1
|
Saad-El-Din AA, El-Tanahy ZH, El-Sayed SN, Anees LM, Farroh HA. Combined effect of arsenic trioxide and radiation on physical properties of hemoglobin biopolymer. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2019. [DOI: 10.1016/j.jrras.2014.07.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Aisha A. Saad-El-Din
- Biophys., Lab. Rad. Phys. Dep., National Center of Radiation Research and Technology (NCRRT), AEA, P.O. Box 29, Madinat Nasr, Cairo, Egypt
| | - Zinab H. El-Tanahy
- Nucl. Phys. Dep., Faculty of Science, Girls Branch, Al-Azhar University, Cairo, Egypt
| | - Suzan N. El-Sayed
- Solid Stat. Phys. Dep., Faculty of Science, Girls Branch, Al-Azhar University, Cairo, Egypt
| | - Laila M. Anees
- Health Res. Dep., National Center of Radiation Research and Technology (NCRRT), AEA, P.O. Box 29, Madinat Nasr, Cairo, Egypt
| | - Hoda A. Farroh
- Health Res. Dep., National Center of Radiation Research and Technology (NCRRT), AEA, P.O. Box 29, Madinat Nasr, Cairo, Egypt
| |
Collapse
|
2
|
Zhang X, Yu D, Geng H, Li F, Lv L, Zhao L, Yan C, Li B. Dual effects of arsenic trioxide on tumor cells and the potential underlying mechanisms. Oncol Lett 2018; 16:3812-3820. [PMID: 30127993 PMCID: PMC6096270 DOI: 10.3892/ol.2018.9086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 06/14/2018] [Indexed: 12/23/2022] Open
Abstract
The human ether-a-go-go related gene (hERG) encodes the rapid delayed rectifier K+ channel. hERG not only serves an important role in heart muscle and cardiomyocyte excitability by regulating action potential repolarization, but also represents a selective advantage for cancer cell proliferation. Arsenic trioxide is a traditional Chinese medicine, which has been previously identified as an efficient tumor suppressor, particularly in the treatment of acute pro-myelocytic leukemia. However, studies have also reported that long-term exposure to arsenicals may lead to the formation of malignant tumors. In the present study, the effect of low-dose arsenic trioxide on the proliferation and apoptosis of tumor cells was investigated, as were the potential underlying mechanisms of this effect. The data demonstrated that low-dose arsenic trioxide (0.1 µM) enhanced the viability and apoptosis of tumor cells expressing hERG channels following long-term incubation. However, in tumor cells lacking hERG channels, low-dose arsenic trioxide had no effect. Therefore, we hypothesized that this hormesis effect of low-dose arsenic trioxide on tumor cells may be associated with the hERG channel. Furthermore, low dose arsenic trioxide promoted the hERG-channel current by changing the kinetics of channel gating and prolonging the open-channel stage. Simultaneously, high-dose As2O3 (1 or 10 µM) significantly reduced the expression of hERG in tumor cells compared with the control group, which resulted in reduced proliferation rate and promotion of apoptotic rate. The results of the present study demonstrate that the dual effects of arsenic trioxide on hERG channels vary according to concentration, resulting in the dual effects on tumor cells. This provides a theoretical basis for the potential clinical application of arsenic trioxide, suggesting that hERG channels are an important target in preventing and treating tumorigenesis during arsenicosis.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Dahai Yu
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Huaize Geng
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Fengmei Li
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Lin Lv
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Lei Zhao
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Caichuan Yan
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Baoxin Li
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China.,The State-Province Key Laboratory of Biopharmaceutical Engineering, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| |
Collapse
|
3
|
Dugo EB, Yedjou CG, Stevens JJ, Tchounwou PB. Therapeutic Potential of Arsenic Trioxide (ATO) in Treatment of Hepatocellular Carcinoma: Role of Oxidative Stress in ATO-Induced Apoptosis. ANNALS OF CLINICAL PATHOLOGY 2017; 5:1101. [PMID: 29214213 PMCID: PMC5713642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Hepatocellular carcinoma (HCC), the dominant form of primary liver cancer, is the sixth most common cancer in the world with more than 700,000 people diagnosed annually. Arsenic trioxide (ATO) has been shown to be a potent anticancer agent in various carcinomas, proving particularly effective in the clinical treatment of relapsed and refractory acute promyelocytic leukemia. However, its bioactivity and molecular mechanisms against HCC has not been fully studied. Using human HCC (HepG2) cells as a test model, we studied the effects of ATO and examined the role of oxidative stress (OS) and apoptosis in cytotoxicity. OS biomarkers showed a significant increase (p< 0.05) of malondialdehyde concentrations, and a gradual decrease of antioxidant enzymes (GPx & CAT) activities with increasing ATO doses. Flow cytometry data showed a dose dependent increase in annex in V positive cells and caspase 3 activities. These results were confirmed by data of the DNA laddering assay showing a clear evidence of nucleosomal DNA fragmentation, as well as data from Western blotting showing a significant modulation of specific apoptotic related proteins, including the activation of p53 and p21 expression and the down-regulation of Bcl-2 expression in ATO-treated cells. Taken together, our research demonstrates that ATO has a potential therapeutic effect against HCC, and its cytotoxicity may be mediated via oxidative stress and activation of the mitochondrial or intrinsic pathway of apoptosis.
Collapse
Affiliation(s)
- Erika B. Dugo
- National Institutes of Health RCMI-Center for Environmental Health, Jackson State University, USA
| | - Clement G. Yedjou
- National Institutes of Health RCMI-Center for Environmental Health, Jackson State University, USA
- Department of Biology, College of Science, Engineering and Technology, Jackson State University, USA
| | - Jacqueline J. Stevens
- National Institutes of Health RCMI-Center for Environmental Health, Jackson State University, USA
- Department of Biology, College of Science, Engineering and Technology, Jackson State University, USA
| | - Paul B. Tchounwou
- National Institutes of Health RCMI-Center for Environmental Health, Jackson State University, USA
| |
Collapse
|
4
|
Bell IR. Nonlinear effects of nanoparticles: biological variability from hormetic doses, small particle sizes, and dynamic adaptive interactions. Dose Response 2014; 12:202-32. [PMID: 24910581 PMCID: PMC4036395 DOI: 10.2203/dose-response.13-025.bell] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Researchers are increasingly focused on the nanoscale level of organization where biological processes take place in living systems. Nanoparticles (NPs, e.g., 1-100 nm diameter) are small forms of natural or manufactured source material whose properties differ markedly from those of the respective bulk forms of the "same" material. Certain NPs have diagnostic and therapeutic uses; some NPs exhibit low-dose toxicity; other NPs show ability to stimulate low-dose adaptive responses (hormesis). Beyond dose, size, shape, and surface charge variations of NPs evoke nonlinear responses in complex adaptive systems. NPs acquire unique size-dependent biological, chemical, thermal, optical, electromagnetic, and atom-like quantum properties. Nanoparticles exhibit high surface adsorptive capacity for other substances, enhanced bioavailability, and ability to cross otherwise impermeable cell membranes including the blood-brain barrier. With super-potent effects, nano-forms can evoke cellular stress responses or therapeutic effects not only at lower doses than their bulk forms, but also for longer periods of time. Interactions of initial effects and compensatory systemic responses can alter the impact of NPs over time. Taken together, the data suggest the need to downshift the dose-response curve of NPs from that for bulk forms in order to identify the necessarily decreased no-observed-adverse-effect-level and hormetic dose range for nanoparticles.
Collapse
|