1
|
Gleber C, Plate M, Glatz C. Design with purpose: User-centered processes for effective digital research tools. J Hosp Med 2024; 19:753-754. [PMID: 38678436 DOI: 10.1002/jhm.13384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 04/18/2024] [Accepted: 04/18/2024] [Indexed: 04/30/2024]
Affiliation(s)
- Conrad Gleber
- Division of Hospital Medicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Meghan Plate
- UR Health Lab, University of Rochester Medical Center, Rochester, New York, USA
| | - Catherine Glatz
- Division of Hospital Medicine, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
2
|
Law S, Oldfield B, Yang W. ChatGPT/GPT-4 (large language models): Opportunities and challenges of perspective in bariatric healthcare professionals. Obes Rev 2024; 25:e13746. [PMID: 38613164 DOI: 10.1111/obr.13746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 04/14/2024]
Abstract
ChatGPT/GPT-4 is a conversational large language model (LLM) based on artificial intelligence (AI). The potential application of LLM as a virtual assistant for bariatric healthcare professionals in education and practice may be promising if relevant and valid issues are actively examined and addressed. In general medical terms, it is possible that AI models like ChatGPT/GPT-4 will be deeply integrated into medical scenarios, improving medical efficiency and quality, and allowing doctors more time to communicate with patients and implement personalized health management. Chatbots based on AI have great potential in bariatric healthcare and may play an important role in predicting and intervening in weight loss and obesity-related complications. However, given its potential limitations, we should carefully consider the medical, legal, ethical, data security, privacy, and liability issues arising from medical errors caused by ChatGPT/GPT-4. This concern also extends to ChatGPT/GPT -4's ability to justify wrong decisions, and there is an urgent need for appropriate guidelines and regulations to ensure the safe and responsible use of ChatGPT/GPT-4.
Collapse
Affiliation(s)
- Saikam Law
- Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
- School of Medicine, Jinan University, Guangzhou, China
| | - Brian Oldfield
- Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Wah Yang
- Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
3
|
Wong RSY, Ming LC, Raja Ali RA. The Intersection of ChatGPT, Clinical Medicine, and Medical Education. JMIR MEDICAL EDUCATION 2023; 9:e47274. [PMID: 37988149 DOI: 10.2196/47274] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/16/2023] [Accepted: 06/30/2023] [Indexed: 11/22/2023]
Abstract
As we progress deeper into the digital age, the robust development and application of advanced artificial intelligence (AI) technology, specifically generative language models like ChatGPT (OpenAI), have potential implications in all sectors including medicine. This viewpoint article aims to present the authors' perspective on the integration of AI models such as ChatGPT in clinical medicine and medical education. The unprecedented capacity of ChatGPT to generate human-like responses, refined through Reinforcement Learning with Human Feedback, could significantly reshape the pedagogical methodologies within medical education. Through a comprehensive review and the authors' personal experiences, this viewpoint article elucidates the pros, cons, and ethical considerations of using ChatGPT within clinical medicine and notably, its implications for medical education. This exploration is crucial in a transformative era where AI could potentially augment human capability in the process of knowledge creation and dissemination, potentially revolutionizing medical education and clinical practice. The importance of maintaining academic integrity and professional standards is highlighted. The relevance of establishing clear guidelines for the responsible and ethical use of AI technologies in clinical medicine and medical education is also emphasized.
Collapse
Affiliation(s)
- Rebecca Shin-Yee Wong
- Department of Medical Education, School of Medical and Life Sciences, Sunway University, Selangor, Malaysia
- Faculty of Medicine, Nursing and Health Sciences, SEGi University, Petaling Jaya, Malaysia
| | - Long Chiau Ming
- School of Medical and Life Sciences, Sunway University, Selangor, Malaysia
| | - Raja Affendi Raja Ali
- School of Medical and Life Sciences, Sunway University, Selangor, Malaysia
- GUT Research Group, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
4
|
Chakraborty C, Pal S, Bhattacharya M, Dash S, Lee SS. Overview of Chatbots with special emphasis on artificial intelligence-enabled ChatGPT in medical science. Front Artif Intell 2023; 6:1237704. [PMID: 38028668 PMCID: PMC10644239 DOI: 10.3389/frai.2023.1237704] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 10/05/2023] [Indexed: 12/01/2023] Open
Abstract
The release of ChatGPT has initiated new thinking about AI-based Chatbot and its application and has drawn huge public attention worldwide. Researchers and doctors have started thinking about the promise and application of AI-related large language models in medicine during the past few months. Here, the comprehensive review highlighted the overview of Chatbot and ChatGPT and their current role in medicine. Firstly, the general idea of Chatbots, their evolution, architecture, and medical use are discussed. Secondly, ChatGPT is discussed with special emphasis of its application in medicine, architecture and training methods, medical diagnosis and treatment, research ethical issues, and a comparison of ChatGPT with other NLP models are illustrated. The article also discussed the limitations and prospects of ChatGPT. In the future, these large language models and ChatGPT will have immense promise in healthcare. However, more research is needed in this direction.
Collapse
Affiliation(s)
- Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, West Bengal, India
| | - Soumen Pal
- School of Mechanical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | | | - Snehasish Dash
- School of Mechanical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Sang-Soo Lee
- Institute for Skeletal Aging and Orthopedic Surgery, Hallym University Chuncheon Sacred Heart Hospital, Chuncheon-si, Gangwon-do, Republic of Korea
| |
Collapse
|
5
|
Haque MDR, Rubya S. An Overview of Chatbot-Based Mobile Mental Health Apps: Insights From App Description and User Reviews. JMIR Mhealth Uhealth 2023; 11:e44838. [PMID: 37213181 DOI: 10.2196/44838] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/02/2023] [Accepted: 04/21/2023] [Indexed: 05/23/2023] Open
Abstract
BACKGROUND Chatbots are an emerging technology that show potential for mental health care apps to enable effective and practical evidence-based therapies. As this technology is still relatively new, little is known about recently developed apps and their characteristics and effectiveness. OBJECTIVE In this study, we aimed to provide an overview of the commercially available popular mental health chatbots and how they are perceived by users. METHODS We conducted an exploratory observation of 10 apps that offer support and treatment for a variety of mental health concerns with a built-in chatbot feature and qualitatively analyzed 3621 consumer reviews from the Google Play Store and 2624 consumer reviews from the Apple App Store. RESULTS We found that although chatbots' personalized, humanlike interactions were positively received by users, improper responses and assumptions about the personalities of users led to a loss of interest. As chatbots are always accessible and convenient, users can become overly attached to them and prefer them over interacting with friends and family. Furthermore, a chatbot may offer crisis care whenever the user needs it because of its 24/7 availability, but even recently developed chatbots lack the understanding of properly identifying a crisis. Chatbots considered in this study fostered a judgment-free environment and helped users feel more comfortable sharing sensitive information. CONCLUSIONS Our findings suggest that chatbots have great potential to offer social and psychological support in situations where real-world human interaction, such as connecting to friends or family members or seeking professional support, is not preferred or possible to achieve. However, there are several restrictions and limitations that these chatbots must establish according to the level of service they offer. Too much reliance on technology can pose risks, such as isolation and insufficient assistance during times of crisis. Recommendations for customization and balanced persuasion to inform the design of effective chatbots for mental health support have been outlined based on the insights of our findings.
Collapse
Affiliation(s)
- M D Romael Haque
- Department of Computer Science, Marquette University, Milwaukee, WI, United States
| | - Sabirat Rubya
- Department of Computer Science, Marquette University, Milwaukee, WI, United States
| |
Collapse
|
6
|
Perrin Franck C, Babington-Ashaye A, Dietrich D, Bediang G, Veltsos P, Gupta PP, Juech C, Kadam R, Collin M, Setian L, Serrano Pons J, Kwankam SY, Garrette B, Barbe S, Bagayoko CO, Mehl G, Lovis C, Geissbuhler A. iCHECK-DH: Guidelines and Checklist for the Reporting on Digital Health Implementations. J Med Internet Res 2023; 25:e46694. [PMID: 37163336 PMCID: PMC10209789 DOI: 10.2196/46694] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/18/2023] [Accepted: 04/21/2023] [Indexed: 05/11/2023] Open
Abstract
BACKGROUND Implementation of digital health technologies has grown rapidly, but many remain limited to pilot studies due to challenges, such as a lack of evidence or barriers to implementation. Overcoming these challenges requires learning from previous implementations and systematically documenting implementation processes to better understand the real-world impact of a technology and identify effective strategies for future implementation. OBJECTIVE A group of global experts, facilitated by the Geneva Digital Health Hub, developed the Guidelines and Checklist for the Reporting on Digital Health Implementations (iCHECK-DH, pronounced "I checked") to improve the completeness of reporting on digital health implementations. METHODS A guideline development group was convened to define key considerations and criteria for reporting on digital health implementations. To ensure the practicality and effectiveness of the checklist, it was pilot-tested by applying it to several real-world digital health implementations, and adjustments were made based on the feedback received. The guiding principle for the development of iCHECK-DH was to identify the minimum set of information needed to comprehensively define a digital health implementation, to support the identification of key factors for success and failure, and to enable others to replicate it in different settings. RESULTS The result was a 20-item checklist with detailed explanations and examples in this paper. The authors anticipate that widespread adoption will standardize the quality of reporting and, indirectly, improve implementation standards and best practices. CONCLUSIONS Guidelines for reporting on digital health implementations are important to ensure the accuracy, completeness, and consistency of reported information. This allows for meaningful comparison and evaluation of results, transparency, and accountability and informs stakeholder decision-making. i-CHECK-DH facilitates standardization of the way information is collected and reported, improving systematic documentation and knowledge transfer that can lead to the development of more effective digital health interventions and better health outcomes.
Collapse
Affiliation(s)
- Caroline Perrin Franck
- Department of Radiology and Medical Informatics, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Geneva Digital Health Hub, Geneva, Switzerland
| | - Awa Babington-Ashaye
- Department of Radiology and Medical Informatics, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Geneva Digital Health Hub, Geneva, Switzerland
| | | | - Georges Bediang
- Faculty of Medicine and Biomedical Sciences, University of Yaoundé 1, Yaoundé, Cameroon
| | | | | | - Claudia Juech
- Government Innovation, Bloomberg Philanthropies, New York, NY, United States
| | - Rigveda Kadam
- Foundation for Innovative New Diagnostics, Geneva, Switzerland
| | | | | | | | - S Yunkap Kwankam
- International Society for Telemedicine & eHealth, Basel, Switzerland
| | | | | | - Cheick Oumar Bagayoko
- Centre d'Innovation et de Santé Digitale, DigiSanté-Mali, Université des sciences, des techniques et des technologies de Bamako, Bamako, Mali
- Centre d'Expertise et de Recherche en Télémédecine et E-Santé, Bamako, Mali
| | - Garrett Mehl
- Department of Digital Health and Innovation, World Health Organization, Geneva, Switzerland
| | - Christian Lovis
- Department of Radiology and Medical Informatics, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Division of Medical Information Sciences, Geneva University Hospitals, Geneva, Switzerland
| | - Antoine Geissbuhler
- Department of Radiology and Medical Informatics, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Geneva Digital Health Hub, Geneva, Switzerland
- Division of Medical Information Sciences, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
7
|
Rahmanti AR, Yang HC, Bintoro BS, Nursetyo AA, Muhtar MS, Syed-Abdul S, Li YCJ. SlimMe, a Chatbot With Artificial Empathy for Personal Weight Management: System Design and Finding. Front Nutr 2022; 9:870775. [PMID: 35811989 PMCID: PMC9260382 DOI: 10.3389/fnut.2022.870775] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/12/2022] [Indexed: 11/23/2022] Open
Abstract
As the obesity rate continues to increase persistently, there is an urgent need to develop an effective weight loss management strategy. Nowadays, the development of artificial intelligence (AI) and cognitive technologies coupled with the rapid spread of messaging platforms and mobile technology with easier access to internet technology offers professional dietitians an opportunity to provide extensive monitoring support to their clients through a chatbot with artificial empathy. This study aimed to design a chatbot with artificial empathic motivational support for weight loss called “SlimMe” and investigate how people react to a diet bot. The SlimMe infrastructure was built using Dialogflow as the natural language processing (NLP) platform and LINE mobile messenger as the messaging platform. We proposed a text-based emotion analysis to simulate artificial empathy responses to recognize the user's emotion. A preliminary evaluation was performed to investigate the early-stage user experience after a 7-day simulation trial. The result revealed that having an artificially empathic diet bot for weight loss management is a fun and exciting experience. The use of emoticons, stickers, and GIF images makes the chatbot response more interactive. Moreover, the motivational support and persuasive messaging features enable the bot to express more empathic and engaging responses to the user. In total, there were 1,007 bot responses from 892 user input messages. Of these, 67.38% (601/1,007) of the chatbot-generated responses were accurate to a relevant user request, 21.19% (189/1,007) inaccurate responses to a relevant request, and 10.31% (92/1,007) accurate responses to an irrelevant request. Only 1.12% (10/1,007) of the chatbot does not answer. We present the design of an artificially empathic diet bot as a friendly assistant to help users estimate their calorie intake and calories burned in a more interactive and engaging way. To our knowledge, this is the first chatbot designed with artificial empathy features, and it looks very promising in promoting long-term weight management. More user interactions and further data training and validation enhancement will improve the bot's in-built knowledge base and emotional intelligence base.
Collapse
Affiliation(s)
- Annisa Ristya Rahmanti
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- International Center for Health Information Technology, Taipei Medical University, Taipei, Taiwan
- Department of Health Policy and Management, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Hsuan-Chia Yang
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- International Center for Health Information Technology, Taipei Medical University, Taipei, Taiwan
| | - Bagas Suryo Bintoro
- Department of Health Behavior, Environment, and Social Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Aldilas Achmad Nursetyo
- Center for Health Policy Management, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | | | - Shabbir Syed-Abdul
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- International Center for Health Information Technology, Taipei Medical University, Taipei, Taiwan
| | - Yu-Chuan Jack Li
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- International Center for Health Information Technology, Taipei Medical University, Taipei, Taiwan
- Taipei Medical University Research Center of Cancer Translational Medicine, Taipei, Taiwan
- Department of Dermatology, Wan Fang Hospital, Taipei, Taiwan
- *Correspondence: Yu-Chuan Jack Li
| |
Collapse
|
8
|
Chew HSJ. The Use of Artificial Intelligence-Based Conversational Agents (Chatbots) for Weight Loss: Scoping Review and Practical Recommendations. JMIR Med Inform 2022; 10:e32578. [PMID: 35416791 PMCID: PMC9047740 DOI: 10.2196/32578] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/04/2021] [Accepted: 01/08/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Overweight and obesity have now reached a state of a pandemic despite the clinical and commercial programs available. Artificial intelligence (AI) chatbots have a strong potential in optimizing such programs for weight loss. OBJECTIVE This study aimed to review AI chatbot use cases for weight loss and to identify the essential components for prolonging user engagement. METHODS A scoping review was conducted using the 5-stage framework by Arksey and O'Malley. Articles were searched across nine electronic databases (ACM Digital Library, CINAHL, Cochrane Central, Embase, IEEE Xplore, PsycINFO, PubMed, Scopus, and Web of Science) until July 9, 2021. Gray literature, reference lists, and Google Scholar were also searched. RESULTS A total of 23 studies with 2231 participants were included and evaluated in this review. Most studies (8/23, 35%) focused on using AI chatbots to promote both a healthy diet and exercise, 13% (3/23) of the studies used AI chatbots solely for lifestyle data collection and obesity risk assessment whereas only 4% (1/23) of the studies focused on promoting a combination of a healthy diet, exercise, and stress management. In total, 48% (11/23) of the studies used only text-based AI chatbots, 52% (12/23) operationalized AI chatbots through smartphones, and 39% (9/23) integrated data collected through fitness wearables or Internet of Things appliances. The core functions of AI chatbots were to provide personalized recommendations (20/23, 87%), motivational messages (18/23, 78%), gamification (6/23, 26%), and emotional support (6/23, 26%). Study participants who experienced speech- and augmented reality-based chatbot interactions in addition to text-based chatbot interactions reported higher user engagement because of the convenience of hands-free interactions. Enabling conversations through multiple platforms (eg, SMS text messaging, Slack, Telegram, Signal, WhatsApp, or Facebook Messenger) and devices (eg, laptops, Google Home, and Amazon Alexa) was reported to increase user engagement. The human semblance of chatbots through verbal and nonverbal cues improved user engagement through interactivity and empathy. Other techniques used in text-based chatbots included personally and culturally appropriate colloquial tones and content; emojis that emulate human emotional expressions; positively framed words; citations of credible information sources; personification; validation; and the provision of real-time, fast, and reliable recommendations. Prevailing issues included privacy; accountability; user burden; and interoperability with other databases, third-party applications, social media platforms, devices, and appliances. CONCLUSIONS AI chatbots should be designed to be human-like, personalized, contextualized, immersive, and enjoyable to enhance user experience, engagement, behavior change, and weight loss. These require the integration of health metrics (eg, based on self-reports and wearable trackers), personality and preferences (eg, based on goal achievements), circumstantial behaviors (eg, trigger-based overconsumption), and emotional states (eg, chatbot conversations and wearable stress detectors) to deliver personalized and effective recommendations for weight loss.
Collapse
Affiliation(s)
- Han Shi Jocelyn Chew
- Alice Lee Centre for Nursing Studies, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
9
|
Asensio-Cuesta S, Blanes-Selva V, Conejero A, Portolés M, García-Gómez M. A user-centered chatbot to identify and interconnect individual, social and environmental risk factors related to overweight and obesity. Inform Health Soc Care 2021; 47:38-52. [PMID: 34032537 DOI: 10.1080/17538157.2021.1923501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The objective of this study was to assess the feasibility of using a user-centered chatbotfor collecting linked data to study overweight and obesity causes ina target population. In total 980 people participated in the feasibility study organized in three studies: (1) within a group of university students (88 participants), (2) in a small town (422 participants), and (3) within a university community (470 participants). We gathered self-reported data through the Wakamola chatbot regarding participants diet, physical activity, social network, living area, obesity-associated diseases, and sociodemographic data. For each study, we calculated the mean Body Mass Index (BMI) and number of people in each BMI level. Also, we defined and calculated scores (1-100 scale) regarding global health, BMI, alimentation, physical activity and social network. Moreover, we graphically represented obesity risk for living areas and the social network with nodes colored by BMI. Students group results: Mean BMI 21.37 (SD 2.57) (normal weight), 8 people underweight, 5 overweight, 0 obesity, global health status 78.21, alimentation 63.64, physical activity 65.08 and social 26.54, 3 areas with mean BMI level of obesity, 17 with overweight level. Small town´s study results: Mean BMI 25.66 (SD 4.29) (overweight), 2 people underweight, 63 overweight, 26 obesity, global health status 69.42, alimentation 64.60, physical activity 60.61 and social 1.14, 1 area with mean BMI in normal weight; University´s study results: Mean BMI 23.63 (SD 3.7) (normal weight), 22 people underweight, 86 overweight, 28 obesity, global health status 81.03, alimentation 81.84, physical activity 70.01 and social 1.47, 3 areas in obesity level, 19 in overweight level. Wakamola is a health care chatbot useful to collect relevant data from populations in the risk of overweight and obesity. Besides, the chatbot provides individual self-assessment of BMI and general status regarding the style of living. Moreover, Wakamola connects users in a social network to help the study of O&O´s causes from an individual, social and socio-economic perspective.
Collapse
Affiliation(s)
- Sabina Asensio-Cuesta
- Instituto De Tecnologías De La Información Y Comunicaciones (ITACA), Valencia, Spain
| | - Vicent Blanes-Selva
- Instituto De Tecnologías De La Información Y Comunicaciones (ITACA), Valencia, Spain
| | - Alberto Conejero
- Instituto Universitario De Matemática Pura Y Aplicada, Valencia, Spain
| | - Manuel Portolés
- Instituto Universitario De Matemática Pura Y Aplicada. Universitat Politècnica De València, Valencia, Spain
| | - Miguel García-Gómez
- Instituto Universitario De Tecnologías De La Información Y Comunicaciones, Valencia, Spain
| |
Collapse
|