1
|
Rushton AJ, Nteliopoulos G, Shaw JA, Coombes RC. A Review of Circulating Tumour Cell Enrichment Technologies. Cancers (Basel) 2021; 13:cancers13050970. [PMID: 33652649 PMCID: PMC7956528 DOI: 10.3390/cancers13050970] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary Circulating tumour cells (CTCs) are cancer cells shed into the bloodstream from tumours and their analysis can provide important insights into cancer detection and monitoring, with the potential to direct personalised therapies for the patient. These CTCs are rare in the blood, which makes their detection and enrichment challenging and to date, only one technology (the CellSearch) has gained FDA approval for determining the prognosis of patients with advanced breast, prostate and colorectal cancers. Here, we review the wide range of enrichment technologies available to isolate CTCs from other blood components and highlight the important characteristics that new technologies should possess for routine clinical use. Abstract Circulating tumour cells (CTCs) are the precursor cells for the formation of metastatic disease. With a simple blood draw, liquid biopsies enable the non-invasive sampling of CTCs from the blood, which have the potential to provide important insights into cancer detection and monitoring. Since gaining FDA approval in 2004, the CellSearch system has been used to determine the prognosis of patients with metastatic breast, prostate and colorectal cancers. This utilises the cell surface marker Epithelial Cell Adhesion Molecule (EpCAM), to enrich CTCs, and many other technologies have adopted this approach. More recently, the role of mesenchymal-like CTCs in metastasis formation has come to light. It has been suggested that these cells are more aggressive metastatic precursors than their epithelial counterparts; however, mesenchymal CTCs remain undetected by EpCAM-based enrichment methods. This has prompted the development of a variety of ‘label free’ enrichment technologies, which exploit the unique physical properties of CTCs (such as size and deformability) compared to other blood components. Here, we review a wide range of both immunocapture and label free CTC enrichment technologies, summarising the most significant advantages and disadvantages of each. We also highlight the important characteristics that technologies should possess for routine clinical use, since future developments could have important clinical implications, with the potential to direct personalised therapies for patients with cancer.
Collapse
Affiliation(s)
- Amelia J. Rushton
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, London W12 0NN, UK; (G.N.); (R.C.C.)
- Correspondence:
| | - Georgios Nteliopoulos
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, London W12 0NN, UK; (G.N.); (R.C.C.)
| | - Jacqueline A. Shaw
- Leicester Cancer Research Centre, University of Leicester, Leicester LE2 7LX, UK;
| | - R. Charles Coombes
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, London W12 0NN, UK; (G.N.); (R.C.C.)
| |
Collapse
|
2
|
Mamdouhi T, Twomey JD, McSweeney KM, Zhang B. Fugitives on the run: circulating tumor cells (CTCs) in metastatic diseases. Cancer Metastasis Rev 2020; 38:297-305. [PMID: 31053984 PMCID: PMC6647404 DOI: 10.1007/s10555-019-09795-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The presence of circulating tumor cells (CTCs) in the bloodstream signals the existence of a tumor and denotes risk of metastatic spread. CTCs can be isolated and analyzed to monitor cancer progression and therapeutic response. However, CTC isolation devices have shown considerable variation in detection rates, limiting their use as a routine diagnostic and monitoring tool. In this review, we discuss recent advances in CTC detection methodologies and associated clinical studies. We provide perspective on the future direction of CTC isolation and molecular characterization towards developing reliable biomarkers that monitor disease progression or therapeutic response.
Collapse
Affiliation(s)
- Tania Mamdouhi
- Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Julianne D Twomey
- Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - K Melodi McSweeney
- Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Baolin Zhang
- Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, 20993, USA.
| |
Collapse
|
3
|
Costa C, Dávila-Ibáñez AB. Methodology for the Isolation and Analysis of CTCs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1220:45-59. [PMID: 32304079 DOI: 10.1007/978-3-030-35805-1_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The majority of deaths related to breast cancer are caused by metastasis. Understanding the process of metastasis is key to achieve a reduction on breast cancer mortality. Currently, liquid biopsies are gaining attention in this regard. Circulating tumor cells (CTCs), an important component of liquid biopsies, are cells shed from primary tumor that disseminate to blood circulation being responsible of distal metastasis. Hence, the study CTCs is a promising alternative to monitor the progress of metastasis disease and can be used for early diagnosis of cancers as well as for earlier assessment of cancer recurrence and therapy efficacy. Despite their clinical interest, CTC analysis is not recommended by oncology guidelines so far. The main reason is that there is no gold standard technology for CTCs isolation and most of the current technologies are not yet validated for clinical use. In this chapter we will focus on the most relevant technologies for CTC isolation based on their properties and depending on whether it is a positive or negative selection. We also describe each technology based on its potential use and its relevance in breast cancer. The chapter also contains a future perspective including the challenges and requirements of CTC detection.
Collapse
Affiliation(s)
- Clotilde Costa
- Roche-Chus Joint Unit, Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago de Compostela, Santiago de Compostela, Spain. .,Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain.
| | - Ana B Dávila-Ibáñez
- Roche-Chus Joint Unit, Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago de Compostela, Santiago de Compostela, Spain.
| |
Collapse
|
4
|
Moreno F, Gayarre J, López-Tarruella S, del Monte-Millán M, Picornell AC, Álvarez E, García-Saenz JÁ, Jerez Y, Márquez-Rodas I, Echavarría I, Palomero M, Bueno C, Aragón Bodí AM, Muñoz MS, González del Val R, Bueno O, Cebollero-Presmanes M, Ocaña I, Arias A, Romero P, Massarrah T, Ramos-Medina R, Martín M. Concordance of Genomic Variants in Matched Primary Breast Cancer, Metastatic Tumor, and Circulating Tumor DNA: The MIRROR Study. JCO Precis Oncol 2019; 3:1-16. [DOI: 10.1200/po.18.00263] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
PURPOSE Genetic heterogeneity between primary tumors and their metastatic lesions has been documented in several breast cancer studies. However, the selection of therapy for patients with metastatic breast cancer and the search for biomarkers for targeted therapy are often based on findings from the primary tumor, mainly because of the difficulty of distant metastasis core biopsies. New methods for monitoring genomic changes in metastatic breast cancer are needed (ie, circulating tumor DNA [ctDNA] genomic analysis). The objectives of this study were to assess the concordance of genomic variants between primary and metastatic tumor tissues and the sensitivity of plasma ctDNA analysis to identify variants detected in tumor biopsies. PATIENTS AND METHODS Next-generation sequencing technology was used to assess the genomic mutation profile of a panel of 54 cancer genes in matched samples of primary tumor, metastatic tumor, and plasma from 40 patients with metastatic breast cancer. RESULTS Using Ion Torrent technology (ThermoFisher Scientific, Waltham, MA), we identified 110 variants that were common to the primary and metastatic tumors. ctDNA analysis had a sensitivity of 0.972 in detecting variants present in both primary and metastatic tissues. In addition, we identified 13 variants in metastatic tissue and ctDNA not present in primary tumor. CONCLUSION We identified genomic variants present in metastatic biopsies and plasma ctDNA that were not present in the primary tumor. Deep sequencing of plasma ctDNA detected most DNA variants previously identified in matched primary and metastatic tissues. ctDNA might aid in therapy selection and in the search for biomarkers for drug development in metastatic breast cancer.
Collapse
Affiliation(s)
- Fernando Moreno
- Centro de Investigación Biomédica en Red Cáncer, Madrid, Spain
| | - Javier Gayarre
- Centro de Investigación Biomédica en Red Cáncer, Madrid, Spain
| | - Sara López-Tarruella
- Centro de Investigación Biomédica en Red Cáncer, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Universidad Complutense, Madrid, Spain
| | | | | | - Enrique Álvarez
- Centro de Investigación Biomédica en Red Cáncer, Madrid, Spain
| | | | - Yolanda Jerez
- Centro de Investigación Biomédica en Red Cáncer, Madrid, Spain
| | | | | | | | | | | | | | | | - Oscar Bueno
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | | | | | - Ainhoa Arias
- Centro de Investigación Biomédica en Red Cáncer, Madrid, Spain
| | - Paula Romero
- Centro de Investigación Biomédica en Red Cáncer, Madrid, Spain
| | | | | | - Miguel Martín
- Centro de Investigación Biomédica en Red Cáncer, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Universidad Complutense, Madrid, Spain
| |
Collapse
|
5
|
Tellez-Gabriel M, Cochonneau D, Cadé M, Jubellin C, Heymann MF, Heymann D. Circulating Tumor Cell-Derived Pre-Clinical Models for Personalized Medicine. Cancers (Basel) 2018; 11:cancers11010019. [PMID: 30586936 PMCID: PMC6356998 DOI: 10.3390/cancers11010019] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 12/17/2018] [Accepted: 12/20/2018] [Indexed: 12/19/2022] Open
Abstract
The main cause of death from cancer is associated with the development of metastases, resulting from the inability of current therapies to cure patients at metastatic stages. Generating preclinical models to better characterize the evolution of the disease is thus of utmost importance, in order to implement effective new cancer biomarkers and therapies. Circulating Tumor Cells (CTCs) are good candidates for generating preclinical models, making it possible to follow up the spatial and temporal heterogeneity of tumor tissues. This method is a non-invasive liquid biopsy that can be obtained at any stage of the disease. It partially summarizes the molecular heterogeneity of the corresponding tumors at a given time. Here, we discuss the CTC-derived models that have been generated so far, from simplified 2D cultures to the most complex CTC-derived explants (CDX models). We highlight the challenges and strengths of these preclinical tools, as well as some of the recent studies published using these models.
Collapse
Affiliation(s)
- Marta Tellez-Gabriel
- RNA and Molecular Pathology Research Group, Department of Medical Biology, The Artic University of Norway, N-9037 Tromsø, Norway.
| | - Denis Cochonneau
- LabCT, Institut de Cancérologie de l'Ouest, CRCINA, Université d'Angers, 44805 Saint Herblain CEDEX, France.
| | - Marie Cadé
- INSERM, European Associated Laboratory "Sarcoma Research Unit", University of Nantes, 44035 Nantes, France.
| | - Camille Jubellin
- INSERM, European Associated Laboratory "Sarcoma Research Unit", University of Nantes, 44035 Nantes, France.
| | - Marie-Françoise Heymann
- LabCT, Institut de Cancérologie de l'Ouest, CRCINA, Université d'Angers, 44805 Saint Herblain CEDEX, France.
| | - Dominique Heymann
- LabCT, Institut de Cancérologie de l'Ouest, CRCINA, Université d'Angers, 44805 Saint Herblain CEDEX, France.
- INSERM, European Associated Laboratory "Sarcoma Research Unit", University of Nantes, 44035 Nantes, France.
- Department of Oncology & Metabolism, The Medical School, Beech Hill Road, Sheffield S10 2RX, UK.
| |
Collapse
|
6
|
Lu JL, Liang ZY. Circulating free DNA in the era of precision oncology: Pre- and post-analytical concerns. Chronic Dis Transl Med 2016; 2:223-230. [PMID: 29063046 PMCID: PMC5643833 DOI: 10.1016/j.cdtm.2016.12.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Indexed: 02/06/2023] Open
Abstract
Cancer treatment has entered the era of precision medicine, where knowledge of a patient's genetic profile is used to facilitate early diagnosis, drug selection, prognosis, prediction of drug responsiveness, the onset of secondary resistance, and relapse. Circulating free DNA (cfDNA) has emerged as an ideal source of genetic information for cancer patients, and numerous studies have explored its validity in various clinical applications. However, clinical implementation of cfDNA-based tests has been slow. In this review, we addressed some of the pre- and post-analytical issues regarding cfDNA tests. First, we summarized the characteristics of cfDNA and reviewed the methods used to identify tumor-derived cfDNA from the pool of total cfDNA. Second, we described the procedures used to extract cfDNA, which have a great impact on representativeness and yield. Finally, we discussed our thoughts on the validation of cfDNA-based tests and the reporting of test results amid drastic limitations.
Collapse
Affiliation(s)
| | - Zhi-Yong Liang
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|