyh-Ming Huang
- Department of Marketing and Logistics Management, Southern Taiwan University of Science and Technology, Tainan, Taiwan
| | - Willy Chou
- Department of physical medicine and rehabilitation, Chiali Chi-Mei Hospital, Tainan, Taiwan
- Department of Physical Medicine and Rehabilitation, Chung San Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
4
|
Hu TY, Chow JC, Chien TW, Chou W. Detecting dengue fever in children using online Rasch analysis to develop algorithms for parents: An APP development and usability study. Medicine (Baltimore) 2023; 102:e33296. [PMID: 37000053 PMCID: PMC10063317 DOI: 10.1097/md.0000000000033296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 04/01/2023] Open
Abstract
BACKGROUND Dengue fever (DF) is a significant public health concern in Asia. However, detecting the disease using traditional dichotomous criteria (i.e., absent vs present) can be extremely difficult. Convolutional neural networks (CNNs) and artificial neural networks (ANNs), due to their use of a large number of parameters for modeling, have shown the potential to improve prediction accuracy (ACC). To date, there has been no research conducted to understand item features and responses using online Rasch analysis. To verify the hypothesis that a combination of CNN, ANN, K-nearest-neighbor algorithm (KNN), and logistic regression (LR) can improve the ACC of DF prediction for children, further research is required. METHODS We extracted 19 feature variables related to DF symptoms from 177 pediatric patients, of whom 69 were diagnosed with DF. Using the RaschOnline technique for Rasch analysis, we examined 11 variables for their statistical significance in predicting the risk of DF. Based on 2 sets of data, 1 for training (80%) and the other for testing (20%), we calculated the prediction ACC by comparing the areas under the receiver operating characteristic curve (AUCs) between DF + and DF- in both sets. In the training set, we compared 2 scenarios: the combined scheme and individual algorithms. RESULTS Our findings indicate that visual displays of DF data are easily interpreted using Rasch analysis; the k-nearest neighbors algorithm has a lower AUC (<0.50); LR has a relatively higher AUC (0.70); all 3 algorithms have an almost equal AUC (=0.68), which is smaller than the individual algorithms of Naive Bayes, LR in raw data, and Naive Bayes in normalized data; and we developed an app to assist parents in detecting DF in children during the dengue season. CONCLUSION The development of an LR-based APP for the detection of DF in children has been completed. To help patients, family members, and clinicians differentiate DF from other febrile illnesses at an early stage, an 11-item model is proposed for developing the APP.
Collapse
Affiliation(s)
- Ting-Yun Hu
- Department of Pediatrics, Chi Mei Medical Center, Tainan, Taiwan
| | - Julie Chi Chow
- Department of Pediatrics, Chi Mei Medical Center, Tainan, Taiwan
- Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Tsair-Wei Chien
- Department of Medical Research, Chi-Mei Medical Center, Tainan, Taiwan
| | - Willy Chou
- Department of Physical Medicine and Rehabilitation, Chi Mei Medical Center, Tainan, Taiwan
- Department of Physical Medicine and Rehabilitation, Chung San Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
5
|
Lee YS, Chow JC, Chien TW, Chou W. Using chord diagrams to explore article themes in 100 top-cited articles citing Hirsch's h-index since 2005: A bibliometric analysis. Medicine (Baltimore) 2023; 102:e33057. [PMID: 36827008 PMCID: PMC11309589 DOI: 10.1097/md.0000000000033057] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/25/2023] [Accepted: 02/01/2023] [Indexed: 02/25/2023] Open
Abstract
BACKGROUND The h-index is increasingly being used as a measure of individual research achievement (IRA). More than 4876 citing articles have been published and indexed in Web of Science. The articles citing the h-index that have made the greatest contribution to scientific academics are still unknown. It is also unclear which subject categories (SCs) can be classified based on their keywords. METHODS These 4976 citing articles have been collected from the Web of Science since 2005. SCs were classified using chord diagrams to visualize their associations of SCs and documents in 100 top-cited articles (T100hciting). In addition to chord diagrams, 6 visualizations were used to illustrate study results: choropleth maps were used to depict the geographical distribution of publications across countries, network diagrams were created by using coword analysis, box plots were created to complement the network diagrams, Sankey diagrams highlighted the 5 most important elements in each article entity, the dot plot was used for displaying T100hciting, and a radar plot was used to present the top 10 high-IRA elements of countries, institutes, departments, and authors based on category, journal impact factor, authorship, and L-index scores. RESULTS A coword cluster analysis indicates that the majority of articles come from the US (918, 18%) and China (603, 12%), the top 2 SCs are h-index and bibliometric analysis, and the top 5 countries account for 55% in T100hciting, such as the US (25%), Spain (10%), Netherlands (9%), China (6%), and Belgium (5%). In T100hciting, 4 SCs are included, namely, the h-index (72%), bibliometric analysis (24%), physics & multidisciplinary (3%), and infectious diseases (1%). CONCLUSION A total of 7 visualizations were used to display the results in this study. Chord diagrams are suggested as a tool for future bibliographical studies to classify SCs Future bibliometrics with chord diagrams should not be limited to the topic of h-index-citing articles, as we did in this study.
Collapse
Affiliation(s)
- Yei-Soon Lee
- Department of Emergency Medicine, Chi Mei Medical Center, Liouying, Tainan, Taiwan
| | - Julie Chi Chow
- Department of Pediatrics, Chi Mei Medical Center, Tainan, Taiwan
- Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Tsair-Wei Chien
- Department of Medical Research, Chi-Mei Medical Center, Tainan, Taiwan
| | - Willy Chou
- Department of Physical Medicine and Rehabilitation, Chiali Chi-Mei Hospital, Tainan, Taiwan
- Department of Physical Medicine and Rehabilitation, Chung San Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
6
|
Ho SYC, Chien TW, Lin ML, Tsai KT. An app for predicting patient dementia classes using convolutional neural networks (CNN) and artificial neural networks (ANN): Comparison of prediction accuracy in Microsoft Excel. Medicine (Baltimore) 2023; 102:e32670. [PMID: 36705387 PMCID: PMC9875960 DOI: 10.1097/md.0000000000032670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Dementia is a progressive disease that worsens over time as cognitive abilities deteriorate. Effective preventive interventions require early detection. However, there are no reports in the literature concerning apps that have been developed and designed to predict patient dementia classes (DCs). This study aimed to develop an app that could predict DC automatically and accurately for patients responding to the clinical dementia rating (CDR) instrument. METHODS A CDR was applied to 366 outpatients in a hospital in Taiwan, with assessments on 25 and 49 items endorsed by patients and family members, respectively. The 2 models of convolutional neural networks (CNN) and artificial neural networks (ANN) were applied to examine the prediction accuracy based on 5 classes (i.e., no cognitive decline, very mild, mild, moderate, and severe) in 4 scenarios, consisting of 74 (items) in total, 25 in patients, 49 in family, and a combination strategy to select the best in the aforementioned scenarios using the forest plot. Using CDR scores in patients and their families on both axes, patients were dispersed on a radar plot. An app was developed to predict patient DC. RESULTS We found that ANN had higher accuracy rates than CNN with a ratio of 3:1 in the 4 scenarios. The highest accuracy rate (=93.72%) was shown in the combination scenario of ANN. A significant difference was observed between the CNN and ANN in terms of the accuracy rate. An available ANN-based app for predicting DC in patients was successfully developed and demonstrated in this study. CONCLUSION On the basis of a combination strategy and a decision rule, a 74-item ANN model with 285 estimated parameters was developed and included. The development of an app that will assist clinicians in predicting DC in clinical settings is required in the near future.
Collapse
Affiliation(s)
- Sam Yu-Chieh Ho
- Department of Emergency Medicine, Chi Mei Medical Center, Tainan, Taiwan
- Department of Geriatrics and Gerontology, Chi Mei Medical Center, Tainan, Taiwan
| | - Tsair-Wei Chien
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan
| | - Mei-Lien Lin
- Department of Examination Room, Chi Mei Medical Center, Tainan, Taiwan
| | - Kang-Ting Tsai
- Department of Geriatrics and Gerontology, Chi Mei Medical Center, Tainan, Taiwan
- Center for Integrative Medicine, Chi Mei Medical Center, Tainan, Taiwan
- Department of Nursing, Chung Hwa University of Medical Technology, Tainan, Taiwan.*
- * Correspondence: Kang-Ting Tsai, Department of Geriatrics and Gerontology, Chi-Mei Medical Center, 901 Chung Hwa Road, Yung Kung Dist., Tainan 710, Taiwan (e-mail: )
| |
Collapse
|
7
|
O'Connor S, Booth RG. Algorithmic bias in health care: Opportunities for nurses to improve equality in the age of artificial intelligence. Nurs Outlook 2022; 70:780-782. [PMID: 36396503 DOI: 10.1016/j.outlook.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/24/2022] [Accepted: 09/25/2022] [Indexed: 11/16/2022]
Affiliation(s)
- Siobhan O'Connor
- Division of Nursing, Midwifery and Social Work, The University of Manchester, Manchester, United Kingdom.
| | - Richard G Booth
- The Arthur Labatt Family School of Nursing, Western University, London, Ontario, Canada
| |
Collapse
|
8
|
Chuang HY, Chien TW, Chou W, Wang CY, Tsai KT. Comparison of prediction accuracies between two mathematical models for the assessment of COVID-19 damage at the early stage and throughout 2020. Medicine (Baltimore) 2022; 101:e29718. [PMID: 35960054 PMCID: PMC9370249 DOI: 10.1097/md.0000000000029718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 04/04/2022] [Accepted: 04/04/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND The negative impacts of COVID-19 (ImpactCOVID) on public health are commonly assessed using the cumulative numbers of confirmed cases (CNCCs). However, whether different mathematical models yield disparate results based on varying time frames remains unclear. This study aimed to compare the differences in prediction accuracy between 2 proposed COVID-19 models, develop an angle index that can be objectively used to evaluate ImpactCOVID, compare the differences in angle indexes across countries/regions worldwide, and examine the difference in determining the inflection point (IP) on the CNCCs between the 2 models. METHODS Data were downloaded from the GitHub website. Two mathematical models were examined in 2 time-frame scenarios during the COVID-19 pandemic (the early 20-day stage and the entire year of 2020). Angle index was determined by the ratio (=CNCCs at IP÷IP days). The R2 model and mean absolute percentage error (MAPE) were used to evaluate the model's prediction accuracy in the 2 time-frame scenarios. Comparisons were made using 3 visualizations: line-chart plots, choropleth maps, and forest plots. RESULTS Exponential growth (EXPO) and item response theory (IRT) models had identical prediction power at the earlier outbreak stage. The IRT model had a higher model R2 and smaller MAPE than the EXPO model in 2020. Hubei Province in China had the highest angle index at the early stage, and India, California (US), and the United Kingdom had the highest angle indexes in 2020. The IRT model was superior to the EXPO model in determining the IP on an Ogive curve. CONCLUSION Both proposed models can be used to measure ImpactCOVID. However, the IRT model (superior to EXPO in the long-term and Ogive-type data) is recommended for epidemiologists and policymakers to measure ImpactCOVID in the future.
Collapse
Affiliation(s)
- Hua-Ying Chuang
- Department of Nursing, Chung Hwa University of Medical Technology, Tainan 717, Taiwan
- Department of Internal Medicine, Chi Mei Medical Center, Chiali District, Tainan 710, Taiwan
| | - Tsair-Wei Chien
- Department of Internal Medicine, Chi Mei Medical Center, Chiali District, Tainan 710, Taiwan
- Department of Medical Research, Chi-Mei Medical Center, Tainan 710, Taiwan
| | - Willy Chou
- Department of Physical Medicine and Rehabilitation, Chiali Chi-Mei Hospital, Tainan 710, Taiwan
- Department of Physical Medicine and Rehabilitation, Chung San Medical University Hospital, Taichung 400, Taiwan
| | | | - Kang-Ting Tsai
- Center for Integrative Medicine, ChiMei Medical Center, Tainan 710, Taiwan
- Department of Geriatrics and Gerontology, ChiMei Medical Center, Tainan 710, Taiwan
| |
Collapse
|
9
|
Chen HC, Chien TW, Chen L, Yeh YT, Ma SC, Lee HF. An app for predicting nurse intention to quit the job using artificial neural networks (ANNs) in Microsoft Excel. Medicine (Baltimore) 2022; 101:e28915. [PMID: 35356900 PMCID: PMC10684186 DOI: 10.1097/md.0000000000028915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 02/01/2022] [Indexed: 01/04/2023] Open
Abstract
Background: Numerous studies have identified factors related to nurses’ intention to leave. However, none has successfully predicted the nurse’s intention to quit the job. Whether the intention to quit the job can be predicted is an interesting topic in healthcare settings. A model to predict the nurse’s intention to quit the job for novice nurses should be investigated. The aim of this study is to build a model to develop an app for the automatic prediction and classification of nurses’ intention to quit their jobs. Methods: We recruited 1104 novice nurses working in 6 medical centers in Taiwan to complete 100-item questionnaires related to the nurse’s intention to quit the job in October 2018. The k-mean was used to divide nurses into 2 classes based on 5 items regarding leave intention. Feature variables were selected from the 100-item survey. Two models, including an artificial neural network (ANN) and a convolutional neural network, were compared across 4 scenarios made up of 2 training sets (n = 1104 and n = 804 ≅ 70%) and their corresponding testing (n = 300 ≅ 30%) sets to verify the model accuracy. An app for predicting the nurse’s intention to quit the job was then developed as a website assessment. Results: We observed that 24 feature variables extracted from this study in the ANN model yielded a higher area under the ROC curve of 0.82 (95% CI 0.80-0.84) based on the 1104 cases, the ANN performed better than the convolutional neural network on the accuracy, and a ready and available app for predicting the nurse’s intention to quit the job was successfully developed in this study. Conclusions: A 24-item ANN model with 53 parameters estimated by the ANN was developed to improve the accuracy of nurses’ intention to quit their jobs. The app would help team leaders take care of nurses who intend to quit the job before their actions are taken. Key Points
Collapse
Affiliation(s)
- Hsiu-Chin Chen
- Department of Nursing, Chi Mei Medical Center, Tainan, Taiwan,Department of Senior Welfare and Services, Southern Taiwan University of Science and Technology, Taiwan,Department of Medical Research, Chi-Mei Medical Center, Tainan, Taiwan,Department of Nursing, An Nan Hospital, China Medical University, Tainan, Taiwan,Medical School, St. George's University of London, London, United Kingdom,Department of Nursing, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | | | | | | | | | | |
Collapse
|
10
|
Yang TY, Chien TW, Lai FJ. Web-Based Skin Cancer Assessment and Classification Using Machine Learning and Mobile Computerized Adaptive Testing in a Rasch Model: Development Study. JMIR Med Inform 2022; 10:e33006. [PMID: 35262505 PMCID: PMC9282670 DOI: 10.2196/33006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/08/2021] [Accepted: 01/10/2022] [Indexed: 12/03/2022] Open
Abstract
Background Web-based computerized adaptive testing (CAT) implementation of the skin cancer (SC) risk scale could substantially reduce participant burden without compromising measurement precision. However, the CAT of SC classification has not been reported in academics thus far. Objective We aim to build a CAT-based model using machine learning to develop an app for automatic classification of SC to help patients assess the risk at an early stage. Methods We extracted data from a population-based Australian cohort study of SC risk (N=43,794) using the Rasch simulation scheme. All 30 feature items were calibrated using the Rasch partial credit model. A total of 1000 cases following a normal distribution (mean 0, SD 1) based on the item and threshold difficulties were simulated using three techniques of machine learning—naïve Bayes, k-nearest neighbors, and logistic regression—to compare the model accuracy in training and testing data sets with a proportion of 70:30, where the former was used to predict the latter. We calculated the sensitivity, specificity, receiver operating characteristic curve (area under the curve [AUC]), and CIs along with the accuracy and precision across the proposed models for comparison. An app that classifies the SC risk of the respondent was developed. Results We observed that the 30-item k-nearest neighbors model yielded higher AUC values of 99% and 91% for the 700 training and 300 testing cases, respectively, than its 2 counterparts using the hold-out validation but had lower AUC values of 85% (95% CI 83%-87%) in the k-fold cross-validation and that an app that predicts SC classification for patients was successfully developed and demonstrated in this study. Conclusions The 30-item SC prediction model, combined with the Rasch web-based CAT, is recommended for classifying SC in patients. An app we developed to help patients self-assess SC risk at an early stage is required for application in the future.
Collapse
Affiliation(s)
- Ting-Ya Yang
- Department of Family Medicine, Chi Mei Medical Center, Tainan, Taiwan
| | - Tsair-Wei Chien
- Department of Medical Research, Chi-Mei Medical Center, Tainan, Taiwan
| | - Feng-Jie Lai
- Department of Dermatology, Chi-Mei Medical Center, Tainan, Taiwan
| |
Collapse
|
11
|
Ho SYC, Chien TW, Shao Y, Hsieh JH. Visualizing the features of inflection point shown on a temporal bar graph using the data of COVID-19 pandemic. Medicine (Baltimore) 2022; 101:e28749. [PMID: 35119031 PMCID: PMC8812627 DOI: 10.1097/md.0000000000028749] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 01/13/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Exponential-like infection growth leading to peaks (denoted by inflection points [IP] or turning points) is usually the hallmark of infectious disease outbreaks, including coronaviruses. To determine the IPs of the novel coronavirus (COVID-19), we applied the item response theory model to detect phase transitions for each country/region and characterize the IP feature on the temporal bar graph (TBG). METHODS The IP (using the item difficulty parameter to locate) was verified by the differential equation in calculus and interpreted by the TBG with 2 virtual and real empirical data (i.e., from Collatz conjecture and COVID-19 pandemic in 2020). Comparisons of IPs, R2, and burst strength [BS = ln() denoted by the infection number at IP(Nip) and the item slope parameter(a) in item response theory were made for countries/regions and continents on the choropleth map and the forest plot. RESULTS We found that the evolution of COVID-19 on the TBG makes the data clear and easy to understand, the shorter IP (=53.9) was in China and the longest (=247.3) was in Europe, and the highest R2 (as the variance explained by the model) was in the US, with a mean R2 of 0.98. We successfully estimated the IPs for countries/regions on COVID-19 in 2020 and presented them on the TBG. CONCLUSION Temporal visualization is recommended for researchers in future relevant studies (e.g., the evolution of keywords in a specific discipline) and is not merely limited to the IP search in COVID-19 pandemics as we did in this study.
Collapse
Affiliation(s)
- Sam Yu-Chieh Ho
- Department of Emergency Medicine, Chi-Mei Medical Center, Tainan, Taiwan
| | - Tsair-Wei Chien
- Department of Medical Research, Chiali Chi-Mei Medical Center, Tainan, Taiwan
| | - Yang Shao
- School of Economics, Jiaxing University, Jiaxing, China
| | - Ju-Hao Hsieh
- Department of Emergency Medicine, Chi-Mei Medical Center, Tainan, Taiwan
| |
Collapse
|
12
|
Lin CY, Chien TW, Chen YH, Lee YL, Su SB. An app to classify a 5-year survival in patients with breast cancer using the convolutional neural networks (CNN) in Microsoft Excel: Development and usability study. Medicine (Baltimore) 2022; 101:e28697. [PMID: 35089226 PMCID: PMC8797502 DOI: 10.1097/md.0000000000028697] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 01/04/2022] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Breast cancer (BC) is the most common malignant cancer in women. A predictive model is required to predict the 5-year survival in patients with BC (5YSPBC) and improve the treatment quality by increasing their survival rate. However, no reports in literature about apps developed and designed in medical practice to classify the 5YSPBC. This study aimed to build a model to develop an app for an automatically accurate classification of the 5YSPBC. METHODS A total of 1810 patients with BC were recruited in a hospital in Taiwan from the secondary data with codes on 53 characteristic variables that were endorsed by professional staff clerks as of December 31, 2019. Five models (i.e., revolution neural network [CNN], artificial neural network, Naïve Bayes, K-nearest Neighbors Algorithm, and Logistic regression) and 3 tasks (i.e., extraction of feature variables, model comparison in accuracy [ACC] and stability, and app development) were performed to achieve the goal of developing an app to predict the 5YSPBC. The sensitivity, specificity, and receiver operating characteristic curve (area under ROC curve) on models across 2 scenarios of training (70%) and testing (30%) sets were compared. An app predicting the 5YSPBC was developed involving the model estimated parameters for a website assessment. RESULTS We observed that the 15-variable CNN model yields higher ACC rates (0.87 and 0.86) with area under ROC curves of 0.80 and 0.78 (95% confidence interval 0.78-82 and 0.74-81) based on 1357 training and 540 testing cases an available app for patients predicting the 5YSPBC was successfully developed and demonstrated in this study. CONCLUSION The 15-variable CNN model with 38 parameters estimated using CNN for improving the ACC of the 5YSPBC has been particularly demonstrated in Microsoft Excel. An app developed for helping clinicians assess the 5YSPBC in clinical settings is required for application in the future.
Collapse
Affiliation(s)
- Cheng-Yao Lin
- Division of Hematology-Oncology, Department of Internal Medicine, Chi Mei Medical Center, Liouying, Tainan, Taiwan
- Department of Senior Welfare and Services, Southern Taiwan University of Science and Technology, Tainan, Taiwan
- Department of Environmental and Occupational Health, National Cheng Kung University, Tainan, Taiwan
| | - Tsair-Wei Chien
- Department of Medical Research, Chi-Mei Medical Center, Tainan, Taiwan
| | - Yen-Hsun Chen
- Division of Hematology-Oncology, Department of Internal Medicine, Chi Mei Center, Liouying, Tainan, Taiwan
| | - Yen-Ling Lee
- Department of Oncology, Tainan Hospital, Ministry of Healthy and Welfare, Tainan, Taiwan
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shih-Bin Su
- Department of Occupational Medicine, Chi Mei Medical Center, Tainan, Taiwan
| |
Collapse
|
13
|
Hsu CF, Chien TW, Yan YH. An application for classifying perceptions on my health bank in Taiwan using convolutional neural networks and web-based computerized adaptive testing: A development and usability study. Medicine (Baltimore) 2021; 100:e28457. [PMID: 34967385 PMCID: PMC8718177 DOI: 10.1097/md.0000000000028457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 12/02/2021] [Accepted: 12/09/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The classification of a respondent's opinions online into positive and negative classes using a minimal number of questions is gradually changing and helps turn techniques into practices. A survey incorporating convolutional neural networks (CNNs) into web-based computerized adaptive testing (CAT) was used to collect perceptions on My Health Bank (MHB) from users in Taiwan. This study designed an online module to accurately and efficiently turn a respondent's perceptions into positive and negative classes using CNNs and web-based CAT. METHODS In all, 640 patients, family members, and caregivers with ages ranging from 20 to 70 years who were registered MHB users were invited to complete a 3-domain, 26-item, 5-category questionnaire asking about their perceptions on MHB (PMHB26) in 2019. The CNN algorithm and k-means clustering were used for dividing respondents into 2 classes of unsatisfied and satisfied classes and building a PMHB26 predictive model to estimate parameters. Exploratory factor analysis, the Rasch model, and descriptive statistics were used to examine the demographic characteristics and PMHB26 factors that were suitable for use in CNNs and Rasch multidimensional CAT (MCAT). An application was then designed to classify MHB perceptions. RESULTS We found that 3 construct factors were extracted from PMHB26. The reliability of PMHB26 for each subscale beyond 0.94 was evident based on internal consistency and stability in the data. We further found the following: the accuracy of PMHB26 with CNN yields a higher accuracy rate (0.98) with an area under the curve of 0.98 (95% confidence interval, 0.97-0.99) based on the 391 returned questionnaires; and for the efficiency, approximately one-third of the items were not necessary to answer in reducing the respondents' burdens using Rasch MCAT. CONCLUSIONS The PMHB26 CNN model, combined with the Rasch online MCAT, is recommended for improving the accuracy and efficiency of classifying patients' perceptions of MHB utility. An application developed for helping respondents self-assess the MHB cocreation of value can be applied to other surveys in the future.
Collapse
Affiliation(s)
- Chen-Fang Hsu
- Department of Pediatrics, Chi Mei Medical Center, Tainan, Taiwan
- School of Medicine, College of Medicine, Chung Shan Medical University, Taichung, Taiwan
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Tsair-Wei Chien
- Department of Medical Research Department, Chi-Mei Medical Center, Tainan, Taiwan
| | - Yu-Hua Yan
- Superintendent Office, Tainan Municipal Hospital (Managed by Show Chwan Medical Care Corporation), Tainan, Taiwan
- Department of Hospital and Health Care Administration, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| |
Collapse
|
14
|
Lin JK, Chien TW, Wang LY, Chou W. An artificial neural network model to predict the mortality of COVID-19 patients using routine blood samples at the time of hospital admission: Development and validation study. Medicine (Baltimore) 2021; 100:e26532. [PMID: 34260529 PMCID: PMC8284724 DOI: 10.1097/md.0000000000026532] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 01/08/2023] Open
Abstract
Background: In a pandemic situation (e.g., COVID-19), the most important issue is to select patients at risk of high mortality at an early stage and to provide appropriate treatments. However, a few studies applied the model to predict in-hospital mortality using routine blood samples at the time of hospital admission. This study aimed to develop an app, name predict the mortality of COVID-19 patients (PMCP) app, to predict the mortality of COVID-19 patients at hospital-admission time. Methods: We downloaded patient records from 2 studies, including 361 COVID-19 patients in Wuhan, China, and 106 COVID-19 patients in 3 Korean medical institutions. A total of 30 feature variables were retrieved, consisting of 28 blood biomarkers and 2 demographic variables (i.e., age and gender) of patients. Two models, namely, artificial neural network (ANN) and convolutional neural network (CNN), were compared with each other across 2 scenarios using An app for predicting the mortality of COVID-19 patients was developed using the model's estimated parameters for the prediction and classification of PMCP at an earlier stage. Feature variables and prediction results were visualized using the forest plot and category probability curves shown on Google Maps. Results: We observed that Conclusions: Our new PMCP app with ANN model accurately predicts the mortality probability for COVID-19 patients. It is publicly available and aims to help health care providers fight COVID-19 and improve patients’ classifications against treatment risk.
Collapse
Affiliation(s)
- Ju-Kuo Lin
- Department of Ophthalmology, Chi-Mei Medical Center, Yong Kang, Tainan City, Taiwan
- Department of Optometry, Chung Hwa University of Medical Technology, Jen-Teh, Tainan City, Taiwan
| | - Tsair-Wei Chien
- Department of Medical Research, Chi-Mei Medical Center, Tainan, Taiwan
| | - Lin-Yen Wang
- Department of Pediatrics, Chi-Mei Medical Center, Tainan, Taiwan
- Department of Childhood Education and Nursery, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Willy Chou
- Department of Physical Medicine and Rehabilitation, Chung San Medical University Hospital, Taichung, Taiwan
- Department of Physical Medicine and Rehabilitation, Chi Mei Medical Center, Tainan, Taiwan
| |
Collapse
|
15
|
Predicting the 14-Day Hospital Readmission of Patients with Pneumonia Using Artificial Neural Networks (ANN). INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18105110. [PMID: 34065894 PMCID: PMC8150657 DOI: 10.3390/ijerph18105110] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/22/2021] [Accepted: 04/29/2021] [Indexed: 12/02/2022]
Abstract
Unplanned patient readmission (UPRA) is frequent and costly in healthcare settings. No indicators during hospitalization have been suggested to clinicians as useful for identifying patients at high risk of UPRA. This study aimed to create a prediction model for the early detection of 14-day UPRA of patients with pneumonia. We downloaded the data of patients with pneumonia as the primary disease (e.g., ICD-10:J12*-J18*) at three hospitals in Taiwan from 2016 to 2018. A total of 21,892 cases (1208 (6%) for UPRA) were collected. Two models, namely, artificial neural network (ANN) and convolutional neural network (CNN), were compared using the training (n = 15,324; ≅70%) and test (n = 6568; ≅30%) sets to verify the model accuracy. An app was developed for the prediction and classification of UPRA. We observed that (i) the 17 feature variables extracted in this study yielded a high area under the receiver operating characteristic curve of 0.75 using the ANN model and that (ii) the ANN exhibited better AUC (0.73) than the CNN (0.50), and (iii) a ready and available app for predicting UHA was developed. The app could help clinicians predict UPRA of patients with pneumonia at an early stage and enable them to formulate preparedness plans near or after patient discharge from hospitalization.
Collapse
|
16
|
Chou PH, Chien TW, Yang TY, Yeh YT, Chou W, Yeh CH. Predicting Active NBA Players Most Likely to Be Inducted into the Basketball Hall of Famers Using Artificial Neural Networks in Microsoft Excel: Development and Usability Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18084256. [PMID: 33923846 PMCID: PMC8072800 DOI: 10.3390/ijerph18084256] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/18/2021] [Accepted: 03/25/2021] [Indexed: 12/11/2022]
Abstract
The prediction of whether active NBA players can be inducted into the Hall of Fame (HOF) is interesting and important. However, no such research have been published in the literature, particularly using the artificial neural network (ANN) technique. The aim of this study is to build an ANN model with an app for automatic prediction and classification of HOF for NBA players. We downloaded 4728 NBA players’ data of career stats and accolades from the website at basketball-reference.com. The training sample was collected from 85 HOF members and 113 retired Non-HOF players based on completed data and a longer career length (≥15 years). Featured variables were taken from the higher correlation coefficients (<0.1) with HOF and significant deviations apart from the two HOF/Non-HOF groups using logistical regression. Two models (i.e., ANN and convolutional neural network, CNN) were compared in model accuracy (e.g., sensitivity, specificity, area under the receiver operating characteristic curve, AUC). An app predicting HOF was then developed involving the model’s parameters. We observed that (1) 20 feature variables in the ANN model yielded a higher AUC of 0.93 (95% CI 0.93–0.97) based on the 198-case training sample, (2) the ANN performed better than CNN on the accuracy of AUC (= 0.91, 95% CI 0.87–0.95), and (3) an ready and available app for predicting HOF was successfully developed. The 20-variable ANN model with the 53 parameters estimated by the ANN for improving the accuracy of HOF has been developed. The app can help NBA fans to predict their players likely to be inducted into the HOF and is not just limited to the active NBA players.
Collapse
Affiliation(s)
- Po-Hsin Chou
- Department of Orthopedics and Traumatology, Taipei Veterans General Hospital, Taipei 112, Taiwan;
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Tsair-Wei Chien
- Department of Medical Research, Chi-Mei Medical Center, Tainan 700, Taiwan;
| | - Ting-Ya Yang
- Medical Education Center, Chi-Mei Medical Center, Tainan 700, Taiwan;
- School of Medicine, College of Medicine, China Medical University, Taichung 400, Taiwan
| | - Yu-Tsen Yeh
- Medical School, St. George’s University of London, London SW17 0RE, UK;
| | - Willy Chou
- Department of Physical Medicine and Rehabilitation, Chi Mei Medical Center, Tainan 700, Taiwan
- Correspondence: (W.C.); (C.-H.Y.); Tel.: +886-6291-2811 (C.-H.Y.)
| | - Chao-Hung Yeh
- Department of Neurosurgery, Chi Mei Medical Center, Tainan 700, Taiwan
- Correspondence: (W.C.); (C.-H.Y.); Tel.: +886-6291-2811 (C.-H.Y.)
| |
Collapse
|
17
|
Lee KW, Chien TW, Yeh YT, Chou W, Wang HY. An online time-to-event dashboard comparing the effective control of COVID-19 among continents using the inflection point on an ogive curve: Observational study. Medicine (Baltimore) 2021; 100:e24749. [PMID: 33725830 PMCID: PMC7969250 DOI: 10.1097/md.0000000000024749] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/16/2021] [Accepted: 01/21/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND During the COVID-19 pandemic, one of the frequently asked questions is which countries (or continents) are severely hit. Aside from using the number of confirmed cases and the fatality to measure the impact caused by COVID-19, few adopted the inflection point (IP) to represent the control capability of COVID-19. How to determine the IP days related to the capability is still unclear. This study aims to (i) build a predictive model based on item response theory (IRT) to determine the IP for countries, and (ii) compare which countries (or continents) are hit most. METHODS We downloaded COVID-19 outbreak data of the number of confirmed cases in all countries as of October 19, 2020. The IRT-based predictive model was built to determine the pandemic IP for each country. A model building scheme was demonstrated to fit the number of cumulative infected cases. Model parameters were estimated using the Solver add-in tool in Microsoft Excel. The absolute advantage coefficient (AAC) was computed to track the IP at the minimum of incremental points on a given ogive curve. The time-to-event analysis (a.k.a. survival analysis) was performed to compare the difference in IPs among continents using the area under the curve (AUC) and the respective 95% confidence intervals (CIs). An online comparative dashboard was created on Google Maps to present the epidemic prediction for each country. RESULTS The top 3 countries that were hit severely by COVID-19 were France, Malaysia, and Nepal, with IP days at 263, 262, and 262, respectively. The top 3 continents that were hit most based on IP days were Europe, South America, and North America, with their AUCs and 95% CIs at 0.73 (0.61-0.86), 0.58 (0.31-0.84), and 0.54 (0.44-0.64), respectively. An online time-event result was demonstrated and shown on Google Maps, comparing the IP probabilities across continents. CONCLUSION An IRT modeling scheme fitting the epidemic data was used to predict the length of IP days. Europe, particularly France, was hit seriously by COVID-19 based on the IP days. The IRT model incorporated with AAC is recommended to determine the pandemic IP.
Collapse
Affiliation(s)
| | - Tsair-Wei Chien
- Department of Medical Research, Chi-Mei Medical Center, Tainan, Taiwan
| | - Yu-Tsen Yeh
- Medical School, St. George's University of London, London, United Kingdom
| | - Willy Chou
- Department of Physical Medicine and Rehabilitation, Chiali Chi-Mei Hospial
| | - Hsien-Yi Wang
- Department of Sport Management, College of Leisure and Recreation Management, Chia Nan University of Pharmacy and Science
- Ncphrology Department, Chi-Mei Medical Center, Tainan, Taiwan
| |
Collapse
|
18
|
Wang LY, Chien TW, Chou W. Using the IPcase Index with Inflection Points and the Corresponding Case Numbers to Identify the Impact Hit by COVID-19 in China: An Observation Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:1994. [PMID: 33670825 PMCID: PMC7923186 DOI: 10.3390/ijerph18041994] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/10/2021] [Accepted: 02/12/2021] [Indexed: 12/22/2022]
Abstract
Coronavirus disease 2019 (COVID-19) occurred in Wuhan and rapidly spread around the world. Assessing the impact of COVID-19 is the first and foremost concern. The inflection point (IP) and the corresponding cumulative number of infected cases (CNICs) are the two viewpoints that should be jointly considered to differentiate the impact of struggling to fight against COVID-19 (SACOVID). The CNIC data were downloaded from the GitHub website on 23 November 2020. The item response theory model (IRT) was proposed to draw the ogive curve for every province/metropolitan city/area in China. The ipcase-index was determined by multiplying the IP days with the corresponding CNICs. The IRT model was parameterized, and the IP days were determined using the absolute advantage coefficient (AAC). The difference in SACOVID was compared using a forest plot. In the observation study, the top three regions hit severely by COVID-19 were Hong Kong, Shanghai, and Hubei, with IPcase indices of 1744, 723, and 698, respectively, and the top three areas with the most aberrant patterns were Yunnan, Sichuan, and Tianjin, with IP days of 5, 51, and 119, respectively. The difference in IP days was determined (χ2 = 5065666, df = 32, p < 0.001) among areas in China. The IRT model with the AAC is recommended to determine the IP days during the COVID-19 pandemic.
Collapse
Affiliation(s)
- Lin-Yen Wang
- Department of Pediatrics, Chi-Mei Medical Center, Tainan 700, Taiwan;
- Department of Childhood Education and Nursery, Chia Nan University of Pharmacy and Science, Tainan 700, Taiwan
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 800, Taiwan
| | - Tsair-Wei Chien
- Department of Medical Research, Chi-Mei Medical Center, Tainan 700, Taiwan;
| | - Willy Chou
- Department of Physical Medicine and Rehabilitation, Chi Mei Hospital Chiali, Tainan 700, Taiwan
| |
Collapse
|
19
|
Yan YH, Chien TW, Yeh YT, Chou W, Hsing SC. An App for Classifying Personal Mental Illness at Workplace Using Fit Statistics and Convolutional Neural Networks: Survey-Based Quantitative Study. JMIR Mhealth Uhealth 2020; 8:e17857. [PMID: 32735232 PMCID: PMC7428910 DOI: 10.2196/17857] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/24/2020] [Accepted: 06/03/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Mental illness (MI) is common among those who work in health care settings. Whether MI is related to employees' mental status at work is yet to be determined. An MI app is developed and proposed to help employees assess their mental status in the hope of detecting MI at an earlier stage. OBJECTIVE This study aims to build a model using convolutional neural networks (CNNs) and fit statistics based on 2 aspects of measures and outfit mean square errors for the automatic detection and classification of personal MI at the workplace using the emotional labor and mental health (ELMH) questionnaire, so as to equip the staff in assessing and understanding their own mental status with an app on their mobile device. METHODS We recruited 352 respiratory therapists (RTs) working in Taiwan medical centers and regional hospitals to fill out the 44-item ELMH questionnaire in March 2019. The exploratory factor analysis (EFA), Rasch analysis, and CNN were used as unsupervised and supervised learnings for (1) dividing RTs into 4 classes (ie, MI, false MI, health, and false health) and (2) building an ELMH predictive model to estimate 108 parameters of the CNN model. We calculated the prediction accuracy rate and created an app for classifying MI for RTs at the workplace as a web-based assessment. RESULTS We observed that (1) 8 domains in ELMH were retained by EFA, (2) 4 types of mental health (n=6, 63, 265, and 18 located in 4 quadrants) were classified using the Rasch analysis, (3) the 44-item model yields a higher accuracy rate (0.92), and (4) an MI app available for RTs predicting MI was successfully developed and demonstrated in this study. CONCLUSIONS The 44-item model with 108 parameters was estimated by using CNN to improve the accuracy of mental health for RTs. An MI app developed to help RTs self-detect work-related MI at an early stage should be made more available and viable in the future.
Collapse
Affiliation(s)
- Yu-Hua Yan
- Superintendent Office, Tainan Municipal Hospital (Managed by Show Chwan Medical Care Corporation), Tainan, Taiwan
- Department of Hospital and Health Care Management, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Tsair-Wei Chien
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan
| | - Yu-Tsen Yeh
- Medical School, St George's, University of London, London, United Kingdom
| | - Willy Chou
- Department of Physical Medicine and Rehabilitation, Chung Shan Medical University, Taichung, Taiwan
- Department of Physical Medicine and Rehabilitation, Chiali Chi Mei Hospital, Tainan, Taiwan
| | - Shu-Chen Hsing
- Respiratory Therapy Unit, Chi Mei Medical Center, Tainan, Taiwan
| |
Collapse
|
20
|
Ma SC, Chou W, Chien TW, Chow JC, Yeh YT, Chou PH, Lee HF. An App for Detecting Bullying of Nurses Using Convolutional Neural Networks and Web-Based Computerized Adaptive Testing: Development and Usability Study. JMIR Mhealth Uhealth 2020; 8:e16747. [PMID: 32432557 PMCID: PMC7270851 DOI: 10.2196/16747] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 01/02/2020] [Accepted: 01/26/2020] [Indexed: 01/10/2023] Open
Abstract
Background Workplace bullying has been measured in many studies to investigate its effects on mental health issues. However, none have used web-based computerized adaptive testing (CAT) with bully classifications and convolutional neural networks (CNN) for reporting the extent of individual bullying in the workplace. Objective This study aims to build a model using CNN to develop an app for automatic detection and classification of nurse bullying-levels, incorporated with online Rasch computerized adaptive testing, to help assess nurse bullying at an earlier stage. Methods We recruited 960 nurses working in a Taiwan Ch-Mei hospital group to fill out the 22-item Negative Acts Questionnaire-Revised (NAQ-R) in August 2012. The k-mean and the CNN were used as unsupervised and supervised learnings, respectively, for: (1) dividing nurses into three classes (n=918, 29, and 13 with suspicious mild, moderate, and severe extent of being bullied, respectively); and (2) building a bully prediction model to estimate 69 different parameters. Finally, data were separated into training and testing sets in a proportion of 70:30, where the former was used to predict the latter. We calculated the sensitivity, specificity, and receiver operating characteristic curve (area under the curve [AUC]), along with the accuracy across studies for comparison. An app predicting the respondent bullying-level was developed, involving the model’s 69 estimated parameters and the online Rasch CAT module as a website assessment. Results We observed that: (1) the 22-item model yields higher accuracy rates for three categories, with an accuracy of 94% for the total 960 cases, and accuracies of 99% (AUC 0.99; 95% CI 0.99-1.00) and 83% (AUC 0.94; 95% CI 0.82-0.99) for the lower and upper groups (cutoff points at 49 and 66 points) based on the 947 cases and 42 cases, respectively; and (2) the 700-case training set, with 95% accuracy, predicts the 260-case testing set reaching an accuracy of 97. Thus, a NAQ-R app for nurses that predicts bullying-level was successfully developed and demonstrated in this study. Conclusions The 22-item CNN model, combined with the Rasch online CAT, is recommended for improving the accuracy of the nurse NAQ-R assessment. An app developed for helping nurses self-assess workplace bullying at an early stage is required for application in the future.
Collapse
Affiliation(s)
- Shu-Ching Ma
- Department of Nursing, Chi Mei Medical Center, Tainan, Taiwan.,College of Humanities and Social Science, Southern Taiwan University of Science and Technology, Tainan, Taiwan
| | - Willy Chou
- Department of Physical Medicine and Rehabilitation, Chi Mei Medical Center, Tainan, Taiwan.,Department of Physical Medicine and Rehabilitation, Chung Shan Medical University, Taichun, Taiwan
| | - Tsair-Wei Chien
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan
| | - Julie Chi Chow
- Department of Pediatrics, Chi-Mei Medical Center, Tainan, Taiwan.,Department of Pediatrics, Taipei Medical University, Chi Mei Medical Groups, Taipei, Taiwan
| | - Yu-Tsen Yeh
- Medical School, St George's, University of London, London, United Kingdom
| | - Po-Hsin Chou
- Department of Orthopedics and Traumatology, Taipei Veterans General Hospital, Taipei, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Huan-Fang Lee
- Department of Nursing, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|