1
|
Xie BH, Li TT, Ma FT, Li QJ, Xiao QX, Xiong LL, Liu F. Artificial intelligence in anesthesiology: a bibliometric analysis. Perioper Med (Lond) 2024; 13:121. [PMID: 39716340 DOI: 10.1186/s13741-024-00480-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 12/10/2024] [Indexed: 12/25/2024] Open
Abstract
The application of artificial intelligence (AI) in anesthesiology has become increasingly widespread. However, no previous study has analyzed this field from the bibliometric analysis dimension. The objective of this paper was to assess the global research trends in AI in anesthesiology using bibliometric software. Literatures relevant to AI and anesthesiology were retrieved from the Web of Science until 10 April 2024 and were visualized and analyzed using Excel, CiteSpace, and VOSviewer. After screening, 491 studies were included in the final bibliometric analysis. The growth rate of publications, countries, institutions, authors, journals, literature co-citations, and keyword co-occurrences was computed. The number of publications increased annually since 2018, with the most significant contributions from the USA, China, and England. The top 3 institutions were Yuan Ze University, National Taiwan University, and Brunel University London. The top three journals were Anesthesia & Analgesia, BMC Anesthesiology, and the British Journal of Anaesthesia. The researches on the application of AI in predicting hypotension have been extensive and represented a hotspot and frontier. In terms of keyword co-occurrence cluster analysis, keywords were categorized into four clusters: ultrasound-guided regional anesthesia, postoperative pain and airway management, prediction, depth of anesthesia (DoA), and intraoperative drug infusion. This analysis provides a systematic analysis on the literature regarding the AI-related research in the field of anesthesiology, which may help researchers and anesthesiologists better understand the research trend of anesthesia-related AI.
Collapse
Affiliation(s)
- Bi-Hua Xie
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Anesthesiology, The Third People's Hospital of Yibin, Yibin, 644000, Sichuan, China
| | - Ting-Ting Li
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Feng-Ting Ma
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Anesthesiology, The First People's Hospital of Shuangliu District, Chengdu, 610041, Sichuan, China
| | - Qi-Jun Li
- School of Pharmacy, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Qiu-Xia Xiao
- Department of Anesthesiology, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, 563000, Guizhou, China
| | - Liu-Lin Xiong
- Department of Anesthesiology, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, 563000, Guizhou, China.
| | - Fei Liu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
2
|
Fernandez Rojas R, Hirachan N, Brown N, Waddington G, Murtagh L, Seymour B, Goecke R. Multimodal physiological sensing for the assessment of acute pain. FRONTIERS IN PAIN RESEARCH 2023; 4:1150264. [PMID: 37415829 PMCID: PMC10321707 DOI: 10.3389/fpain.2023.1150264] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 05/29/2023] [Indexed: 07/08/2023] Open
Abstract
Pain assessment is a challenging task encountered by clinicians. In clinical settings, patients' self-report is considered the gold standard in pain assessment. However, patients who are unable to self-report pain are at a higher risk of undiagnosed pain. In the present study, we explore the use of multiple sensing technologies to monitor physiological changes that can be used as a proxy for objective measurement of acute pain. Electrodermal activity (EDA), photoplethysmography (PPG), and respiration (RESP) signals were collected from 22 participants under two pain intensities (low and high) and on two different anatomical locations (forearm and hand). Three machine learning models were implemented, including support vector machines (SVM), decision trees (DT), and linear discriminant analysis (LDA) for the identification of pain. Various pain scenarios were investigated, identification of pain (no pain, pain), multiclass (no pain, low pain, high pain), and identification of pain location (forearm, hand). Reference classification results from individual sensors and from all sensors together were obtained. After feature selection, results showed that EDA was the most informative sensor in the three pain conditions, 93.2±8% in identification of pain, 68.9±10% in the multiclass problem, and 56.0±8% for the identification of pain location. These results identify EDA as the superior sensor in our experimental conditions. Future work is required to validate the obtained features to improve its feasibility in more realistic scenarios. Finally, this study proposes EDA as a candidate to design a tool that can assist clinicians in the assessment of acute pain of nonverbal patients.
Collapse
Affiliation(s)
- Raul Fernandez Rojas
- Human-Centred Technology Research Centre, Faculty of Science and Technology, University of Canberra, Canberra, ACT, Australia
| | - Niraj Hirachan
- Human-Centred Technology Research Centre, Faculty of Science and Technology, University of Canberra, Canberra, ACT, Australia
| | - Nicholas Brown
- Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Gordon Waddington
- Australian Institute of Sport, Canberra, ACT, Australia
- University of Canberra Research Institute for Sport and Exercise (UCRISE), University of Canberra, Canberra, ACT, Australia
| | - Luke Murtagh
- Department of Anaesthesia, Pain and Perioperative Medicine, The Canberra Hospital, Canberra, ACT, Australia
| | - Ben Seymour
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, John Radcliffe Hospital, Headington, UK
- Oxford Institute for Biomedical Engineering, University of Oxford, Headington, UK
| | - Roland Goecke
- Human-Centred Technology Research Centre, Faculty of Science and Technology, University of Canberra, Canberra, ACT, Australia
| |
Collapse
|
3
|
Fernandez Rojas R, Brown N, Waddington G, Goecke R. A systematic review of neurophysiological sensing for the assessment of acute pain. NPJ Digit Med 2023; 6:76. [PMID: 37100924 PMCID: PMC10133304 DOI: 10.1038/s41746-023-00810-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 03/30/2023] [Indexed: 04/28/2023] Open
Abstract
Pain is a complex and personal experience that presents diverse measurement challenges. Different sensing technologies can be used as a surrogate measure of pain to overcome these challenges. The objective of this review is to summarise and synthesise the published literature to: (a) identify relevant non-invasive physiological sensing technologies that can be used for the assessment of human pain, (b) describe the analytical tools used in artificial intelligence (AI) to decode pain data collected from sensing technologies, and (c) describe the main implications in the application of these technologies. A literature search was conducted in July 2022 to query PubMed, Web of Sciences, and Scopus. Papers published between January 2013 and July 2022 are considered. Forty-eight studies are included in this literature review. Two main sensing technologies (neurological and physiological) are identified in the literature. The sensing technologies and their modality (unimodal or multimodal) are presented. The literature provided numerous examples of how different analytical tools in AI have been applied to decode pain. This review identifies different non-invasive sensing technologies, their analytical tools, and the implications for their use. There are significant opportunities to leverage multimodal sensing and deep learning to improve accuracy of pain monitoring systems. This review also identifies the need for analyses and datasets that explore the inclusion of neural and physiological information together. Finally, challenges and opportunities for designing better systems for pain assessment are also presented.
Collapse
Affiliation(s)
- Raul Fernandez Rojas
- Human-Centred Technology Research Centre, Faculty of Science and Technology, University of Canberra, Canberra, ACT, Australia.
| | - Nicholas Brown
- Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Gordon Waddington
- Australian Institute of Sport, Canberra, ACT, Australia
- University of Canberra Research Institute for Sport and Exercise (UCRISE), University of Canberra, Canberra, ACT, Australia
| | - Roland Goecke
- Human-Centred Technology Research Centre, Faculty of Science and Technology, University of Canberra, Canberra, ACT, Australia
| |
Collapse
|
4
|
Photoplethysmography temporal marker-based machine learning classifier for anesthesia drug detection. Med Biol Eng Comput 2022; 60:3057-3068. [PMID: 36063352 PMCID: PMC9537122 DOI: 10.1007/s11517-022-02658-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 08/22/2022] [Indexed: 11/15/2022]
Abstract
Anesthesia drug overdose hazards and lack of gold standards in anesthesia monitoring lead to an urgent need for accurate anesthesia drug detection. To investigate the PPG waveform features affected by anesthesia drugs and develop a machine-learning classifier with high anesthesia drug sensitivity. This study used 64 anesthesia and non-anesthesia patient data (32 cases each), extracted from Queensland and MIMIC-II databases, respectively. The key waveform features (total area, rising time, width 75%, 50%, and 25%) were extracted from 16,310 signal recordings (5-s duration). Discriminant analysis, support vector machine (SVM), and K-nearest neighbor (KNN) were evaluated by splitting the dataset into halve training (11 patients, 8570 segments) and halve testing dataset (11 patients, 7740 segments). Significant differences exist between PPG waveform features of anesthesia and non-anesthesia groups (p < 0.05) except total area feature (p > 0.05). The KNN classifier achieved 91.7% (AUC = 0.95) anesthesia detection accuracy with the highest sensitivity (0.88) and specificity (0.90) as compared to other classifiers. Kohen’s kappa also shows almost perfect agreement (0.79) with the KNN classifier. The KNN classifier trained with significant PPG features has the potential to be used as a reliable, non-invasive, and low-cost method for the detection of anesthesia drugs for depth analysis during surgical operations and postoperative monitoring.
Collapse
|
5
|
Shin H. Deep convolutional neural network-based signal quality assessment for photoplethysmogram. Comput Biol Med 2022; 145:105430. [PMID: 35339844 DOI: 10.1016/j.compbiomed.2022.105430] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/18/2022] [Accepted: 02/23/2022] [Indexed: 11/18/2022]
Abstract
Quality assessment of bio-signals is important to prevent clinical misdiagnosis. With the introduction of mobile and wearable health care, it is becoming increasingly important to distinguish available signals from noise. The goal of this study was to develop a signal quality assessment technology for photoplethysmogram (PPG) widely used in wearable healthcare. In this study, we developed and verified a deep neural network (DNN)-based signal quality assessment model using about 1.6 million 5-s segment length PPG big data of about 29 GB from the MIMIC III PPG waveform database. The DNN model was implemented through a 1D convolutional neural network (CNN). The number of CNN layers, number of fully connected nodes, dropout rate, batch size, and learning rate of the model were optimized through Bayesian optimization. As a result, 6 CNN layers, 1,546 fully connected layer nodes, 825 batch size, 0.2 dropout rate, and 0.002 learning rate were needed for an optimal model. Performance metrics of the result of classifying waveform quality into 'Good' and 'Bad', the accuracy, specificity, sensitivity, area under the receiver operating curve, and area under the precision-recall curve were 0.978, 0.948, 0.993, 0.985, 0.980, and 0.969, respectively. Additionally, in the case of simulated real-time application, it was confirmed that the proposed signal quality score tracked the decrease in pulse quality well.
Collapse
Affiliation(s)
- Hangsik Shin
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea.
| |
Collapse
|