1
|
Niu J, Shang M, Li X, Sang S, Chen L, Long J, Jiao A, Ji H, Jin Z, Qiu C. Health benefits, mechanisms of interaction with food components, and delivery of tea polyphenols: a review. Crit Rev Food Sci Nutr 2023; 64:12487-12499. [PMID: 37665600 DOI: 10.1080/10408398.2023.2253542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Tea polyphenols (TPs) are the most important active component of tea and have become a research focus among natural products, thanks to their antioxidant, lipid-lowering, liver-protecting, anti-tumor, and other biological activities. Polyphenols can interact with other food components, such as protein, polysaccharides, lipids, and metal ions to further improve the texture, flavor, and sensory quality of food, and are widely used in food fields, such as food preservatives, antibacterial agents and food packaging. However, the instability of TPs under conditions such as light or heat and their low bioavailability in the gastrointestinal environment also hinder their application in food. In this review, we summarized the health benefits of TPs. In order to better use TPs in food, we analyzed the form and mechanism of interaction between TPs and main food components, such as polysaccharides and proteins. Moreover, we reviewed research into optimizing the applications of TPs in food by bio-based delivery systems, such as liposomes, nanoemulsions, and nanoparticles, so as to improve the stability and bioactivity of TPs in food application. As an effective active ingredient, TPs have great potential to be applied in functional food to produce benefits for human health.
Collapse
Affiliation(s)
- Jingxian Niu
- State Key Laboratory of Food Science and Resources, International Joint Laboratory on Food Safety, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| | - Mengshan Shang
- State Key Laboratory of Food Science and Resources, International Joint Laboratory on Food Safety, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| | - Xiaojing Li
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Shangyuan Sang
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Long Chen
- State Key Laboratory of Food Science and Resources, International Joint Laboratory on Food Safety, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| | - Jie Long
- State Key Laboratory of Food Science and Resources, International Joint Laboratory on Food Safety, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| | - Aiquan Jiao
- State Key Laboratory of Food Science and Resources, International Joint Laboratory on Food Safety, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| | - Hangyan Ji
- State Key Laboratory of Food Science and Resources, International Joint Laboratory on Food Safety, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| | - Zhengyu Jin
- State Key Laboratory of Food Science and Resources, International Joint Laboratory on Food Safety, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| | - Chao Qiu
- State Key Laboratory of Food Science and Resources, International Joint Laboratory on Food Safety, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
2
|
Yuan Y, Ma M, Zhang S, Wang D. Efficient Utilization of Tea Resources through Encapsulation: Dual Perspectives from Core Material to Wall Material. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1310-1324. [PMID: 36637407 DOI: 10.1021/acs.jafc.2c07346] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
With the high production and consumption of tea around the world, efficient utilization of tea byproducts (tea pruning, tea residues after production, and drinking) is the focus of improving the economy of the tea industry. This review comprehensively discusses the efficient utilization of tea resources by encapsulation from the dual perspectives of core material and wall material. The core material is mainly tea polyphenols, followed by tea oils. The encapsulation system for tea polyphenols includes microcapsules, nanoparticles, emulsions, gels, conjugates, metal-organic frameworks, liposomes, and nanofibers. In addition, it is also diversified for the encapsulation of tea oils. Tea resources as wall materials refer to tea saponins, tea polyphenols, tea proteins, and tea polysaccharides. The application of the tea-based delivery system widely involves functionally fortified food, meat preservation, film, medical treatment, wastewater treatment, and plant protection. In the future, the coencapsulation of tea resources as core materials and other functional ingredients, the precise targeting of these tea resources, and the wide application of tea resources in wall materials need to be focused on. In conclusion, the described technofunctional properties and future research challenges in this review should be followed.
Collapse
Affiliation(s)
- Yongkai Yuan
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Mengjie Ma
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Shuaizhong Zhang
- Marine Science Research Institute of Shandong Province, Qingdao 266104, China
| | - Dongfeng Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
3
|
Naranjo-Durán AM, Quintero-Quiroz J, Rojas-Camargo J, Ciro-Gómez GL. Modified-release of encapsulated bioactive compounds from annatto seeds produced by optimized ionic gelation techniques. Sci Rep 2021; 11:1317. [PMID: 33446706 PMCID: PMC7809057 DOI: 10.1038/s41598-020-80119-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 12/15/2020] [Indexed: 02/06/2023] Open
Abstract
To compare the encapsulation of annatto extract by external gelation (EG) and internal gelation (IG) and to maximize process yield (% Y), two central composite designs were proposed. Calcium chloride (CaCl2) concentration (0.3-3.5%), alginate to gelling solution ratio (1:2-1:6); acetic acid (CH3COOH) concentration (0.2-5.0%) and alginate to gelling solution ratio (1:2-1:6) were taken as independent variables for EG and IG respectively. Release studies were conducted under different conditions; morphology, particle size, the encapsulation efficiency (EE), and release mechanism were evaluated under optimized conditions. The optimized EG conditions were 0.3% CaCl2 and 1:1.2 alginate to gelling solution ratio, whereas a 0.3% CH3COOH and 1:5 alginate to gelling solution ratio were optimized conditions for IG. When 20% extract was employed, the highest EE was achieved, and the largest release was obtained at a pH 6.5 buffer. The Peppas-Sahlin model presented the best fit to experimental data. Polyphenol release was driven by diffusion, whereas bixin showed anomalous release. These results are promising for application as modulated release agents in food matrices.
Collapse
Affiliation(s)
- Ana María Naranjo-Durán
- College of Pharmaceutical and Food Sciences, University of Antioquia, Street 67, 53-108, Medellin, Colombia.
| | - Julián Quintero-Quiroz
- College of Pharmaceutical and Food Sciences, University of Antioquia, Street 67, 53-108, Medellin, Colombia
| | - John Rojas-Camargo
- College of Pharmaceutical and Food Sciences, University of Antioquia, Street 67, 53-108, Medellin, Colombia
| | - Gelmy Luz Ciro-Gómez
- College of Pharmaceutical and Food Sciences, University of Antioquia, Street 67, 53-108, Medellin, Colombia
| |
Collapse
|