1
|
Rahmatipour H, Shabestari SM, Benisi SZ, Samadikhah H. Pioneering pain management with botulinum toxin type A: From anti-inflammation to regenerative therapies. Heliyon 2025; 11:e42350. [PMID: 40028584 PMCID: PMC11870196 DOI: 10.1016/j.heliyon.2025.e42350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/23/2025] [Accepted: 01/28/2025] [Indexed: 03/05/2025] Open
Abstract
In the present paper, a comprehensive review was conducted to evaluate the performance of botulinum toxin type A (BTX-A) in managing various types of pain, including myofascial, muscular temporomandibular joint pain, orofacial pain, chronic migraines, and more. Firstly, the mechanism of action and anti-inflammatory effects of BTX-A was introduced. Following this, recent advancements in BTX-A applications were discussed, with an emphasis on emerging combination therapies, regenerative medicine, and personalized treatment strategies. Unlike previous reviews, this study explored a broader spectrum of pain conditions and highlighted BTX-A's versatility and potential as a long-term, minimally invasive pain management option. Additionally, the importance of tailoring BTX-A treatment was emphasized through the integration of biomarkers, genetic factors, and optimized dosing regimens to enhance efficacy and minimize side effects. Novel combinations with regenerative therapies, such as stem cells and tissue engineering, were identified as promising avenues for joint and nerve repair, providing both symptomatic relief and tissue regeneration. Furthermore, digital health tools and artificial intelligence were suggested as innovative approaches to monitor treatment responses and optimize dosing protocols in real-time, advancing personalized pain management. Overall, this review underscores BTX-A's potential in comprehensive and patient-centered pain management and offers recommendations to guide future studies in optimizing BTX-A therapy.
Collapse
Affiliation(s)
- Hamta Rahmatipour
- Department of Biomedical Engineering, Islamic Azad University, Central Tehran Branch, P.O. Box 13185/768, Tehran, Iran
| | - Salar Mohammadi Shabestari
- Department of Polymer, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Soheila Zamanlui Benisi
- Department of Biomedical Engineering, Islamic Azad University, Central Tehran Branch, P.O. Box 13185/768, Tehran, Iran
- Stem Cell and Cell Therapy Research Center, Tissue Engineering and Regenerative Medicine Institute, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Hamidreza Samadikhah
- Department of Biology, Faculty of Basic Sciences, Central Tehran Branch, Islamic Azad University, P.O. Box 13145-784, Tehran, Iran
| |
Collapse
|
2
|
Annana SK, Ferdoush J, Lamia F, Roy A, Kar P, Nandi M, Kabir M, Saha A. Computational Insights into Captopril's Inhibitory Potential Against MMP9 and LCN2 in Bladder Cancer: Implications for Therapeutic Application. Cancer Inform 2024; 23:11769351241276759. [PMID: 39315330 PMCID: PMC11418319 DOI: 10.1177/11769351241276759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 07/31/2024] [Indexed: 09/25/2024] Open
Abstract
Objectives Captopril is a commonly used therapeutic agent in the management of renovascular hypertension (high blood pressure), congestive heart failure, left ventricular dysfunction following myocardial infarction, and nephropathy. Captopril has been found to interact with proteins that are significantly associated with bladder cancer (BLCA), suggesting that it could be a potential medication for BLCA patients with concurrent hypertension. Methods DrugBank 5.0 was utilized to identify the direct protein targets (DPTs) of captopril. STRING was used to analyze the multiple protein interactions. TNMPlot was used for comparing gene expression in normal, tumor, and metastatic tissue. Then, docking with target proteins was done using Autodock. Molecular dynamics simulations were applied for estimate the diffusion coefficients and mean-square displacements in materials. Results Among all these proteins, MMP9 is observed to be an overexpressed gene in BLCA and its increased expression is linked to reduced survival in patients. Our findings indicate that captopril effectively inhibits both the wild type and common mutated forms of MMP9 in BLCA. Furthermore, the LCN2 gene, which is also overexpressed in BLCA, interacts with captopril-associated proteins. The overexpression of LCN2 is similarly associated with reduced survival in BLCA. Through molecular docking analysis, we have identified specific amino acid residues (Tyr179, Pro421, Tyr423, and Lys603) at the active pocket of MMP9, as well as Tyr78, Tyr106, Phe145, Lys147, and Lys156 at the active pocket of LCN2, with which captopril interacts. Thus, our data provide compelling evidence for the inhibitory potential of captopril against human proteins MMP9 and LCN2, both of which play crucial roles in BLCA. Conclusion These discoveries present promising prospects for conducting subsequent validation studies both in vitro and in vivo, with the aim of assessing the suitability of captopril for treating BLCA patients, irrespective of their hypertension status, who exhibit elevated levels of MMP9 and LCN2 expression.
Collapse
Affiliation(s)
- Sanjida Kabir Annana
- Department of Genetic Engineering and Biotechnology, East West University, Dhaka, Bangladesh
| | - Jannatul Ferdoush
- Department of Biology, Geology and Environmental Science, University of Tennessee at Chattanooga, Chattanooga, TN, USA
| | - Farzia Lamia
- Department of Genetic Engineering and Biotechnology, East West University, Dhaka, Bangladesh
| | - Ayan Roy
- Department of Bioinformatics and Biotechnology, Asian University for Women, Chattogram, Bangladesh
| | - Pallab Kar
- Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Monisha Nandi
- Department of Pharmacy, BGC Trust University Bangladesh, Chattogram, Bangladesh
| | - Maliha Kabir
- Department of Bioinformatics and Biotechnology, Asian University for Women, Chattogram, Bangladesh
| | - Ayan Saha
- Department of Bioinformatics and Biotechnology, Asian University for Women, Chattogram, Bangladesh
| |
Collapse
|
3
|
Sun J, Zhang C, Su X, Zhou H, Zhou S, Jiang M, Fang B. Several first-line anti-hypertensives act on fibrosarcoma progression and PD1ab blockade therapy. J Orthop Surg Res 2024; 19:147. [PMID: 38373964 PMCID: PMC10875773 DOI: 10.1186/s13018-024-04627-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/14/2024] [Indexed: 02/21/2024] Open
Abstract
PURPOSE Patients are typically diagnosed with both hypertension and fibrosarcoma. Medical oncologists must prescribe suitable anti-hypertensive medications while considering anti-tumor drugs. Recently, immunotherapy has become prominent in cancer treatment. Nonetheless, it is unknown what role anti-hypertensive medications will play in immunotherapy. METHODS We examined the effects of six first-line anti-hypertensive medications on programmed cell death protein 1 antibody (PD1ab) in tumor treatment using a mouse model of subcutaneous fibrosarcoma. The drugs examined were verapamil, losartan, furosemide, spironolactone, captopril, and hydrochlorothiazide (HCTZ). The infiltration of CD8+ T cells was examined by immunohistochemistry. Additionally, several in vitro and in vivo assays were used to study the effects of HCTZ on human fibrosarcoma cancer cells to explore its mechanism. RESULTS Verapamil suppressed tumor growth and showed an improved effect on the tumor inhibition of PD1ab. Captopril did not affect tumor growth but brought an unexpected benefit to PD1ab treatment. In contrast, spironolactone and furosemide showed no effect on tumor growth but had an offset effect on the PD1ab therapy. Consequently, the survival time of mice was also significantly reduced. Notably, losartan and HCTZ, especially HCTZ, promoted tumor growth and weakened the effect of PD1ab treatment. Consistent results were observed in vivo and in vitro using the human fibrosarcoma cell line HT1080. We determined that the Solute Carrier Family 12 Member 3 (SLC12A3), a known target of HCTZ, may be the principal factor underlying its effect-enhancing properties through mechanism studies employing The Cancer Genome Atlas (TCGA) data and in vivo and in vitro assays. CONCLUSION Verapamil and captopril potentiated the anti-tumor effect of PD1ab, whereas spironolactone and furosemide weakened the effect of PD1ab on tumor inhibition. Alarmingly, losartan and HCTZ promoted tumor growth and impaired the effect of PD1ab. Furthermore, we preliminarily found that HCTZ may promote tumor progression through SLC12A3. Based on this study, futher mechanism researches and clinical trials should be conducted in the future.
Collapse
Affiliation(s)
- Jianwen Sun
- Department of Orthopaedics, The First Affiliated Hospital of Jishou University, The People's Hospital of Xiangxi Autonomous Prefecture, Jishou, China
| | | | - Xinhao Su
- Department of Jishou University, Jishou, China
| | - Haoyun Zhou
- Department of Medicine, Taizhou University, Zhejiang, China
| | - Siyun Zhou
- Department of Medicine, Taizhou University, Zhejiang, China
| | - Minjie Jiang
- Department of Medicine, Taizhou University, Zhejiang, China
| | - Binbo Fang
- Department of Medicine, Taizhou University, Zhejiang, China.
| |
Collapse
|
4
|
Ji D, Luo ZW, Ovcjak A, Alanazi R, Bao MH, Feng ZP, Sun HS. Role of TRPM2 in brain tumours and potential as a drug target. Acta Pharmacol Sin 2022; 43:759-770. [PMID: 34108651 PMCID: PMC8975829 DOI: 10.1038/s41401-021-00679-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/07/2021] [Indexed: 02/06/2023]
Abstract
Ion channels are ubiquitously expressed in almost all living cells, and are the third-largest category of drug targets, following enzymes and receptors. The transient receptor potential melastatin (TRPM) subfamily of ion channels are important to cell function and survival. Studies have shown upregulation of the TRPM family of ion channels in various brain tumours. Gliomas are the most prevalent form of primary malignant brain tumours with no effective treatment; thus, drug development is eagerly needed. TRPM2 is an essential ion channel for cell function and has important roles in oxidative stress and inflammation. In response to oxidative stress, ADP-ribose (ADPR) is produced, and in turn activates TRPM2 by binding to the NUDT9-H domain on the C-terminal. TRPM2 has been implicated in various cancers and is significantly upregulated in brain tumours. This article reviews the current understanding of TRPM2 in the context of brain tumours and overviews the effects of potential drug therapies targeting TRPM2 including hydrogen peroxide (H2O2), curcumin, docetaxel and selenium, paclitaxel and resveratrol, and botulinum toxin. It is long withstanding knowledge that gliomas are difficult to treat effectively, therefore investigating TRPM2 as a potential therapeutic target for brain tumours may be of considerable interest in the fields of ion channels and pharmacology.
Collapse
Affiliation(s)
- Delphine Ji
- Department of Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Zheng-Wei Luo
- Department of Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Andrea Ovcjak
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Rahmah Alanazi
- Department of Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Mei-Hua Bao
- Science Research Center, Changsha Medical University, Changsha, 410219, China
| | - Zhong-Ping Feng
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
| | - Hong-Shuo Sun
- Department of Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
- Department of Pharmacology and Toxicology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
5
|
Grenda T, Grenda A, Krawczyk P, Kwiatek K. Botulinum toxin in cancer therapy-current perspectives and limitations. Appl Microbiol Biotechnol 2021; 106:485-495. [PMID: 34951660 PMCID: PMC8763801 DOI: 10.1007/s00253-021-11741-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/06/2021] [Accepted: 12/12/2021] [Indexed: 11/25/2022]
Abstract
Abstract Different serotypes of botulinum toxins (BoNTs) act upon different types of SNARE proteins. This property is used in aesthetic medicine to treat certain eye disorders such as crossed eyes (strabismus) and uncontrolled blinking (blepharospasm), to treat muscle spasms or movement disorders, and, for the two last decades, more and more often, to provide support in cancer therapy, especially so as to obtain analgesic effects upon spastic conditions. The limited literature data also suggests that the addition of BoNTs to the culture of cancer cell lines reduces cell growth, and mitotic activity, and promotes their apoptosis. BoNTs have several advantages that can be emphasized: BoNTs act on both perfusion and oxygenation; moreover, BoNTs are considered to be safe and free of systemic side effects upon administration. Recently, advances in molecular biology techniques have allowed a wide variety of novel BoNT constructs with alternative functions. These constructs could be assessed as potential new classes of anti-cancer drugs. This creates new potential perspectives in the wider use of non-toxic modified BoNT constructs in cancer therapy. In the light of the mentioned premises and existing literature reports, the aim of this review is to summarize current data and reports considering BoNT use in cancer therapy. Key points •Botulinum toxin (BoNTs) may be useful in cancer treatment. •Botulinum toxin can serve as an analgesic after cancer radiotherapy. •Botulinum toxin has the ability to inhibit tumor growth and promote apoptosis of neoplastic cells.
Collapse
Affiliation(s)
- Tomasz Grenda
- Department of Hygiene of Animal Feeding Stuffs, National Veterinary Research Institute, Partyzantow Avenue 57, 24-100, Pulawy, Poland.
| | - Anna Grenda
- Department of Pneumology, Oncology and Allergology, Medical University of Lublin, Jaczewskiego 8, 20-954, Lublin, Poland.
| | - Paweł Krawczyk
- Department of Pneumology, Oncology and Allergology, Medical University of Lublin, Jaczewskiego 8, 20-954, Lublin, Poland
| | - Krzysztof Kwiatek
- Department of Hygiene of Animal Feeding Stuffs, National Veterinary Research Institute, Partyzantow Avenue 57, 24-100, Pulawy, Poland
| |
Collapse
|
6
|
Guo XM, Yadav MB, Khan M, Hao CW, Lin CY, Huang T, Wu J, Fan BM, Bian ZX. Bradykinin-Potentiating Peptide-Paclitaxel Conjugate Directed at Ectopically Expressed Angiotensin-Converting Enzyme in Triple-Negative Breast Cancer. J Med Chem 2021; 64:17051-17062. [PMID: 34699215 DOI: 10.1021/acs.jmedchem.1c00705] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Triple-negative breast cancer (TNBC) is a heterogeneous subtype of breast cancer with poor prognosis. Here, we present a peptide-drug conjugate (PDC)-bradykinin-potentiating peptide-paclitaxel (BPP-PTX) conjugate-synthesized by conjugating BPP9a with PTX via a succinyl linker. BPP-PTX targets the angiotensin-converting enzyme (ACE) on TNBC cells. ACE was found to be ectopically expressed in two TNBC cell lines but was absent in both the receptor-positive breast cancer cell line and healthy kidney cell line. Overexpression, knockdown, and competitive inhibition experiments demonstrated ACE-mediated cytotoxicity of BPP-PTX. In vivo, ACE-positive tumors were enriched with BPP-PTX, with the PDC being better tolerated than plain PTX. Compared with plain PTX, BPP-PTX exhibited improved tumor-suppressive effects in MDA-MB-468 xenografted female nude mice. Meanwhile, BPP-PTX resulted in less body weight loss and white blood cell reduction toxicity. These results collectively imply the novelty, efficacy, and low-toxicity profile of BPP-PTX as a potential therapeutic for ACE-positive TNBC.
Collapse
Affiliation(s)
- Xuan-Ming Guo
- School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon, Hong Kong 999077, P. R. China
| | - Maruti Balaso Yadav
- YMU-HKBU Joint Laboratory of Traditional Natural Medicine, Yunnan Minzu University, Kunming 650500, P. R. China
| | - Mahjabin Khan
- School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon, Hong Kong 999077, P. R. China
| | - Chao-Wei Hao
- YMU-HKBU Joint Laboratory of Traditional Natural Medicine, Yunnan Minzu University, Kunming 650500, P. R. China
| | - Cheng-Yuan Lin
- School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon, Hong Kong 999077, P. R. China.,YMU-HKBU Joint Laboratory of Traditional Natural Medicine, Yunnan Minzu University, Kunming 650500, P. R. China
| | - Tao Huang
- School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon, Hong Kong 999077, P. R. China
| | - Jiang Wu
- Key Laboratory for Tibet Plateau Phytochemistry of Qinghai Province, College of Pharmacy, Qinghai Nationalities University, Xining 810007, P. R. China
| | - Bao-Min Fan
- YMU-HKBU Joint Laboratory of Traditional Natural Medicine, Yunnan Minzu University, Kunming 650500, P. R. China
| | - Zhao-Xiang Bian
- School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon, Hong Kong 999077, P. R. China
| |
Collapse
|
7
|
Bojarska J, Remko M, Breza M, Madura I, Fruziński A, Wolf WM. A Proline-Based Tectons and Supramolecular Synthons for Drug Design 2.0: A Case Study of ACEI. Pharmaceuticals (Basel) 2020; 13:E338. [PMID: 33114370 PMCID: PMC7692516 DOI: 10.3390/ph13110338] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/20/2020] [Accepted: 10/22/2020] [Indexed: 11/16/2022] Open
Abstract
Proline is a unique, endogenous amino acid, prevalent in proteins and essential for living organisms. It is appreciated as a tecton for the rational design of new bio-active substances. Herein, we present a short overview of the subject. We analyzed 2366 proline-derived structures deposited in the Cambridge Structure Database, with emphasis on the angiotensin-converting enzyme inhibitors. The latter are the first-line antihypertensive and cardiological drugs. Their side effects prompt a search for improved pharmaceuticals. Characterization of tectons (molecular building blocks) and the resulting supramolecular synthons (patterns of intermolecular interactions) involving proline derivatives, as presented in this study, may be useful for in silico molecular docking and macromolecular modeling studies. The DFT, Hirshfeld surface and energy framework methods gave considerable insight into the nature of close inter-contacts and supramolecular topology. Substituents of proline entity are important for the formation and cooperation of synthons. Tectonic subunits contain proline moieties characterized by diverse ionization states: -N and -COOH(-COO-), -N+ and -COOH(-COO-), -NH and -COOH(-COO-), -NH+ and -COOH(-COO-), and -NH2+ and -COOH(-COO-). Furthermore, pharmacological profiles of ACE inhibitors and their impurities were determined via an in silico approach. The above data were used to develop comprehensive classification, which may be useful in further drug design studies.
Collapse
Affiliation(s)
- Joanna Bojarska
- Faculty of Chemistry, Institute of General and Ecological Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Lodz, Poland; (A.F.); (W.M.W.)
| | - Milan Remko
- Remedika, Luzna 9, 85104 Bratislava, Slovakia;
| | - Martin Breza
- Department of Physical Chemistry, Slovak Technical University, Radlinskeho 9, SK-81237 Bratislava, Slovakia;
| | - Izabela Madura
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland;
| | - Andrzej Fruziński
- Faculty of Chemistry, Institute of General and Ecological Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Lodz, Poland; (A.F.); (W.M.W.)
| | - Wojciech M. Wolf
- Faculty of Chemistry, Institute of General and Ecological Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Lodz, Poland; (A.F.); (W.M.W.)
| |
Collapse
|