1
|
Hong M, Kang RR, Yang JH, Rhee SJ, Lee H, Kim YG, Lee K, Kim H, Lee YS, Youn T, Kim SH, Ahn YM. Comprehensive Symptom Prediction in Inpatients With Acute Psychiatric Disorders Using Wearable-Based Deep Learning Models: Development and Validation Study. J Med Internet Res 2024; 26:e65994. [PMID: 39536315 PMCID: PMC11602769 DOI: 10.2196/65994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/20/2024] [Accepted: 10/20/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Assessing the complex and multifaceted symptoms of patients with acute psychiatric disorders proves to be significantly challenging for clinicians. Moreover, the staff in acute psychiatric wards face high work intensity and risk of burnout, yet research on the introduction of digital technologies in this field remains limited. The combination of continuous and objective wearable sensor data acquired from patients with deep learning techniques holds the potential to overcome the limitations of traditional psychiatric assessments and support clinical decision-making. OBJECTIVE This study aimed to develop and validate wearable-based deep learning models to comprehensively predict patient symptoms across various acute psychiatric wards in South Korea. METHODS Participants diagnosed with schizophrenia and mood disorders were recruited from 4 wards across 3 hospitals and prospectively observed using wrist-worn wearable devices during their admission period. Trained raters conducted periodic clinical assessments using the Brief Psychiatric Rating Scale, Hamilton Anxiety Rating Scale, Montgomery-Asberg Depression Rating Scale, and Young Mania Rating Scale. Wearable devices collected patients' heart rate, accelerometer, and location data. Deep learning models were developed to predict psychiatric symptoms using 2 distinct approaches: single symptoms individually (Single) and multiple symptoms simultaneously via multitask learning (Multi). These models further addressed 2 problems: within-subject relative changes (Deterioration) and between-subject absolute severity (Score). Four configurations were consequently developed for each scale: Single-Deterioration, Single-Score, Multi-Deterioration, and Multi-Score. Data of participants recruited before May 1, 2024, underwent cross-validation, and the resulting fine-tuned models were then externally validated using data from the remaining participants. RESULTS Of the 244 enrolled participants, 191 (78.3%; 3954 person-days) were included in the final analysis after applying the exclusion criteria. The demographic and clinical characteristics of participants, as well as the distribution of sensor data, showed considerable variations across wards and hospitals. Data of 139 participants were used for cross-validation, while data of 52 participants were used for external validation. The Single-Deterioration and Multi-Deterioration models achieved similar overall accuracy values of 0.75 in cross-validation and 0.73 in external validation. The Single-Score and Multi-Score models attained overall R² values of 0.78 and 0.83 in cross-validation and 0.66 and 0.74 in external validation, respectively, with the Multi-Score model demonstrating superior performance. CONCLUSIONS Deep learning models based on wearable sensor data effectively classified symptom deterioration and predicted symptom severity in participants in acute psychiatric wards. Despite lower computational costs, Multi models demonstrated equivalent or superior performance than Single models, suggesting that multitask learning is a promising approach for comprehensive symptom prediction. However, significant variations were observed across wards, which presents a key challenge for developing clinical decision support systems in acute psychiatric wards. Future studies may benefit from recurring local validation or federated learning to address generalizability issues.
Collapse
Affiliation(s)
- Minseok Hong
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ri-Ra Kang
- Department of IT Convergence Engineering, Gachon University, Seongnam-si, Republic of Korea
| | - Jeong Hun Yang
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Psychiatry, Chungnam National University Sejong Hospital, Sejong, Republic of Korea
| | - Sang Jin Rhee
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
| | - Hyunju Lee
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
| | - Yong-Gyom Kim
- Department of IT Convergence Engineering, Gachon University, Seongnam-si, Republic of Korea
| | - KangYoon Lee
- Department of IT Convergence Engineering, Gachon University, Seongnam-si, Republic of Korea
- Department of Computer Engineering, Gachon University, Seongnam-si, Republic of Korea
| | - HongGi Kim
- Healthconnect Co. Ltd., Seoul, Republic of Korea
| | - Yu Sang Lee
- Department of Psychiatry, Yong-In Mental Hospital, Yongin-si, Republic of Korea
| | - Tak Youn
- Department of Psychiatry and Electroconvulsive Therapy Center, Dongguk University International Hospital, Goyang-si, Republic of Korea
- Institute of Buddhism and Medicine, Dongguk University, Seoul, Republic of Korea
| | - Se Hyun Kim
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yong Min Ahn
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
- Institute of Human Behavioral Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea
| |
Collapse
|
2
|
Das KP, Gavade P. A review on the efficacy of artificial intelligence for managing anxiety disorders. Front Artif Intell 2024; 7:1435895. [PMID: 39479229 PMCID: PMC11523650 DOI: 10.3389/frai.2024.1435895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/16/2024] [Indexed: 11/02/2024] Open
Abstract
Anxiety disorders are psychiatric conditions characterized by prolonged and generalized anxiety experienced by individuals in response to various events or situations. At present, anxiety disorders are regarded as the most widespread psychiatric disorders globally. Medication and different types of psychotherapies are employed as the primary therapeutic modalities in clinical practice for the treatment of anxiety disorders. However, combining these two approaches is known to yield more significant benefits than medication alone. Nevertheless, there is a lack of resources and a limited availability of psychotherapy options in underdeveloped areas. Psychotherapy methods encompass relaxation techniques, controlled breathing exercises, visualization exercises, controlled exposure exercises, and cognitive interventions such as challenging negative thoughts. These methods are vital in the treatment of anxiety disorders, but executing them proficiently can be demanding. Moreover, individuals with distinct anxiety disorders are prescribed medications that may cause withdrawal symptoms in some instances. Additionally, there is inadequate availability of face-to-face psychotherapy and a restricted capacity to predict and monitor the health, behavioral, and environmental aspects of individuals with anxiety disorders during the initial phases. In recent years, there has been notable progress in developing and utilizing artificial intelligence (AI) based applications and environments to improve the precision and sensitivity of diagnosing and treating various categories of anxiety disorders. As a result, this study aims to establish the efficacy of AI-enabled environments in addressing the existing challenges in managing anxiety disorders, reducing reliance on medication, and investigating the potential advantages, issues, and opportunities of integrating AI-assisted healthcare for anxiety disorders and enabling personalized therapy.
Collapse
Affiliation(s)
- K. P. Das
- Department of Computer Science, Christ University, Bengaluru, India
| | - P. Gavade
- Independent Practitioner, San Francisco, CA, United States
| |
Collapse
|
3
|
Abd-Alrazaq A, Alajlani M, Ahmad R, AlSaad R, Aziz S, Ahmed A, Alsahli M, Damseh R, Sheikh J. The Performance of Wearable AI in Detecting Stress Among Students: Systematic Review and Meta-Analysis. J Med Internet Res 2024; 26:e52622. [PMID: 38294846 PMCID: PMC10867751 DOI: 10.2196/52622] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/24/2023] [Accepted: 12/19/2023] [Indexed: 02/01/2024] Open
Abstract
BACKGROUND Students usually encounter stress throughout their academic path. Ongoing stressors may lead to chronic stress, adversely affecting their physical and mental well-being. Thus, early detection and monitoring of stress among students are crucial. Wearable artificial intelligence (AI) has emerged as a valuable tool for this purpose. It offers an objective, noninvasive, nonobtrusive, automated approach to continuously monitor biomarkers in real time, thereby addressing the limitations of traditional approaches such as self-reported questionnaires. OBJECTIVE This systematic review and meta-analysis aim to assess the performance of wearable AI in detecting and predicting stress among students. METHODS Search sources in this review included 7 electronic databases (MEDLINE, Embase, PsycINFO, ACM Digital Library, Scopus, IEEE Xplore, and Google Scholar). We also checked the reference lists of the included studies and checked studies that cited the included studies. The search was conducted on June 12, 2023. This review included research articles centered on the creation or application of AI algorithms for the detection or prediction of stress among students using data from wearable devices. In total, 2 independent reviewers performed study selection, data extraction, and risk-of-bias assessment. The Quality Assessment of Diagnostic Accuracy Studies-Revised tool was adapted and used to examine the risk of bias in the included studies. Evidence synthesis was conducted using narrative and statistical techniques. RESULTS This review included 5.8% (19/327) of the studies retrieved from the search sources. A meta-analysis of 37 accuracy estimates derived from 32% (6/19) of the studies revealed a pooled mean accuracy of 0.856 (95% CI 0.70-0.93). Subgroup analyses demonstrated that the accuracy of wearable AI was moderated by the number of stress classes (P=.02), type of wearable device (P=.049), location of the wearable device (P=.02), data set size (P=.009), and ground truth (P=.001). The average estimates of sensitivity, specificity, and F1-score were 0.755 (SD 0.181), 0.744 (SD 0.147), and 0.759 (SD 0.139), respectively. CONCLUSIONS Wearable AI shows promise in detecting student stress but currently has suboptimal performance. The results of the subgroup analyses should be carefully interpreted given that many of these findings may be due to other confounding factors rather than the underlying grouping characteristics. Thus, wearable AI should be used alongside other assessments (eg, clinical questionnaires) until further evidence is available. Future research should explore the ability of wearable AI to differentiate types of stress, distinguish stress from other mental health issues, predict future occurrences of stress, consider factors such as the placement of the wearable device and the methods used to assess the ground truth, and report detailed results to facilitate the conduct of meta-analyses. TRIAL REGISTRATION PROSPERO CRD42023435051; http://tinyurl.com/3fzb5rnp.
Collapse
Affiliation(s)
- Alaa Abd-Alrazaq
- AI Center for Precision Health, Weill Cornell Medicine-Qatar, Qatar Foundation, Doha, Qatar
| | - Mohannad Alajlani
- Institute of Digital Healthcare, WMG, University of Warwick, Warwick, United Kingdom
| | - Reham Ahmad
- Institute of Digital Healthcare, WMG, University of Warwick, Warwick, United Kingdom
| | - Rawan AlSaad
- AI Center for Precision Health, Weill Cornell Medicine-Qatar, Qatar Foundation, Doha, Qatar
| | - Sarah Aziz
- AI Center for Precision Health, Weill Cornell Medicine-Qatar, Qatar Foundation, Doha, Qatar
| | - Arfan Ahmed
- AI Center for Precision Health, Weill Cornell Medicine-Qatar, Qatar Foundation, Doha, Qatar
| | - Mohammed Alsahli
- Health Informatics Department, College of Health Science, Saudi Electronic University, Riyadh, Saudi Arabia
| | - Rafat Damseh
- Department of Computer Science and Software Engineering, United Arab Emirates University, Al Ain, Abu Dhabi, United Arab Emirates
| | - Javaid Sheikh
- AI Center for Precision Health, Weill Cornell Medicine-Qatar, Qatar Foundation, Doha, Qatar
| |
Collapse
|
4
|
Bekbolatova M, Mayer J, Ong CW, Toma M. Transformative Potential of AI in Healthcare: Definitions, Applications, and Navigating the Ethical Landscape and Public Perspectives. Healthcare (Basel) 2024; 12:125. [PMID: 38255014 PMCID: PMC10815906 DOI: 10.3390/healthcare12020125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/27/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024] Open
Abstract
Artificial intelligence (AI) has emerged as a crucial tool in healthcare with the primary aim of improving patient outcomes and optimizing healthcare delivery. By harnessing machine learning algorithms, natural language processing, and computer vision, AI enables the analysis of complex medical data. The integration of AI into healthcare systems aims to support clinicians, personalize patient care, and enhance population health, all while addressing the challenges posed by rising costs and limited resources. As a subdivision of computer science, AI focuses on the development of advanced algorithms capable of performing complex tasks that were once reliant on human intelligence. The ultimate goal is to achieve human-level performance with improved efficiency and accuracy in problem-solving and task execution, thereby reducing the need for human intervention. Various industries, including engineering, media/entertainment, finance, and education, have already reaped significant benefits by incorporating AI systems into their operations. Notably, the healthcare sector has witnessed rapid growth in the utilization of AI technology. Nevertheless, there remains untapped potential for AI to truly revolutionize the industry. It is important to note that despite concerns about job displacement, AI in healthcare should not be viewed as a threat to human workers. Instead, AI systems are designed to augment and support healthcare professionals, freeing up their time to focus on more complex and critical tasks. By automating routine and repetitive tasks, AI can alleviate the burden on healthcare professionals, allowing them to dedicate more attention to patient care and meaningful interactions. However, legal and ethical challenges must be addressed when embracing AI technology in medicine, alongside comprehensive public education to ensure widespread acceptance.
Collapse
Affiliation(s)
- Molly Bekbolatova
- Department of Osteopathic Manipulative Medicine, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY 11568, USA
| | - Jonathan Mayer
- Department of Osteopathic Manipulative Medicine, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY 11568, USA
| | - Chi Wei Ong
- School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
| | - Milan Toma
- Department of Osteopathic Manipulative Medicine, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY 11568, USA
| |
Collapse
|