1
|
Awad D, Prattes M, Kofler L, Rössler I, Loibl M, Pertl M, Zisser G, Wolinski H, Pertschy B, Bergler H. Inhibiting eukaryotic ribosome biogenesis. BMC Biol 2019; 17:46. [PMID: 31182083 PMCID: PMC6558755 DOI: 10.1186/s12915-019-0664-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 05/14/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Ribosome biogenesis is a central process in every growing cell. In eukaryotes, it requires more than 250 non-ribosomal assembly factors, most of which are essential. Despite this large repertoire of potential targets, only very few chemical inhibitors of ribosome biogenesis are known so far. Such inhibitors are valuable tools to study this highly dynamic process and elucidate mechanistic details of individual maturation steps. Moreover, ribosome biogenesis is of particular importance for fast proliferating cells, suggesting its inhibition could be a valid strategy for treatment of tumors or infections. RESULTS We systematically screened ~ 1000 substances for inhibitory effects on ribosome biogenesis using a microscopy-based screen scoring ribosomal subunit export defects. We identified 128 compounds inhibiting maturation of either the small or the large ribosomal subunit or both. Northern blot analysis demonstrates that these inhibitors cause a broad spectrum of different rRNA processing defects. CONCLUSIONS Our findings show that the individual inhibitors affect a wide range of different maturation steps within the ribosome biogenesis pathway. Our results provide for the first time a comprehensive set of inhibitors to study ribosome biogenesis by chemical inhibition of individual maturation steps and establish the process as promising druggable pathway for chemical intervention.
Collapse
Affiliation(s)
- Dominik Awad
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50/EG, A-8010, Graz, Austria
- Present address: Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael Prattes
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50/EG, A-8010, Graz, Austria
| | - Lisa Kofler
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50/EG, A-8010, Graz, Austria
| | - Ingrid Rössler
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50/EG, A-8010, Graz, Austria
| | - Mathias Loibl
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50/EG, A-8010, Graz, Austria
| | - Melanie Pertl
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50/EG, A-8010, Graz, Austria
| | - Gertrude Zisser
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50/EG, A-8010, Graz, Austria
| | - Heimo Wolinski
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50/EG, A-8010, Graz, Austria
| | - Brigitte Pertschy
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50/EG, A-8010, Graz, Austria.
| | - Helmut Bergler
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50/EG, A-8010, Graz, Austria.
| |
Collapse
|
2
|
Gaur K, Vázquez-Salgado AM, Duran-Camacho G, Dominguez-Martinez I, Benjamín-Rivera JA, Fernández-Vega L, Sarabia LC, García AC, Pérez-Deliz F, Méndez Román JA, Vega-Cartagena M, Loza-Rosas SA, Acevedo XR, Tinoco AD. Iron and Copper Intracellular Chelation as an Anticancer Drug Strategy. INORGANICS 2018; 6:126. [PMID: 33912613 PMCID: PMC8078164 DOI: 10.3390/inorganics6040126] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
A very promising direction in the development of anticancer drugs is inhibiting the molecular pathways that keep cancer cells alive and able to metastasize. Copper and iron are two essential metals that play significant roles in the rapid proliferation of cancer cells and several chelators have been studied to suppress the bioavailability of these metals in the cells. This review discusses the major contributions that Cu and Fe play in the progression and spreading of cancer and evaluates select Cu and Fe chelators that demonstrate great promise as anticancer drugs. Efforts to improve the cellular delivery, efficacy, and tumor responsiveness of these chelators are also presented including a transmetallation strategy for dual targeting of Cu and Fe. To elucidate the effectiveness and specificity of Cu and Fe chelators for treating cancer, analytical tools are described for measuring Cu and Fe levels and for tracking the metals in cells, tissue, and the body.
Collapse
Affiliation(s)
- Kavita Gaur
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| | | | - Geraldo Duran-Camacho
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| | | | - Josué A Benjamín-Rivera
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| | - Lauren Fernández-Vega
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| | - Lesly Carmona Sarabia
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| | - Angelys Cruz García
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| | - Felipe Pérez-Deliz
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| | - José A Méndez Román
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| | - Melissa Vega-Cartagena
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| | - Sergio A Loza-Rosas
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| | | | - Arthur D Tinoco
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| |
Collapse
|