1
|
Gomes T, Song Y, Brede DA, Xie L, Gutzkow KB, Salbu B, Tollefsen KE. Gamma radiation induces dose-dependent oxidative stress and transcriptional alterations in the freshwater crustacean Daphnia magna. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 628-629:206-216. [PMID: 29432932 DOI: 10.1016/j.scitotenv.2018.02.039] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 02/03/2018] [Accepted: 02/03/2018] [Indexed: 06/08/2023]
Abstract
Among aquatic organisms, invertebrate species such as the freshwater crustacean Daphnia magna are believed to be sensitive to gamma radiation, although information on responses at the individual, biochemical and molecular level is scarce. Following gamma radiation exposure, biological effects are attributed to the formation of free radicals, formation of reactive oxygen species (ROS) and subsequently oxidative damage to lipids, proteins and DNA in exposed organisms. Thus, in the present study, effects and modes of action (MoA) have been investigated in D. magna exposed to gamma radiation (dose rates: 0.41, 1.1, 4.3, 10.7, 42.9 and 106 mGy/h) after short-term exposure (24 and 48 h). Several individual, cellular and molecular endpoints were addressed, such as ROS formation, lipid peroxidation, DNA damage and global transcriptional changes. The results showed that oxidative stress is one of the main toxic effects in gamma radiation exposed D. magna, mediated by the dose-dependent increase in ROS formation and consequently oxidative damage to lipids and DNA over time. Global transcriptional analysis verified oxidative stress as one of the main MoA of gamma radiation at high dose rates, and identified a number of additional MoAs that may be of toxicological relevance. The present study confirmed that acute exposure to gamma radiation caused a range of cellular and molecular effects in D. magna exposed to intermediate dose rates, and highlights the need for assessing effects at longer and more environmentally relevant exposure durations in future studies.
Collapse
Affiliation(s)
- Tânia Gomes
- Norwegian Institute for Water Research (NIVA), Section of Ecotoxicology and Risk Assessment, Gaustadalléen 21, N-0349 Oslo, Norway; Centre for Environmental Radioactivity, Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway.
| | - You Song
- Norwegian Institute for Water Research (NIVA), Section of Ecotoxicology and Risk Assessment, Gaustadalléen 21, N-0349 Oslo, Norway; Centre for Environmental Radioactivity, Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway
| | - Dag A Brede
- Centre for Environmental Radioactivity, Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway; Faculty of Environmental Science and Nature Resource Management, Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway
| | - Li Xie
- Norwegian Institute for Water Research (NIVA), Section of Ecotoxicology and Risk Assessment, Gaustadalléen 21, N-0349 Oslo, Norway; Centre for Environmental Radioactivity, Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway
| | - Kristine B Gutzkow
- Department of Molecular Biology, Norwegian Institute of Public Health, Oslo 0403, Norway
| | - Brit Salbu
- Centre for Environmental Radioactivity, Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway; Faculty of Environmental Science and Nature Resource Management, Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway
| | - Knut Erik Tollefsen
- Norwegian Institute for Water Research (NIVA), Section of Ecotoxicology and Risk Assessment, Gaustadalléen 21, N-0349 Oslo, Norway; Centre for Environmental Radioactivity, Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway; Faculty of Environmental Science and Nature Resource Management, Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway
| |
Collapse
|
2
|
Graupner A, Eide DM, Instanes C, Andersen JM, Brede DA, Dertinger SD, Lind OC, Brandt-Kjelsen A, Bjerke H, Salbu B, Oughton D, Brunborg G, Olsen AK. Gamma radiation at a human relevant low dose rate is genotoxic in mice. Sci Rep 2016; 6:32977. [PMID: 27596356 PMCID: PMC5011728 DOI: 10.1038/srep32977] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 08/10/2016] [Indexed: 12/16/2022] Open
Abstract
Even today, 70 years after Hiroshima and accidents like in Chernobyl and Fukushima, we still have limited knowledge about the health effects of low dose rate (LDR) radiation. Despite their human relevance after occupational and accidental exposure, only few animal studies on the genotoxic effects of chronic LDR radiation have been performed. Selenium (Se) is involved in oxidative stress defence, protecting DNA and other biomolecules from reactive oxygen species (ROS). It is hypothesised that Se deficiency, as it occurs in several parts of the world, may aggravate harmful effects of ROS-inducing stressors such as ionising radiation. We performed a study in the newly established LDR-facility Figaro on the combined effects of Se deprivation and LDR γ exposure in DNA repair knockout mice (Ogg1−/−) and control animals (Ogg1+/−). Genotoxic effects were seen after continuous radiation (1.4 mGy/h) for 45 days. Chromosomal damage (micronucleus), phenotypic mutations (Pig-a gene mutation of RBCCD24−) and DNA lesions (single strand breaks/alkali labile sites) were significantly increased in blood cells of irradiated animals, covering three types of genotoxic activity. This study demonstrates that chronic LDR γ radiation is genotoxic in an exposure scenario realistic for humans, supporting the hypothesis that even LDR γ radiation may induce cancer.
Collapse
Affiliation(s)
- Anne Graupner
- Department of Chemicals and Radiation, Norwegian Institute of Public Health, Oslo 0403, Norway.,Centre for Environmental Radioactivity (CoE CERAD), Ås 1432, Norway
| | - Dag M Eide
- Department of Chemicals and Radiation, Norwegian Institute of Public Health, Oslo 0403, Norway.,Centre for Environmental Radioactivity (CoE CERAD), Ås 1432, Norway
| | - Christine Instanes
- Department of Chemicals and Radiation, Norwegian Institute of Public Health, Oslo 0403, Norway.,Centre for Environmental Radioactivity (CoE CERAD), Ås 1432, Norway
| | - Jill M Andersen
- Department of Chemicals and Radiation, Norwegian Institute of Public Health, Oslo 0403, Norway.,Centre for Environmental Radioactivity (CoE CERAD), Ås 1432, Norway
| | - Dag A Brede
- Centre for Environmental Radioactivity (CoE CERAD), Ås 1432, Norway.,Department of Environmental Sciences (IMV), Norwegian University of Life Sciences (NMBU), Centre for Environmental Radioactivity (CoE CERAD), Ås 1432, Norway
| | | | - Ole C Lind
- Centre for Environmental Radioactivity (CoE CERAD), Ås 1432, Norway.,Department of Environmental Sciences (IMV), Norwegian University of Life Sciences (NMBU), Centre for Environmental Radioactivity (CoE CERAD), Ås 1432, Norway
| | - Anicke Brandt-Kjelsen
- Department of Environmental Sciences (IMV), Norwegian University of Life Sciences (NMBU), Centre for Environmental Radioactivity (CoE CERAD), Ås 1432, Norway
| | - Hans Bjerke
- Department of Monitoring and Research, Norwegian Radiation Protection Authority, Østerås 1332, Norway
| | - Brit Salbu
- Centre for Environmental Radioactivity (CoE CERAD), Ås 1432, Norway.,Department of Environmental Sciences (IMV), Norwegian University of Life Sciences (NMBU), Centre for Environmental Radioactivity (CoE CERAD), Ås 1432, Norway
| | - Deborah Oughton
- Centre for Environmental Radioactivity (CoE CERAD), Ås 1432, Norway.,Department of Environmental Sciences (IMV), Norwegian University of Life Sciences (NMBU), Centre for Environmental Radioactivity (CoE CERAD), Ås 1432, Norway
| | - Gunnar Brunborg
- Department of Chemicals and Radiation, Norwegian Institute of Public Health, Oslo 0403, Norway.,Centre for Environmental Radioactivity (CoE CERAD), Ås 1432, Norway
| | - Ann K Olsen
- Department of Chemicals and Radiation, Norwegian Institute of Public Health, Oslo 0403, Norway.,Centre for Environmental Radioactivity (CoE CERAD), Ås 1432, Norway
| |
Collapse
|
3
|
Cheng MH, Huang YX, Li JF, Wu ZJ, Xie LJ. Characteristic variation of α-fetoprotein DNA nanometer-range irradiated by iodine-125. Cancer Biother Radiopharm 2014; 28:226-32. [PMID: 23573955 DOI: 10.1089/cbr.2012.1231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
To obtain the characteristic variation of structure and functional groups of α-fetoprotein (AFP) DNA irradiated by iodine-125((125)I), the AFP antisense oligonucleotide labeled with various radioactivity dose (125)I was mixed with the AFP DNA in a simulated polymerase chain reaction temperature condition. After the mixtures were irradiated by the (125)I from 2 to 72 hours, the mutation of the biogenic conformation and functional groups of the irradiated DNA were investigated using laser Raman spectroscopy. The shifted peak and the decreased intensity of the characteristic Raman spectra were found, which demonstrated that the structure of the phosphodiester linkage was broke, the pyridine and purine bases in DNA emerged and damaged. The model of gene conformation changed from form B to form C spectrum after the nanometer-range irradiation with (125)I from 2 to 24 hours. The damage of local pyridine and purine bases gradually increased along with the accumulation of irradiation, and the bases and ribosome were finally dissociated and stacked.
Collapse
Affiliation(s)
- Mu-hua Cheng
- Department of Nuclear Medicine, Third Hospital Affiliated Sun Yat-Sen University, Guangzhou, China
| | | | | | | | | |
Collapse
|