1
|
Biondi A, Dursun E, Viana PF, Laiou P, Richardson MP. New wearable and portable EEG modalities in epilepsy: The views of hospital-based healthcare professionals. Epilepsy Behav 2024; 159:109990. [PMID: 39181111 DOI: 10.1016/j.yebeh.2024.109990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/06/2024] [Accepted: 08/06/2024] [Indexed: 08/27/2024]
Abstract
BACKGROUND Novel mobile and portable EEG solutions, designed for short and long-term monitoring of individuals with epilepsy have been developed in recent years but, they are underutilized, lacking full integration into clinical routine. Exploring the opinions of hospital-based healthcare professionals regarding their potential application, technical requirements and value would be crucial for future device development and increase their clinical application. PURPOSE To evaluate professionals' opinions on novel EEG systems, focusing on their potential application in various clinical settings, professionals' interest in non-invasive solutions for ultra-long monitoring of people with epilepsy (PWE) and factors which could increase future use of novel EEG systems. MATERIALS AND METHODS We conducted an online survey where Hospital-based professionals shared opinions on potential advantages, clinical value, and key features of novel wearable EEG systems in five different clinical settings. Additionally, insights were gathered on the need for future research and, the need for additional information about devices from companies and researchers. RESULTS Respondents (n = 40) prioritized high performance, data quality, easy patient mobility, and comfort as crucial features for novel devices. Advantages were highlighted, including more natural settings, reduced application time, earlier epilepsy diagnosis, and decreased support requirements. Novel EEG devices were seen as valuable for epilepsy diagnosis, seizure monitoring, automatic seizure documentation, seizure alarms, and seizure forecasting. Interest in integrating these new systems into clinical practice was high, particularly for supervising drug-resistant epilepsy, reducing SUDEP, and detecting nocturnal seizures. Professionals emphasized the need for more research studies and highlighted the need for increased information from companies and researchers. CONCLUSIONS Professionals underscore specific technical and practical features, along with potential clinical advantages and value of novel EEG devices that could drive their development. While interest in integrating these solutions in clinical practice exists, further validation studies and enhanced communication between researchers, companies, and clinicians are crucial for overcoming potential scepticism and facilitating widespread adoption.
Collapse
Affiliation(s)
- Andrea Biondi
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| | - Eren Dursun
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Pedro F Viana
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | - Petroula Laiou
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Mark P Richardson
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
2
|
van Bohemen SJ, Rogers JM, Alavanja A, Evans A, Young N, Boughton PC, Valderrama JT, Kyme AZ. Safety, feasibility, and acceptability of a novel device to monitor ischaemic stroke patients. J Med Eng Technol 2024; 48:173-185. [PMID: 39400105 DOI: 10.1080/03091902.2024.2409115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/16/2024] [Accepted: 09/22/2024] [Indexed: 10/15/2024]
Abstract
This study assessed the safety, feasibility, and acceptability of a novel device to monitor ischaemic stroke patients. The device captured electroencephalography (EEG) and electrocardiography (ECG) data to compute an ECG-based metric, termed the Electrocardiography Brain Perfusion index (EBPi), which may function as a proxy for cerebral blood flow (CBF). Seventeen ischaemic stroke patients wore the device for nine hours and reported feedback at 1, 3, 6 and 9 h regarding user experience, comfort, and satisfaction (acceptability). Safety was assessed as the number of adverse events reported. Feasibility was assessed as the percentage of uninterrupted EEG/ECG data recorded (data capture efficiency). No adverse events were reported, only minor incidences of discomfort. Overall device comfort (mean ± 1 standard deviation (SD) (range)) (92.5% ± 10.3% (57.0-100%)) and data capture efficiency (mean ± 1 SD (range)) (95.8% ± 6.8% (54.8-100%)) were very high with relatively low variance. The device didn't restrict participants from receiving clinical care and rarely (n = 6) restricted participants from undertaking routine tasks. This study provides a promising evidence base for the deployment of the device in a clinical setting. If clinically validated, EBPi may be able to detect CBF changes to monitor early neurological deterioration and treatment outcomes, thus filling an important gap in current monitoring options.TRIAL REGISTRATION: The study was prospectively registered with the Australian New Zealand Clinical Trials Registry (ACTRN12622000112763).
Collapse
Affiliation(s)
| | - Jeffrey M Rogers
- Department of Clinical Medicine, Macquarie University, Sydney, Australia
- Neurocare Group, Sydney, Australia
| | | | - Andrew Evans
- Department of Aged Care of Stroke, Westmead Hospital, Sydney, Australia
| | - Noel Young
- Imaging, Western Sydney University, Sydney, Australia
| | - Philip C Boughton
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
- Sydney Spine Institute, Sydney, Australia
| | - Joaquin T Valderrama
- Department of Signal Theory, Telematics and Communications, University of Granada, Granada, Spain
- Research Centre for Information and Communications Technologies (CITIC-UGR), University of Granada, Granada, Spain
- Department of Linguistics, Macquarie University, Sydney, Australia
| | - Andre Z Kyme
- School of Biomedical Engineering, The University of Sydney, Sydney, Australia
- Brain and Mind Centre, The University of Sydney, Sydney, Australia
| |
Collapse
|
3
|
van den Hoek TC, van de Ruit M, Terwindt GM, Tolner EA. EEG Changes in Migraine-Can EEG Help to Monitor Attack Susceptibility? Brain Sci 2024; 14:508. [PMID: 38790486 PMCID: PMC11119734 DOI: 10.3390/brainsci14050508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/26/2024] Open
Abstract
Migraine is a highly prevalent brain condition with paroxysmal changes in brain excitability believed to contribute to the initiation of an attack. The attacks and their unpredictability have a major impact on the lives of patients. Clinical management is hampered by a lack of reliable predictors for upcoming attacks, which may help in understanding pathophysiological mechanisms to identify new treatment targets that may be positioned between the acute and preventive possibilities that are currently available. So far, a large range of studies using conventional hospital-based EEG recordings have provided contradictory results, with indications of both cortical hyper- as well as hypo-excitability. These heterogeneous findings may largely be because most studies were cross-sectional in design, providing only a snapshot in time of a patient's brain state without capturing day-to-day fluctuations. The scope of this narrative review is to (i) reflect on current knowledge on EEG changes in the context of migraine, the attack cycle, and underlying pathophysiology; (ii) consider the effects of migraine treatment on EEG features; (iii) outline challenges and opportunities in using EEG for monitoring attack susceptibility; and (iv) discuss future applications of EEG in home-based settings.
Collapse
Affiliation(s)
- Thomas C. van den Hoek
- Department of Neurology, Leiden University Medical Centre, 2333 ZA Leiden, The Netherlands (M.v.d.R.); (G.M.T.)
| | - Mark van de Ruit
- Department of Neurology, Leiden University Medical Centre, 2333 ZA Leiden, The Netherlands (M.v.d.R.); (G.M.T.)
- Department of Biomechanical Engineering, Delft University of Technology, 2628 CD Delft, The Netherlands
| | - Gisela M. Terwindt
- Department of Neurology, Leiden University Medical Centre, 2333 ZA Leiden, The Netherlands (M.v.d.R.); (G.M.T.)
| | - Else A. Tolner
- Department of Neurology, Leiden University Medical Centre, 2333 ZA Leiden, The Netherlands (M.v.d.R.); (G.M.T.)
- Department of Human Genetics, Leiden University Medical Centre, 2300 RC Leiden, The Netherlands
| |
Collapse
|
4
|
Biondi A, Simblett SK, Viana PF, Laiou P, Fiori AMG, Nurse E, Schreuder M, Pal DK, Richardson MP. Feasibility and acceptability of an ultra-long-term at-home EEG monitoring system (EEG@HOME) for people with epilepsy. Epilepsy Behav 2024; 151:109609. [PMID: 38160578 DOI: 10.1016/j.yebeh.2023.109609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND Recent technological advancements offer new ways to monitor and manage epilepsy. The adoption of these devices in routine clinical practice will strongly depend on patient acceptability and usability, with their perspectives being crucial. Previous studies provided feedback from patients, but few explored the experience of them using independently multiple devices independently at home. PURPOSE The study, assessed through a mixed methods design, the direct experiences of people with epilepsy independently using a non-invasive monitoring system (EEG@HOME) for an extended duration of 6 months, at home. We aimed to investigate factors affecting engagement, gather qualitative insights, and provide recommendations for future home epilepsy monitoring systems. MATERIALS AND METHODS Adults with epilepsy independently were trained to use a wearable dry EEG system, a wrist-worn device, and a smartphone app for seizure tracking and behaviour monitoring for 6 months at home. Monthly acceptability questionnaires (PSSUQ, SUS) and semi-structured interviews were conducted to explore participant experience. Adherence with the procedure, acceptability scores and systematic thematic analysis of the interviews, focusing on the experience with the procedure, motivation and benefits and opinion about the procedure were assessed. RESULTS Twelve people with epilepsy took part into the study for an average of 193.8 days (range 61 to 312) with a likelihood of using the system at six months of 83 %. The e-diary and the smartwatch were highly acceptable and preferred to a wearable EEG system (PSSUQ score of 1.9, 1.9, 2.4). Participants showed an acceptable level of adherence with all solutions (Average usage of 63 %, 66 %, 92 %) reporting more difficulties using the EEG twice a day and remembering to complete the daily behavioural questionnaires. Clear information and training, continuous remote support, perceived direct and indirect benefits and the possibility to have a flexible, tailored to daily routine monitoring were defined as key factors to ensure compliance with long-term monitoring systems. CONCLUSIONS EEG@HOME study demonstrated people with epilepsy' interest and ability in active health monitoring using new technologies. Remote training and support enable independent home use of new non-invasive technologies, but to ensure long term acceptability and usability systems will require to be integrated into patients' routines, include healthcare providers, and offer continuous support and personalized feedback.
Collapse
Affiliation(s)
- Andrea Biondi
- Department of Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience (IoPPN), King's College London, London, United Kingdom.
| | - Sara K Simblett
- Department of Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience (IoPPN), King's College London, London, United Kingdom; Department of Psychology, Institute of Psychiatry, Psychology & Neuroscience (IoPPN), King's College London, London, United Kingdom
| | - Pedro F Viana
- Department of Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience (IoPPN), King's College London, London, United Kingdom; Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | - Petroula Laiou
- Department of Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience (IoPPN), King's College London, London, United Kingdom
| | - Anna M G Fiori
- King's College Hospital NHS Foundation Trust, London, United Kingdom
| | - Ewan Nurse
- Seer Medical Inc, Melbourne, VIC, Australia; Department of Medicine, St. Vincent's Hospital Melbourne, The University of Melbourne, Melbourne, VIC, Australia
| | | | - Deb K Pal
- Department of Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience (IoPPN), King's College London, London, United Kingdom
| | - Mark P Richardson
- Department of Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience (IoPPN), King's College London, London, United Kingdom; NIHR Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and King's College London, London, United Kingdom
| |
Collapse
|
5
|
Keikhosrokiani P, Isomursu M, Uusimaa J, Kortelainen J. A sustainable artificial-intelligence-augmented digital care pathway for epilepsy: Automating seizure tracking based on electroencephalogram data using artificial intelligence. Digit Health 2024; 10:20552076241287356. [PMID: 39381810 PMCID: PMC11459578 DOI: 10.1177/20552076241287356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 09/10/2024] [Indexed: 10/10/2024] Open
Abstract
Objective Scalp electroencephalograms (EEGs) are critical for neurological evaluations, particularly in epilepsy, yet they demand specialized expertise that is often lacking in many regions. Artificial intelligence (AI) offers potential solutions to this gap. While existing AI models address certain aspects of EEG analysis, a fully automated system for routine EEG interpretation is required for effective epilepsy management and healthcare professionals' decision-making. This study aims to develop an AI-augmented model for automating EEG seizure tracking, thereby supporting a sustainable digital care pathway for epilepsy (DCPE). The goal is to improve patient monitoring, facilitate collaborative decision-making, ensure timely medication adherence, and promote patient compliance. Method The study proposes an AI-augmented framework using machine learning, focusing on quantitative analysis of EEG data to automate DCPE. A focus group discussion was conducted with healthcare professionals to find the problem of the current digital care pathway and assess the feasibility, usability, and sustainability of the AI-augmented system in the digital care pathway. Results The study found that a combination of random forest with principal component analysis and support vector machines with KBest feature selection achieved high accuracy rates of 96.52% and 95.28%, respectively. Additionally, the convolutional neural networks model outperformed other deep learning algorithms with an accuracy of 97.65%. The focus group discussion revealed that automating the diagnostic process in digital care pathway could reduce the time needed to diagnose epilepsy. However, the sustainability of the AI-integrated framework depends on factors such as technological infrastructure, skilled personnel, training programs, patient digital literacy, financial resources, and regulatory compliance. Conclusion The proposed AI-augmented system could enhance epilepsy management by optimizing seizure tracking accuracy, improving monitoring and timely interventions, facilitating collaborative decision-making, and promoting patient-centered care, thereby making the digital care pathway more sustainable.
Collapse
Affiliation(s)
- Pantea Keikhosrokiani
- Empirical Software Engineering in Software, Systems, and Services, University of Oulu, Oulu, Finland
- Research Unit of Health Sciences and Technology, University of Oulu, Oulu, Finland
| | - Minna Isomursu
- Empirical Software Engineering in Software, Systems, and Services, University of Oulu, Oulu, Finland
- Research Unit of Health Sciences and Technology, University of Oulu, Oulu, Finland
| | - Johanna Uusimaa
- Research Unit of Clinical Medicine and Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland
- Neurocenter, Neurology, Oulu University Hospital, Oulu, Finland
| | - Jukka Kortelainen
- Center for Machine Vision and Signal Analysis, University of Oulu, Oulu, Finland
- Cerenion Ltd, Oulu, Finland
| |
Collapse
|
6
|
Ho R, Carrazana EJ. The history of motion photography to video electroencephalography in the study of functional seizures and related seizure disorders: The first 100 years. Seizure 2023; 112:68-71. [PMID: 37769546 DOI: 10.1016/j.seizure.2023.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 08/29/2023] [Accepted: 09/23/2023] [Indexed: 10/03/2023] Open
Abstract
This historical note highlights pivotal events of technology progressing between the late 19th and the 20th century to capture functional seizures and other related seizure episodes. From Charcot's initial use of photography for his study of hysteria at the Salpêtrière to the development of cinematography by Muybridge and Marey to study motion to the initial use of video electroencephalography (vEEG) through a pairing of cinematography with EEG, and the advent of EEG telemetry to eventually the development of modern epilepsy monitoring unit through the adoption of cameras and an improved long-term monitoring vEEG system.
Collapse
Affiliation(s)
- Richard Ho
- University of Hawai`i, John A. Burns School of Medicine (JABSOM), USA; Hawaii Pacific Neuroscience, Honolulu, HI, USA
| | - Enrique J Carrazana
- University of Hawai`i, John A. Burns School of Medicine (JABSOM), USA; Hawaii Pacific Neuroscience, Honolulu, HI, USA; Neurelis, Inc. San Diego, California, USA.
| |
Collapse
|
7
|
Vilardaga R, Thrul J, DeVito A, Kendzor DE, Sabo P, Khafif TC. Review of strategies to investigate low sample return rates in remote tobacco trials: A call to action for more user-centered design research. ADDICTION NEUROSCIENCE 2023; 7:100090. [PMID: 37424632 PMCID: PMC10327900 DOI: 10.1016/j.addicn.2023.100090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Remote collection of biomarkers of tobacco use in clinical trials poses significant challenges. A recent meta-analysis and scoping review of the smoking cessation literature indicated that sample return rates are low and that new methods are needed to investigate the underlying causes of these low rates. In this paper we conducted a narrative review and heuristic analysis of the different human factors approaches reported to evaluate and/or improve sample return rates among 31 smoking cessation studies recently identified in the literature. We created a heuristic metric (with scores from 0 to 4) to evaluate the level of elaboration or complexity of the user-centered design strategy reported by researchers. Our review of the literature identified five types of challenges typically encountered by researchers (in that order): usability and procedural, technical (device related), sample contamination (e.g., polytobacco), psychosocial factors (e.g., digital divide), and motivational factors. Our review of strategies indicated that 35% of the studies employed user-centered design methods with the remaining studies relying on informal methods. Among the studies that employed user-centered design methods, only 6% reached a level of 3 in our user-centered design heuristic metric. None of the studies reached the highest level of complexity (i.e., 4). This review examined these findings in the context of the larger literature, discussed the need to address the role of health equity factors more directly, and concluded with a call to action to increase the application and reporting of user-centered design strategies in biomarkers research.
Collapse
Affiliation(s)
- Roger Vilardaga
- Access to Behavioral Health for All (ABHA) Laboratory, Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
- Department of Human Centered Design and Engineering, University of Washington, Seattle, Washington, USA
| | - Johannes Thrul
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
- Centre for Alcohol Policy Research, La Trobe University, Melbourne, Australia
| | - Anthony DeVito
- Access to Behavioral Health for All (ABHA) Laboratory, Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Darla E. Kendzor
- The TSET Health Promotion Research Center, Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Patricia Sabo
- Access to Behavioral Health for All (ABHA) Laboratory, Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Tatiana Cohab Khafif
- Access to Behavioral Health for All (ABHA) Laboratory, Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
- Bipolar Disorder Program (PROMAN), Department of Psychiatry, University of São Paulo Medical School, São Paulo, Brazil
| |
Collapse
|
8
|
Shivaraja TR, Remli R, Kamal N, Wan Zaidi WA, Chellappan K. Assessment of a 16-Channel Ambulatory Dry Electrode EEG for Remote Monitoring. SENSORS (BASEL, SWITZERLAND) 2023; 23:3654. [PMID: 37050713 PMCID: PMC10098757 DOI: 10.3390/s23073654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 06/19/2023]
Abstract
Ambulatory EEGs began emerging in the healthcare industry over the years, setting a new norm for long-term monitoring services. The present devices in the market are neither meant for remote monitoring due to their technical complexity nor for meeting clinical setting needs in epilepsy patient monitoring. In this paper, we propose an ambulatory EEG device, OptiEEG, that has low setup complexity, for the remote EEG monitoring of epilepsy patients. OptiEEG's signal quality was compared with a gold standard clinical device, Natus. The experiment between OptiEEG and Natus included three different tests: eye open/close (EOC); hyperventilation (HV); and photic stimulation (PS). Statistical and wavelet analysis of retrieved data were presented when evaluating the performance of OptiEEG. The SNR and PSNR of OptiEEG were slightly lower than Natus, but within an acceptable bound. The standard deviations of MSE for both devices were almost in a similar range for the three tests. The frequency band energy analysis is consistent between the two devices. A rhythmic slowdown of theta and delta was observed in HV, whereas photic driving was observed during PS in both devices. The results validated the performance of OptiEEG as an acceptable EEG device for remote monitoring away from clinical environments.
Collapse
Affiliation(s)
- Theeban Raj Shivaraja
- Department of Electrical, Electronics and System Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Rabani Remli
- Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras 56000, Malaysia
- Hospital Canselor Tuanku Muhriz, Universiti Kebangsaan Malaysia, Cheras 56000, Malaysia
| | - Noorfazila Kamal
- Department of Electrical, Electronics and System Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Wan Asyraf Wan Zaidi
- Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras 56000, Malaysia
- Hospital Canselor Tuanku Muhriz, Universiti Kebangsaan Malaysia, Cheras 56000, Malaysia
| | - Kalaivani Chellappan
- Department of Electrical, Electronics and System Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| |
Collapse
|
9
|
Stredny C, Rotenberg A, Leviton A, Loddenkemper T. Systemic inflammation as a biomarker of seizure propensity and a target for treatment to reduce seizure propensity. Epilepsia Open 2023; 8:221-234. [PMID: 36524286 PMCID: PMC9978091 DOI: 10.1002/epi4.12684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
People with diabetes can wear a device that measures blood glucose and delivers just the amount of insulin needed to return the glucose level to within bounds. Currently, people with epilepsy do not have access to an equivalent wearable device that measures a systemic indicator of an impending seizure and delivers a rapidly acting medication or other intervention (e.g., an electrical stimulus) to terminate or prevent a seizure. Given that seizure susceptibility is reliably increased in systemic inflammatory states, we propose a novel closed-loop device where release of a fast-acting therapy is governed by sensors that quantify the magnitude of systemic inflammation. Here, we review the evidence that patients with epilepsy have raised levels of systemic indicators of inflammation than controls, and that some anti-inflammatory drugs have reduced seizure occurrence in animals and humans. We then consider the options of what might be incorporated into a responsive anti-seizure system.
Collapse
Affiliation(s)
- Coral Stredny
- Division of Epilepsy and Clinical Neurophysiology, Department of NeurologyBoston Children's HospitalBostonMassachusettsUSA
- Department of NeurologyHarvard Medical SchoolBostonMassachusettsUSA
| | - Alexander Rotenberg
- Division of Epilepsy and Clinical Neurophysiology, Department of NeurologyBoston Children's HospitalBostonMassachusettsUSA
- Department of NeurologyHarvard Medical SchoolBostonMassachusettsUSA
| | - Alan Leviton
- Division of Epilepsy and Clinical Neurophysiology, Department of NeurologyBoston Children's HospitalBostonMassachusettsUSA
- Department of NeurologyHarvard Medical SchoolBostonMassachusettsUSA
| | - Tobias Loddenkemper
- Division of Epilepsy and Clinical Neurophysiology, Department of NeurologyBoston Children's HospitalBostonMassachusettsUSA
- Department of NeurologyHarvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
10
|
Mecarelli O, Di Gennaro G, Vigevano F. Unmet needs and perspectives in management of drug resistant focal epilepsy: An Italian study. Epilepsy Behav 2022; 137:108950. [PMID: 36347069 DOI: 10.1016/j.yebeh.2022.108950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 10/04/2022] [Accepted: 10/07/2022] [Indexed: 11/07/2022]
Abstract
This study aimed to evaluate the consensus level between a representative group of Italian neurologists and people with Drug-Resistant Epilepsy (DRE) regarding a series of statements about different aspects involved in the management of epilepsy to identify the unmet needs of the People with Epilepsy (PwE) and the future perspectives for the management of this disease. This observational study was conducted using a classic Delphi technique. A 19-statement questionnaire was administered anonymously through an online platform to a panel of expert clinicians and a panel of PwE, analyzing three main topics of interest: drug resistance, access to care, and PwE's experience. The consensus was achieved on 8 of the 19 statements administered to the panel of medical experts and on 4 of the 14 submitted to the panel of PwE, particularly on the definition of DRE and its consequences on treatment, Quality of Life (QoL), and autonomy of PwE. Most of the items, however, did not reach a consensus and highlighted the lack of a shared univocal view on some topics, such as accessibility to care throughout the country and the role of emerging tools such as telemedicine, narrative medicine, and digital devices. In many cases, the two panels expressed different views on the statements. The results outlined many fields of possible intervention, such as the need for educational initiatives targeted at physicians and PwE - for example, regarding telemedicine, digital devices, and narrative medicine - as well as the spread of better knowledge about epilepsy among the general population, in order to reduce epilepsy stigma. Institutions, moreover, could take a cue from this survey to develop facilities aimed at enhancing PwE's autonomy and promoting more equal access to care throughout the country.
Collapse
Affiliation(s)
- Oriano Mecarelli
- Department of Human Neurosciences, Sapienza University, Rome and Past President of LICE, Italian League Against Epilepsy, Rome, Italy.
| | | | - Federico Vigevano
- Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, Full Member of European Reference Network EpiCARE, Rome, Italy.
| |
Collapse
|
11
|
Biondi A, Santoro V, Viana PF, Laiou P, Pal DK, Bruno E, Richardson MP. Noninvasive mobile EEG as a tool for seizure monitoring and management: A systematic review. Epilepsia 2022; 63:1041-1063. [PMID: 35271736 PMCID: PMC9311406 DOI: 10.1111/epi.17220] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/07/2022] [Accepted: 03/07/2022] [Indexed: 11/30/2022]
Abstract
In the last two decades new noninvasive mobile electroencephalography (EEG) solutions have been developed to overcome limitations of conventional clinical EEG and to improve monitoring of patients with long-term conditions. Despite the availability of mobile innovations, their adoption is still very limited. The aim of this study is to review the current state-of-the-art and highlight the main advantages of adopting noninvasive mobile EEG solutions in clinical trials and research studies of people with epilepsy or suspected seizures. Device characteristics are described, and their evaluation is presented. Two authors independently performed a literature review in accordance with Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. A combination of different digital libraries was used (Embase, MEDLINE, Global Health, PsycINFO and https://clinicaltrials.gov/). Twenty-three full-text, six conference abstracts, and eight webpages were included, where a total of 14 noninvasive mobile solutions were identified. Published studies demonstrated at different levels how EEG recorded via mobile EEG can be used for visual detection of EEG abnormalities and for the application of automatic-detection algorithms with acceptable specificity and sensitivity. When the quality of the signal was compared with scalp EEG, many similarities were found in the background activities and power spectrum. Several studies indicated that the experience of patients and health care providers using mobile EEG was positive in different settings. Ongoing trials are focused mostly on improving seizure-detection accuracy and also on testing and assessing feasibility and acceptability of noninvasive devices in the hospital and at home. This review supports the potential clinical value of noninvasive mobile EEG systems and their advantages in terms of time, technical support, cost, usability, and reliability when applied to seizure detection and management. On the other hand, the limitations of the studies confirmed that future research is needed to provide more evidence regarding feasibility and acceptability in different settings, as well as the data quality and detection accuracy of new noninvasive mobile EEG solutions.
Collapse
Affiliation(s)
- Andrea Biondi
- Department of Basic and Clinical NeuroscienceInstitute of Psychiatry, Psychology and NeuroscienceKing's College LondonLondonUK
| | - Viviana Santoro
- Department of Basic and Clinical NeuroscienceInstitute of Psychiatry, Psychology and NeuroscienceKing's College LondonLondonUK
| | - Pedro F. Viana
- Department of Basic and Clinical NeuroscienceInstitute of Psychiatry, Psychology and NeuroscienceKing's College LondonLondonUK,Faculty of MedicineUniversity of LisbonLisbonPortugal
| | - Petroula Laiou
- Department of Biostatistics and Health InformaticsInstitute of Psychiatry, Psychology and NeuroscienceKing's College LondonLondonUK
| | - Deb K. Pal
- Department of Basic and Clinical NeuroscienceInstitute of Psychiatry, Psychology and NeuroscienceKing's College LondonLondonUK
| | - Elisa Bruno
- Department of Basic and Clinical NeuroscienceInstitute of Psychiatry, Psychology and NeuroscienceKing's College LondonLondonUK
| | - Mark P. Richardson
- Department of Basic and Clinical NeuroscienceInstitute of Psychiatry, Psychology and NeuroscienceKing's College LondonLondonUK
| |
Collapse
|
12
|
Milne-Ives M, Shankar R, McLean B, Duun-Henriksen J, Blaabjerg L, Meinert E. Remote Electroencephalography Monitoring of Epilepsy in Adults: Protocol for a Scoping Review. JMIR Res Protoc 2022; 11:e33812. [PMID: 35212630 PMCID: PMC8917432 DOI: 10.2196/33812] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Electroencephalography (EEG) monitoring is a key tool in diagnosing and determining treatment for people with epilepsy; however, obtaining sufficient high-quality data can be a time-consuming, costly, and inconvenient process for patients and health care providers. Remote EEG monitoring has the potential to improve patient experience, data quality, and accessibility for people with intellectual or developmental disabilities. OBJECTIVE The purpose of this scoping review is to provide an overview of the current research evidence and knowledge gaps regarding the use of remote EEG monitoring interventions for adults with epilepsy. METHODS The PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews) and Population, Intervention, Comparator, Outcome, and Study (PICOS) frameworks will be used to structure the review. Searches will be conducted in 6 databases (PubMed, MEDLINE, Embase, CINAHL, Web of Science, and ClinicalTrials.gov) for articles published in English that evaluate at least one out-of-hospital EEG monitoring intervention or device for adults with epilepsy. A descriptive analysis will be conducted to summarize the results; key themes and gaps in the literature will be discussed. RESULTS Results will be included in the scoping review, which will be submitted for publication by April 2022. CONCLUSIONS This scoping review will summarize the state of the field of remote EEG monitoring interventions for adults with epilepsy and provide an overview of the strengths, weaknesses, and gaps in the research. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID) PRR1-10.2196/33812.
Collapse
Affiliation(s)
- Madison Milne-Ives
- Centre for Health Technology, University of Plymouth, Plymouth, United Kingdom
| | - Rohit Shankar
- Peninsula Medical School, Faculty of Health, University of Plymouth, Plymouth, United Kingdom
- Cornwall Partnership NHS Foundation Trust, Bodmin, United Kingdom
| | - Brendan McLean
- Royal Cornwall Hospitals NHS Trust, Truro, United Kingdom
| | - Jonas Duun-Henriksen
- UNEEG medical A/S, Alleroed, Denmark
- Department of Basic & Clinical Neuroscience, King's College London, London, United Kingdom
| | | | - Edward Meinert
- Centre for Health Technology, University of Plymouth, Plymouth, United Kingdom
- Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, United States
- Department of Primary Care and Public Health, School of Public Health, Imperial College London, London, United Kingdom
| |
Collapse
|
13
|
Cannard C, Wahbeh H, Delorme A. Electroencephalography Correlates of Well-Being Using a Low-Cost Wearable System. Front Hum Neurosci 2021; 15:745135. [PMID: 35002651 PMCID: PMC8740323 DOI: 10.3389/fnhum.2021.745135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 11/15/2021] [Indexed: 12/02/2022] Open
Abstract
Electroencephalography (EEG) alpha asymmetry is thought to reflect crucial brain processes underlying executive control, motivation, and affect. It has been widely used in psychopathology and, more recently, in novel neuromodulation studies. However, inconsistencies remain in the field due to the lack of consensus in methodological approaches employed and the recurrent use of small samples. Wearable technologies ease the collection of large and diversified EEG datasets that better reflect the general population, allow longitudinal monitoring of individuals, and facilitate real-world experience sampling. We tested the feasibility of using a low-cost wearable headset to collect a relatively large EEG database (N = 230, 22-80 years old, 64.3% female), and an open-source automatic method to preprocess it. We then examined associations between well-being levels and the alpha center of gravity (CoG) as well as trait EEG asymmetries, in the frontal and temporoparietal (TP) areas. Robust linear regression models did not reveal an association between well-being and alpha (8-13 Hz) asymmetry in the frontal regions, nor with the CoG. However, well-being was associated with alpha asymmetry in the TP areas (i.e., corresponding to relatively less left than right TP cortical activity as well-being levels increased). This effect was driven by oscillatory activity in lower alpha frequencies (8-10.5 Hz), reinforcing the importance of dissociating sub-components of the alpha band when investigating alpha asymmetries. Age was correlated with both well-being and alpha asymmetry scores, but gender was not. Finally, EEG asymmetries in the other frequency bands were not associated with well-being, supporting the specific role of alpha asymmetries with the brain mechanisms underlying well-being levels. Interpretations, limitations, and recommendations for future studies are discussed. This paper presents novel methodological, experimental, and theoretical findings that help advance human neurophysiological monitoring techniques using wearable neurotechnologies and increase the feasibility of their implementation into real-world applications.
Collapse
Affiliation(s)
- Cédric Cannard
- Centre de Recherche Cerveau et Cognition (CerCo), Centre National de la Recherche Scientifique (CNRS), Paul Sabatier University, Toulouse, France
- Institute of Noetic Sciences (IONS), Petaluma, CA, United States
| | - Helané Wahbeh
- Institute of Noetic Sciences (IONS), Petaluma, CA, United States
| | - Arnaud Delorme
- Centre de Recherche Cerveau et Cognition (CerCo), Centre National de la Recherche Scientifique (CNRS), Paul Sabatier University, Toulouse, France
- Institute of Noetic Sciences (IONS), Petaluma, CA, United States
- Swartz Center for Computational Neuroscience (SCCN), Institute of Neural Computation (INC), University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
14
|
Nielsen JM, Rades D, Kjaer TW. Wearable electroencephalography for ultra-long-term seizure monitoring: a systematic review and future prospects. Expert Rev Med Devices 2021; 18:57-67. [PMID: 34836477 DOI: 10.1080/17434440.2021.2012152] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION : Wearable electroencephalography (EEG) for objective seizure counting might transform the clinical management of epilepsy. Non-EEG modalities have been validated for the detection of convulsive seizures, but there is still an unmet need for the detection of non-convulsive seizures. AREAS COVERED : The main objective of this systematic review was to explore the current status on wearable surface- and subcutaneous EEG for long-term seizure monitoring in epilepsy. We included 17 studies and evaluated the progress on the field, including device specifications, intended populations, and main results on the published studies including diagnostic accuracy measures. Furthermore, we examine the hurdles for widespread clinical implementation. This systematic review and expert opinion both consults the PRISMA guidelines and reflects on the future perspectives of this emerging field. EXPERT OPINION : Wearable EEG for long-term seizure monitoring is an emerging field, with plenty of proposed devices and proof-of-concept clinical validation studies. The possible implications of these devices are immense including objective seizure counting and possibly forecasting. However, the true clinical value of the devices, including effects on patient important outcomes and clinical decision making is yet to be unveiled and large-scale clinical validation trials are called for.
Collapse
Affiliation(s)
- Jonas Munch Nielsen
- Department of Neurology, Zealand University Hospital, Region Sjælland. Vestermarksvej 11, 4000 Roskilde, Denmark.,Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Dirk Rades
- Department of Radiation Oncology, University of Lübeck, Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Troels Wesenberg Kjaer
- Department of Neurology, Zealand University Hospital, Region Sjælland. Vestermarksvej 11, 4000 Roskilde, Denmark.,Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| |
Collapse
|
15
|
Pal Attia T, Crepeau D, Kremen V, Nasseri M, Guragain H, Steele SW, Sladky V, Nejedly P, Mivalt F, Herron JA, Stead M, Denison T, Worrell GA, Brinkmann BH. Epilepsy Personal Assistant Device-A Mobile Platform for Brain State, Dense Behavioral and Physiology Tracking and Controlling Adaptive Stimulation. Front Neurol 2021; 12:704170. [PMID: 34393981 PMCID: PMC8358117 DOI: 10.3389/fneur.2021.704170] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 06/21/2021] [Indexed: 12/04/2022] Open
Abstract
Epilepsy is one of the most common neurological disorders, and it affects almost 1% of the population worldwide. Many people living with epilepsy continue to have seizures despite anti-epileptic medication therapy, surgical treatments, and neuromodulation therapy. The unpredictability of seizures is one of the most disabling aspects of epilepsy. Furthermore, epilepsy is associated with sleep, cognitive, and psychiatric comorbidities, which significantly impact the quality of life. Seizure predictions could potentially be used to adjust neuromodulation therapy to prevent the onset of a seizure and empower patients to avoid sensitive activities during high-risk periods. Long-term objective data is needed to provide a clearer view of brain electrical activity and an objective measure of the efficacy of therapeutic measures for optimal epilepsy care. While neuromodulation devices offer the potential for acquiring long-term data, available devices provide very little information regarding brain activity and therapy effectiveness. Also, seizure diaries kept by patients or caregivers are subjective and have been shown to be unreliable, in particular for patients with memory-impairing seizures. This paper describes the design, architecture, and development of the Mayo Epilepsy Personal Assistant Device (EPAD). The EPAD has bi-directional connectivity to the implanted investigational Medtronic Summit RC+STM device to implement intracranial EEG and physiological monitoring, processing, and control of the overall system and wearable devices streaming physiological time-series signals. In order to mitigate risk and comply with regulatory requirements, we developed a Quality Management System (QMS) to define the development process of the EPAD system, including Risk Analysis, Verification, Validation, and protocol mitigations. Extensive verification and validation testing were performed on thirteen canines and benchtop systems. The system is now under a first-in-human trial as part of the US FDA Investigational Device Exemption given in 2018 to study modulated responsive and predictive stimulation using the Mayo EPAD system and investigational Medtronic Summit RC+STM in ten patients with non-resectable dominant or bilateral mesial temporal lobe epilepsy. The EPAD system coupled with an implanted device capable of EEG telemetry represents a next-generation solution to optimizing neuromodulation therapy.
Collapse
Affiliation(s)
- Tal Pal Attia
- Bioelectronics Neurophysiology and Engineering Laboratory, Department of Neurology, Mayo Clinic, Rochester, MN, United States
| | - Daniel Crepeau
- Bioelectronics Neurophysiology and Engineering Laboratory, Department of Neurology, Mayo Clinic, Rochester, MN, United States
| | - Vaclav Kremen
- Bioelectronics Neurophysiology and Engineering Laboratory, Department of Neurology, Mayo Clinic, Rochester, MN, United States
- Cognitive Systems and Neurosciences, Czech Institute of Informatics, Robotics and Cybernetics, Czech Technical University in Prague, Prague, Czechia
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| | - Mona Nasseri
- Bioelectronics Neurophysiology and Engineering Laboratory, Department of Neurology, Mayo Clinic, Rochester, MN, United States
- School of Engineering, University of North Florida, Jacksonville, FL, United States
| | - Hari Guragain
- Bioelectronics Neurophysiology and Engineering Laboratory, Department of Neurology, Mayo Clinic, Rochester, MN, United States
| | - Steven W. Steele
- Division of Engineering, Mayo Clinic, Rochester, MN, United States
| | - Vladimir Sladky
- Bioelectronics Neurophysiology and Engineering Laboratory, Department of Neurology, Mayo Clinic, Rochester, MN, United States
- Faculty of Biomedical Engineering, Czech Technical University in Prague, Kladno, Czechia
| | - Petr Nejedly
- Bioelectronics Neurophysiology and Engineering Laboratory, Department of Neurology, Mayo Clinic, Rochester, MN, United States
| | - Filip Mivalt
- Bioelectronics Neurophysiology and Engineering Laboratory, Department of Neurology, Mayo Clinic, Rochester, MN, United States
| | - Jeffrey A. Herron
- Department of Neurological Surgery, University of Washington, Seattle, WA, United States
| | - Matt Stead
- Bioelectronics Neurophysiology and Engineering Laboratory, Department of Neurology, Mayo Clinic, Rochester, MN, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| | - Timothy Denison
- Engineering Sciences and Clinical Neurosciences, Oxford University, Oxford, United Kingdom
| | - Gregory A. Worrell
- Bioelectronics Neurophysiology and Engineering Laboratory, Department of Neurology, Mayo Clinic, Rochester, MN, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| | - Benjamin H. Brinkmann
- Bioelectronics Neurophysiology and Engineering Laboratory, Department of Neurology, Mayo Clinic, Rochester, MN, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|