1
|
Ghanem S, Moraleja M, Gravesande D, Rooney J. Integrating health equity in artificial intelligence for public health in Canada: a rapid narrative review. Front Public Health 2025; 13:1524616. [PMID: 40171421 PMCID: PMC11958991 DOI: 10.3389/fpubh.2025.1524616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 01/29/2025] [Indexed: 04/03/2025] Open
Abstract
Introduction The application of artificial intelligence (AI) in public health is rapidly evolving, offering promising advancements in various public health settings across Canada. AI has the potential to enhance the effectiveness, precision, decision-making, and scalability of public health initiatives. However, to leverage AI in public health without exacerbating inequities, health equity considerations must be addressed. This rapid narrative review aims to synthesize health equity considerations related to AI application in public health. Methods A rapid narrative review methodology was used to identify and synthesize literature on health equity considerations for AI application in public health. After conducting title/abstract and full-text screening of articles, and consensus decision on study inclusion, the data extraction process proceeded using an extraction template. Data synthesis included the identification of challenges and opportunities for strengthening health equity in AI application for public health. Results The review included 54 peer-review articles and grey literature sources. Several health equity considerations for applying AI in public health were identified, including gaps in AI epistemology, algorithmic bias, accessibility of AI technologies, ethical and privacy concerns, unrepresentative training datasets, lack of transparency and interpretability of AI models, and challenges in scaling technical skills. Conclusion While AI has the potential to advance public health in Canada, addressing equity is critical to preventing inequities. Opportunities to strengthen health equity in AI include implementing diverse AI frameworks, ensuring human oversight, using advanced modeling techniques to mitigate biases, fostering intersectoral collaboration for equitable AI development, and standardizing ethical and privacy guidelines to enhance AI governance.
Collapse
|
2
|
Grouin C, Grabar N. Year 2023 in Biomedical Natural Language Processing: a Tribute to Large Language Models and Generative AI. Yearb Med Inform 2024; 33:241-248. [PMID: 40199311 PMCID: PMC12020626 DOI: 10.1055/s-0044-1800751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025] Open
Abstract
OBJECTIVES This synopsis gives insights into scientific publications from 2023 in Natural Language Processing for the biomedical domain. We present the process we followed to identify candidates for NLP's best papers and the two best papers of this year. We also analyze the current trends in the 2023 publications. METHODS We queried two bibliographic databases (Medline and the ACL anthology) and refined the outputs through automatic scoring. We then manually shortlisted publications to review and selected candidate papers through an adjudication process. External reviewers assessed the interest of the 13 selected candidates. At last, the section editors chose the best NLP papers. RESULTS We collected 2,148 papers published in 2023, of which two were the best and selected as part of this NLP synopsis. Both address language models and propose solutions for data augmenta-tion, domain-specific model adaptation, and model distillation. Work is done on social media con-tent and electronic health records, using deep learning approaches such as ChatGPT and large lan-guage models. CONCLUSION Trends from 2023 cover classical NLP tasks (information extraction, text categoriza-tion, sentiment analysis), existing topics from several years (medical education), mainstream applications (Chatbots, generative approaches), and specific issues (cancer, COVID-19, mental health). Specifically for COVID-19, current researches deal with post-COVID-19 conditions, and they explore the understanding of how this pandemic has been managed and welcomed by populations. In addition, due to language models, a few works have been done to process languages other than English, especially using language portability approaches.
Collapse
Affiliation(s)
- Cyril Grouin
- Université Paris Saclay, CNRS, LISN, 91400 Orsay, France
| | - Natalia Grabar
- UMR8163 STL, CNRS, Université de Lille, Domaine du Pont-de-bois, 59653 Villeneuve-d'Ascq cedex, France
| |
Collapse
|
3
|
Laymouna M, Ma Y, Lessard D, Schuster T, Engler K, Lebouché B. Roles, Users, Benefits, and Limitations of Chatbots in Health Care: Rapid Review. J Med Internet Res 2024; 26:e56930. [PMID: 39042446 PMCID: PMC11303905 DOI: 10.2196/56930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/07/2024] [Accepted: 04/12/2024] [Indexed: 07/24/2024] Open
Abstract
BACKGROUND Chatbots, or conversational agents, have emerged as significant tools in health care, driven by advancements in artificial intelligence and digital technology. These programs are designed to simulate human conversations, addressing various health care needs. However, no comprehensive synthesis of health care chatbots' roles, users, benefits, and limitations is available to inform future research and application in the field. OBJECTIVE This review aims to describe health care chatbots' characteristics, focusing on their diverse roles in the health care pathway, user groups, benefits, and limitations. METHODS A rapid review of published literature from 2017 to 2023 was performed with a search strategy developed in collaboration with a health sciences librarian and implemented in the MEDLINE and Embase databases. Primary research studies reporting on chatbot roles or benefits in health care were included. Two reviewers dual-screened the search results. Extracted data on chatbot roles, users, benefits, and limitations were subjected to content analysis. RESULTS The review categorized chatbot roles into 2 themes: delivery of remote health services, including patient support, care management, education, skills building, and health behavior promotion, and provision of administrative assistance to health care providers. User groups spanned across patients with chronic conditions as well as patients with cancer; individuals focused on lifestyle improvements; and various demographic groups such as women, families, and older adults. Professionals and students in health care also emerged as significant users, alongside groups seeking mental health support, behavioral change, and educational enhancement. The benefits of health care chatbots were also classified into 2 themes: improvement of health care quality and efficiency and cost-effectiveness in health care delivery. The identified limitations encompassed ethical challenges, medicolegal and safety concerns, technical difficulties, user experience issues, and societal and economic impacts. CONCLUSIONS Health care chatbots offer a wide spectrum of applications, potentially impacting various aspects of health care. While they are promising tools for improving health care efficiency and quality, their integration into the health care system must be approached with consideration of their limitations to ensure optimal, safe, and equitable use.
Collapse
Affiliation(s)
- Moustafa Laymouna
- Department of Family Medicine, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
- Centre for Outcomes Research and Evaluation, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of McGill University Health Centre, Montreal, QC, Canada
| | - Yuanchao Ma
- Centre for Outcomes Research and Evaluation, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of McGill University Health Centre, Montreal, QC, Canada
- Chronic and Viral Illness Service, Division of Infectious Disease, Department of Medicine, McGill University Health Centre, Montreal, QC, Canada
- Department of Biomedical Engineering, Polytechnique Montréal, Montreal, QC, Canada
| | - David Lessard
- Centre for Outcomes Research and Evaluation, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of McGill University Health Centre, Montreal, QC, Canada
- Chronic and Viral Illness Service, Division of Infectious Disease, Department of Medicine, McGill University Health Centre, Montreal, QC, Canada
| | - Tibor Schuster
- Department of Family Medicine, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - Kim Engler
- Centre for Outcomes Research and Evaluation, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of McGill University Health Centre, Montreal, QC, Canada
- Chronic and Viral Illness Service, Division of Infectious Disease, Department of Medicine, McGill University Health Centre, Montreal, QC, Canada
| | - Bertrand Lebouché
- Department of Family Medicine, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
- Centre for Outcomes Research and Evaluation, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of McGill University Health Centre, Montreal, QC, Canada
- Chronic and Viral Illness Service, Division of Infectious Disease, Department of Medicine, McGill University Health Centre, Montreal, QC, Canada
| |
Collapse
|
4
|
Cung M, Sosa B, Yang HS, McDonald MM, Matthews BG, Vlug AG, Imel EA, Wein MN, Stein EM, Greenblatt MB. The performance of artificial intelligence chatbot large language models to address skeletal biology and bone health queries. J Bone Miner Res 2024; 39:106-115. [PMID: 38477743 PMCID: PMC11184616 DOI: 10.1093/jbmr/zjad007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/30/2023] [Accepted: 11/14/2023] [Indexed: 03/14/2024]
Abstract
Artificial intelligence (AI) chatbots utilizing large language models (LLMs) have recently garnered significant interest due to their ability to generate humanlike responses to user inquiries in an interactive dialog format. While these models are being increasingly utilized to obtain medical information by patients, scientific and medical providers, and trainees to address biomedical questions, their performance may vary from field to field. The opportunities and risks these chatbots pose to the widespread understanding of skeletal health and science are unknown. Here we assess the performance of 3 high-profile LLM chatbots, Chat Generative Pre-Trained Transformer (ChatGPT) 4.0, BingAI, and Bard, to address 30 questions in 3 categories: basic and translational skeletal biology, clinical practitioner management of skeletal disorders, and patient queries to assess the accuracy and quality of the responses. Thirty questions in each of these categories were posed, and responses were independently graded for their degree of accuracy by four reviewers. While each of the chatbots was often able to provide relevant information about skeletal disorders, the quality and relevance of these responses varied widely, and ChatGPT 4.0 had the highest overall median score in each of the categories. Each of these chatbots displayed distinct limitations that included inconsistent, incomplete, or irrelevant responses, inappropriate utilization of lay sources in a professional context, a failure to take patient demographics or clinical context into account when providing recommendations, and an inability to consistently identify areas of uncertainty in the relevant literature. Careful consideration of both the opportunities and risks of current AI chatbots is needed to formulate guidelines for best practices for their use as source of information about skeletal health and biology.
Collapse
Affiliation(s)
- Michelle Cung
- Department of pathology and laboratory medicine, Weill Cornell Medical College, New York, NY
| | - Branden Sosa
- Department of pathology and laboratory medicine, Weill Cornell Medical College, New York, NY
| | - He S Yang
- Department of pathology and laboratory medicine, Weill Cornell Medical College, New York, NY
| | - Michelle M. McDonald
- Skeletal Diseases Program, The Garvan Institute of Medical Research, Darlinghurst, Australia
- St Vincent’s Clinical Campus School of Clinical Medicine, University of New South Wales, Kensington, Australia
- School of Medicine Science, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Brya G. Matthews
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
- Center for Regenerative Medicine and Skeletal Development, School of Dental Medicine, UConn Health, Farmington, CT, United States
| | - Annegreet G. Vlug
- Center for Bone Quality, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Erik A. Imel
- Indiana Center for Musculoskeletal Health, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Marc N. Wein
- Endocrine Unit, Massachusetts General Hospital, Boston, MA
| | - Emily Margaret Stein
- Division of Endocrinology, Hospital for Special Surgery, New York, NY; Metabolic Bone Service, Hospital for Special Surgery
- Research Division, Hospital for Special Surgery, New York, NY
| | - Matthew B. Greenblatt
- Department of pathology and laboratory medicine, Weill Cornell Medical College, New York, NY
- Research Division, Hospital for Special Surgery, New York, NY
| |
Collapse
|
5
|
Ashique S, Mishra N, Mohanto S, Garg A, Taghizadeh-Hesary F, Gowda BJ, Chellappan DK. Application of artificial intelligence (AI) to control COVID-19 pandemic: Current status and future prospects. Heliyon 2024; 10:e25754. [PMID: 38370192 PMCID: PMC10869876 DOI: 10.1016/j.heliyon.2024.e25754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 01/25/2024] [Accepted: 02/01/2024] [Indexed: 02/20/2024] Open
Abstract
The impact of the coronavirus disease 2019 (COVID-19) pandemic on the everyday livelihood of people has been monumental and unparalleled. Although the pandemic has vastly affected the global healthcare system, it has also been a platform to promote and develop pioneering applications based on autonomic artificial intelligence (AI) technology with therapeutic significance in combating the pandemic. Artificial intelligence has successfully demonstrated that it can reduce the probability of human-to-human infectivity of the virus through evaluation, analysis, and triangulation of existing data on the infectivity and spread of the virus. This review talks about the applications and significance of modern robotic and automated systems that may assist in spreading a pandemic. In addition, this study discusses intelligent wearable devices and how they could be helpful throughout the COVID-19 pandemic.
Collapse
Affiliation(s)
- Sumel Ashique
- Department of Pharmaceutical Sciences, Bengal College of Pharmaceutical Sciences & Research, Durgapur, 713212, West Bengal, India
| | - Neeraj Mishra
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Gwalior, 474005, Madhya Pradesh, India
| | - Sourav Mohanto
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, 575018, India
| | - Ashish Garg
- Guru Ramdas Khalsa Institute of Science and Technology, Pharmacy, Jabalpur, M.P, 483001, India
| | - Farzad Taghizadeh-Hesary
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Clinical Oncology Department, Iran University of Medical Sciences, Tehran, Iran
| | - B.H. Jaswanth Gowda
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, 575018, India
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, Belfast, BT9 7BL, UK
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur, 57000, Malaysia
| |
Collapse
|
6
|
Chin H, Song H, Baek G, Shin M, Jung C, Cha M, Choi J, Cha C. The Potential of Chatbots for Emotional Support and Promoting Mental Well-Being in Different Cultures: Mixed Methods Study. J Med Internet Res 2023; 25:e51712. [PMID: 37862063 PMCID: PMC10625083 DOI: 10.2196/51712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/22/2023] [Accepted: 09/29/2023] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND Artificial intelligence chatbot research has focused on technical advances in natural language processing and validating the effectiveness of human-machine conversations in specific settings. However, real-world chat data remain proprietary and unexplored despite their growing popularity, and new analyses of chatbot uses and their effects on mitigating negative moods are urgently needed. OBJECTIVE In this study, we investigated whether and how artificial intelligence chatbots facilitate the expression of user emotions, specifically sadness and depression. We also examined cultural differences in the expression of depressive moods among users in Western and Eastern countries. METHODS This study used SimSimi, a global open-domain social chatbot, to analyze 152,783 conversation utterances containing the terms "depress" and "sad" in 3 Western countries (Canada, the United Kingdom, and the United States) and 5 Eastern countries (Indonesia, India, Malaysia, the Philippines, and Thailand). Study 1 reports new findings on the cultural differences in how people talk about depression and sadness to chatbots based on Linguistic Inquiry and Word Count and n-gram analyses. In study 2, we classified chat conversations into predefined topics using semisupervised classification techniques to better understand the types of depressive moods prevalent in chats. We then identified the distinguishing features of chat-based depressive discourse data and the disparity between Eastern and Western users. RESULTS Our data revealed intriguing cultural differences. Chatbot users in Eastern countries indicated stronger emotions about depression than users in Western countries (positive: P<.001; negative: P=.01); for example, Eastern users used more words associated with sadness (P=.01). However, Western users were more likely to share vulnerable topics such as mental health (P<.001), and this group also had a greater tendency to discuss sensitive topics such as swear words (P<.001) and death (P<.001). In addition, when talking to chatbots, people expressed their depressive moods differently than on other platforms. Users were more open to expressing emotional vulnerability related to depressive or sad moods to chatbots (74,045/148,590, 49.83%) than on social media (149/1978, 7.53%). Chatbot conversations tended not to broach topics that require social support from others, such as seeking advice on daily life difficulties, unlike on social media. However, chatbot users acted in anticipation of conversational agents that exhibit active listening skills and foster a safe space where they can openly share emotional states such as sadness or depression. CONCLUSIONS The findings highlight the potential of chatbot-assisted mental health support, emphasizing the importance of continued technical and policy-wise efforts to improve chatbot interactions for those in need of emotional assistance. Our data indicate the possibility of chatbots providing helpful information about depressive moods, especially for users who have difficulty communicating emotions to other humans.
Collapse
Affiliation(s)
- Hyojin Chin
- Data Science Group, Institute for Basic Science, Daejeon, Republic of Korea
| | - Hyeonho Song
- School of Computing, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Gumhee Baek
- College of Nursing and Ewha Research Institute of Nursing Science, System Health & Engineering Major in Graduate School, Ewha Womans University, Seoul, Republic of Korea
| | - Mingi Shin
- School of Computing, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Chani Jung
- School of Computing, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Meeyoung Cha
- Data Science Group, Institute for Basic Science, Daejeon, Republic of Korea
- School of Computing, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | | | - Chiyoung Cha
- College of Nursing and Ewha Research Institute of Nursing Science, System Health & Engineering Major in Graduate School, Ewha Womans University, Seoul, Republic of Korea
| |
Collapse
|
7
|
Siglen E, Vetti HH, Augestad M, Steen VM, Lunde Å, Bjorvatn C. Evaluation of the Rosa Chatbot Providing Genetic Information to Patients at Risk of Hereditary Breast and Ovarian Cancer: Qualitative Interview Study. J Med Internet Res 2023; 25:e46571. [PMID: 37656502 PMCID: PMC10504626 DOI: 10.2196/46571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 06/27/2023] [Accepted: 07/20/2023] [Indexed: 09/02/2023] Open
Abstract
BACKGROUND Genetic testing has become an integrated part of health care for patients with breast or ovarian cancer, and the increasing demand for genetic testing is accompanied by an increasing need for easy access to reliable genetic information for patients. Therefore, we developed a chatbot app (Rosa) that is able to perform humanlike digital conversations about genetic BRCA testing. OBJECTIVE Before implementing this new information service in daily clinical practice, we wanted to explore 2 aspects of chatbot use: the perceived utility and trust in chatbot technology among healthy patients at risk of hereditary cancer and how interaction with a chatbot regarding sensitive information about hereditary cancer influences patients. METHODS Overall, 175 healthy individuals at risk of hereditary breast and ovarian cancer were invited to test the chatbot, Rosa, before and after genetic counseling. To secure a varied sample, participants were recruited from all cancer genetic clinics in Norway, and the selection was based on age, gender, and risk of having a BRCA pathogenic variant. Among the 34.9% (61/175) of participants who consented for individual interview, a selected subgroup (16/61, 26%) shared their experience through in-depth interviews via video. The semistructured interviews covered the following topics: usability, perceived usefulness, trust in the information received via the chatbot, how Rosa influenced the user, and thoughts about future use of digital tools in health care. The transcripts were analyzed using the stepwise-deductive inductive approach. RESULTS The overall finding was that the chatbot was very welcomed by the participants. They appreciated the 24/7 availability wherever they were and the possibility to use it to prepare for genetic counseling and to repeat and ask questions about what had been said afterward. As Rosa was created by health care professionals, they also valued the information they received as being medically correct. Rosa was referred to as being better than Google because it provided specific and reliable answers to their questions. The findings were summed up in 3 concepts: "Anytime, anywhere"; "In addition, not instead"; and "Trustworthy and true." All participants (16/16) denied increased worry after reading about genetic testing and hereditary breast and ovarian cancer in Rosa. CONCLUSIONS Our results indicate that a genetic information chatbot has the potential to contribute to easy access to uniform information for patients at risk of hereditary breast and ovarian cancer, regardless of geographical location. The 24/7 availability of quality-assured information, tailored to the specific situation, had a reassuring effect on our participants. It was consistent across concepts that Rosa was a tool for preparation and repetition; however, none of the participants (0/16) supported that Rosa could replace genetic counseling if hereditary cancer was confirmed. This indicates that a chatbot can be a well-suited digital companion to genetic counseling.
Collapse
Affiliation(s)
- Elen Siglen
- Western Norway Familial Cancer Center, Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
- Faculty of Health Studies, VID Specialized University, Bergen, Norway
| | - Hildegunn Høberg Vetti
- Western Norway Familial Cancer Center, Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
- Faculty of Health Studies, VID Specialized University, Bergen, Norway
| | - Mirjam Augestad
- Faculty of Health Studies, VID Specialized University, Bergen, Norway
| | - Vidar M Steen
- Western Norway Familial Cancer Center, Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Åshild Lunde
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| | - Cathrine Bjorvatn
- Western Norway Familial Cancer Center, Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
- Faculty of Health Studies, VID Specialized University, Bergen, Norway
| |
Collapse
|
8
|
Giansanti D. The Chatbots Are Invading Us: A Map Point on the Evolution, Applications, Opportunities, and Emerging Problems in the Health Domain. Life (Basel) 2023; 13:life13051130. [PMID: 37240775 DOI: 10.3390/life13051130] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
The inclusion of chatbots is potentially disruptive in society, introducing opportunities, but also important implications that need to be addressed on different domains. The aim of this study is to examine chatbots in-depth, by mapping out their technological evolution, current usage, and potential applications, opportunities, and emerging problems within the health domain. The study examined three points of view. The first point of view traces the technological evolution of chatbots. The second point of view reports the fields of application of the chatbots, giving space to the expectations of use and the expected benefits from a cross-domain point of view, also affecting the health domain. The third and main point of view is that of the analysis of the state of use of chatbots in the health domain based on the scientific literature represented by systematic reviews. The overview identified the topics of greatest interest with the opportunities. The analysis revealed the need for initiatives that simultaneously evaluate multiple domains all together in a synergistic way. Concerted efforts to achieve this are recommended. It is also believed to monitor both the process of osmosis between other sectors and the health domain, as well as the chatbots that can create psychological and behavioural problems with an impact on the health domain.
Collapse
|
9
|
Chow JCL, Sanders L, Li K. Impact of ChatGPT on medical chatbots as a disruptive technology. Front Artif Intell 2023; 6:1166014. [PMID: 37091303 PMCID: PMC10113434 DOI: 10.3389/frai.2023.1166014] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/23/2023] [Indexed: 04/09/2023] Open
Affiliation(s)
- James C. L. Chow
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
- *Correspondence: James C. L. Chow
| | - Leslie Sanders
- Department of Humanities, York University, Toronto, ON, Canada
| | - Kay Li
- Department of English, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
10
|
Danesh F, Dastani M. Text classification technique for discovering country-based publications from international COVID-19 publications. Digit Health 2023; 9:20552076231185674. [PMID: 37426592 PMCID: PMC10328158 DOI: 10.1177/20552076231185674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 06/15/2023] [Indexed: 07/11/2023] Open
Abstract
Objective The significant increase in the number of COVID-19 publications, on the one hand, and the strategic importance of this subject area for research and treatment systems in the health field, on the other hand, reveals the need for text-mining research more than ever. The main objective of the present paper is to discover country-based publications from international COVID-19 publications with text classification techniques. Methods The present paper is applied research that has been performed using text-mining techniques such as clustering and text classification. The statistical population is all COVID-19 publications from PubMed Central® (PMC), extracted from November 2019 to June 2021. Latent Dirichlet allocation (LDA) was used for clustering, and support vector machine (SVM), scikit-learn library, and Python programming language were used for text classification. Text classification was applied to discover the consistency of Iranian and international topics. Results The findings showed that seven topics were extracted using the LDA algorithm for international and Iranian publications on COVID-19. Moreover, the COVID-19 publications show the largest share in the subject area of "Social and Technology in COVID-19" at the international (April 2021) and national (February 2021) levels with 50.61% and 39.44%, respectively. The highest rate of publications at international and national levels was in April 2021 and February 2021, respectively. Conclusion One of the most important results of this study was discovering a common trend and consistency of Iranian and international publications on COVID-19. Accordingly, in the topic category "Covid-19 Proteins: Vaccine and Antibody Response," Iranian publications have a common publishing and research trend with international ones.
Collapse
Affiliation(s)
| | - Meisam Dastani
- Statistics and Information Technology Department, Gonabad University of Medical Science, Gonabad, Iran
| |
Collapse
|