1
|
Keshavarzi Z, Amiresmaili S, Nazari M, Jafari E, Chahkandi M, Sindhu RK. Synergistic effects of auraptene and 17-β estradiol on traumatic brain injury treatment: oxidant/antioxidant status, inflammatory cytokines and pathology. Int J Neurosci 2024; 134:1477-1489. [PMID: 37815366 DOI: 10.1080/00207454.2023.2269478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 09/08/2023] [Accepted: 10/06/2023] [Indexed: 10/11/2023]
Abstract
OBJECTIVE Despite significant advances that have been made in the treatment of traumatic brain injury (TBI), it remains a global health issue. This study aimed to investigate the synergistic effects of 17-β estradiol (E2) and auraptene (AUR) on TBI treatment. METHODS In total, 70 adult male Wistar rats were divided randomly into ten main groups: Sham, TBI, TBI + DMSO, TBI + AUR (4 mg/kg), TBI + AUR (8 mg/kg), TBI + AUR (25 mg/kg), TBI + E2 group, TBI + AUR (4 mg/kg) + E2 group, TBI + AUR (8 mg/kg) + E2 group and TBI + AUR (25 mg/kg) + E2 group. Diffuse TBI was caused by the Marmarou process in male rats. The brain's tissues were harvested to check the parameters of oxidative stress and levels of inflammatory cytokine. RESULTS The finding revealed that TBI induced a significant increase in brain edema, pro-inflammatory cytokines and oxidant levels [MDA and NO], and also a decrease in the brain's antioxidant biomarkers [GPx, SOD]. We also found that E2 and AUR (25 mg/kg) significantly preserved the levels of these biomarkers. The combination of AUR concentrations and E2 showed that this treatment efficiently preserved the levels of these biomarkers. Furthermore, the combination of E2 and AUR (25 mg/kg) c could cause the most effective synergistic interaction. CONCLUSION AUR could act synergistically with E2 to treat brain injury complications.
Collapse
Affiliation(s)
- Zakieh Keshavarzi
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | | | - Masoud Nazari
- College of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Elham Jafari
- Pathology and Stem Cell Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohadeseh Chahkandi
- Department of Physiology, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Rakesh K Sindhu
- Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, India
| |
Collapse
|
2
|
Polat GP, Gumral N, Aslankoc R, Ozmen O, Çelik Ö, Kavrik O, Saygın M. Vetiveria zizanioides modulates experimental epilepsy-induced seizures, oxidative stress, and apoptosis in the brain of rats. Metab Brain Dis 2024; 40:36. [PMID: 39576294 DOI: 10.1007/s11011-024-01443-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/17/2024] [Indexed: 11/24/2024]
Abstract
In this study, we investigated the protective actions of Vetiveria zizanioides oil (VET) against oxidative stress and apoptosis in a rat model of pentylenetetrazol (PTZ)-induced epilepsy model. Rats were divided into four groups: control (1 ml/kg saline, by gavage, 7 days + 1 ml/kg saline, i.p, single dose, 8th day), PTZ (1 ml/kg saline, by gavage, 7 days + 60 mg/kg, i.p, single dose, 8th day), PTZ + VET-200 (200 mg/kg VET, by gavage, 7 days + 60 mg/kg PTZ, i.p, single dose, 8th day), and PTZ + VET-400 (400 mg/kg VET, by gavage, 7 days + 60 mg/kg PTZ i.p, single dose, 8th day). Behavioral evaluation (Racine scale was used to classify the severity of seizures according to stages) and EEG recordings were taken. At the end of the experiment, the animals were sacrificed, and blood, hippocampus, and cerebral cortex tissues were removed for biochemical and histopathological examinations. PTZ injection increased the duration of the first epileptic spike and the total number of seizures and caused oxidative stress by increasing the total oxidant status (TOS). The treatment of PTZ induced neurodegenerative changes in the tissues such as increases of apoptosis, Bcl-2, Cyclin B1, and GABA expressions, but decreased Beta-tubulin. However, all the adverse changes of PTZ were modulated by the treatment of VET-200 and VET-400. In conclusion, these results showed that VET could ameliorate epileptic seiures, oxidative stress, and neuronal apoptosis in PTZ-induced seizures.
Collapse
Affiliation(s)
- Gurbet Pınar Polat
- Department of Physiology, Faculty of Medicine, Süleyman Demirel University, Isparta, 32260, Turkey
| | - Nurhan Gumral
- Department of Physiology, Faculty of Medicine, Süleyman Demirel University, Isparta, 32260, Turkey
| | - Rahime Aslankoc
- Department of Physiology, Faculty of Medicine, Süleyman Demirel University, Isparta, 32260, Turkey.
| | - Ozlem Ozmen
- Department of Pathology, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, Burdur, Turkey
| | - Ömer Çelik
- Department of Biophysics, Faculty of Medicine, Süleyman Demirel University, Isparta, Turkey
| | - Oguzhan Kavrik
- Department of Physiology, Faculty of Medicine, Süleyman Demirel University, Isparta, 32260, Turkey
| | - Mustafa Saygın
- Department of Physiology, Faculty of Medicine, Süleyman Demirel University, Isparta, 32260, Turkey
| |
Collapse
|
3
|
Hakimi Naeini S, Rajabi-Maham H, Azizi V, Hosseini A. Anticonvulsant effect of glycitin in pentylenetetrazol induced male Wistar rat model by targeting oxidative stress and Nrf2/HO-1 signaling. Front Pharmacol 2024; 15:1392325. [PMID: 39246658 PMCID: PMC11377222 DOI: 10.3389/fphar.2024.1392325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 08/13/2024] [Indexed: 09/10/2024] Open
Abstract
Epilepsy, characterized by recurrent seizures, poses a significant health challenge globally. Despite the availability of anti-seizure medications, their adverse effects and inadequate efficacy in controlling seizures propel the exploration of alternative therapeutic measures. In hypothesis, glycitin is a phytoestrogenic compound found in soybeans and due to its estrogenic properties may have anti-epileptic and neuroprotective effects. This study investigates the potential anti-epileptic properties of glycitin in the context of pentylenetetrazol (PTZ) induced seizures in male Wistar rats. The rats were pretreated with varying doses of glycitin (5, 10, and 20 mg/kg) before PTZ (35 mg/kg) administration, and assessments included behavioral observations and histological evaluation via hematoxylin and eosin (H&E) staining. Additionally, oxidative stress markers, such as malondialdehyde (MDA), glutathione peroxidase (GPx), and superoxide dismutase (SOD) levels, were quantified to examine glycitin's impact on oxidative stress. Molecular analysis was conducted to assess the activation of the Nuclear factor erythroid 2-related factor (Nrf2)/Heme oxygenase 1 (HO-1) signaling pathway. Results indicated that glycitin pretreatment effectively mitigated PTZ-induced convulsive behaviors, supported by histological findings from H&E staining. Furthermore, glycitin administration led to significant alterations in MDA, GPx, and SOD levels, suggestive of its ability to modulate oxidative stress. Notably, glycitin treatment induced activation of the Nrf2/HO-1 signaling pathway. These findings underscore the potential of glycitin as an anticonvulsant agent, elucidating its mechanism of action through histological protection, modulation of oxidative stress markers, and activation of the Nrf2/HO-1 signaling pathway.
Collapse
Affiliation(s)
- Saghi Hakimi Naeini
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Hassan Rajabi-Maham
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Vahid Azizi
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Abdolkarim Hosseini
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
4
|
Akünal Türel C, Yunusoğlu O. Oleanolic acid suppresses pentylenetetrazole-induced seizure in vivo. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2023; 33:529-540. [PMID: 36812380 DOI: 10.1080/09603123.2023.2167947] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 01/07/2023] [Indexed: 06/18/2023]
Abstract
The aim of this study was to investigate the protective effects of triterpene oleanolic acid on the brain tissue of mice with pentylenetetrazole (PTZ)-induced epileptic seizures. Male Swiss albino mice were randomly separated into five groups as the PTZ, control, and oleanolic acid (10, 30, and 100 mg/kg) groups. PTZ injection was seen to cause significant seizures compared with the control group. Oleanolic acid significantly prolonged the latency to onset of myoclonic jerks and the duration of clonic convulsions, and decreased mean seizure scores following PTZ administration. Pretreatment with oleanolic acid also led to an increase in antioxidant enzyme activity (CAT and AChE) and levels (GSH and SOD) in the brain. The data obtained from this study support oleanolic acid may have anticonvulsant potential in PTZ-induced seizures, prevent oxidative stress and protect against cognitive disturbances. These results may provide useful information for the inclusion of oleanolic acid in epilepsy treatment.
Collapse
Affiliation(s)
- Canan Akünal Türel
- Department of Neurology, Faculty of Medicine, Bolu Abant Izzet Baysal University, Bolu, Turkey
| | - Oruç Yunusoğlu
- Department of Pharmacology, Faculty of Medicine, Bolu Abant Izzet Baysal University, Bolu, Turkey
| |
Collapse
|
5
|
Ghasemi Z, Rezaee R, Aslani MR, Boskabady MH. Anti-inflammatory, anti-oxidant, and immunomodulatory activities of the genus Ferula and their constituents: A review. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:1613-1623. [PMID: 35432802 PMCID: PMC8976906 DOI: 10.22038/ijbms.2021.59473.13204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/07/2021] [Indexed: 12/16/2022]
Abstract
Ferula is a genus of the family Apiaceae and it includes around 170 species of flowering plants mostly native to the Mediterranean region and eastern to central Asia. In Iran, Ferula spp. are widely used in cuisine and traditional medicine. This review discusses the anti-inflammatory, anti-oxidant, and immunomodulatory activities of different species of Ferula. To prepare the present review, Scopus, Google Scholar, PubMed, and Web of Science scientific databases were searched to retrieve relevant articles published from 1985 until December 2020. Based on our literature review, Ferula plants and their derivatives decrease the levels of inflammatory mediators and exert anti-apoptotic effects. Under oxidative stress conditions, these plants and their constituents were shown to decrease oxidative markers such as malondialdehyde, reactive oxygen species, and nitric oxide but increase superoxide dismutase, glutathione peroxidase, catalase activity, and glutathione level. Ferula plants and their constituents also showed immunomodulatory effects by affecting various cytokines. Besides, in vivo and in vitro studies showed hypotensive, neuroprotective, memory-enhancing, anti-oxidant, hepatoprotective, antimicrobial, anticarcinogenic, anticytotoxic, antiobesity, and anthelmintic effects for various species of Ferula and their constituents. These plants also showed a healing effect on gynecological issues such as miscarriage, unusual pain, difficult menstruation, and leukorrhea. All these beneficial effects could have resulted from the anti-inflammatory, anti-oxidant, and immunomodulatory effects of these plants and their constituents. Based on the available literature, members of the genus Ferula can be regarded as potential therapeutics against inflammatory conditions, oxidative stress, and immune dysregulation.
Collapse
Affiliation(s)
- Zahra Ghasemi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ramin Rezaee
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Clinical Research Unit, Imam Reza Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Aslani
- Department of Physiology, Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mohammad Hossein Boskabady
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|