1
|
Guo J, Jiang X, Tian Y, Yan S, Liu J, Xie J, Zhang F, Yao C, Hao E. Therapeutic Potential of Cinnamon Oil: Chemical Composition, Pharmacological Actions, and Applications. Pharmaceuticals (Basel) 2024; 17:1700. [PMID: 39770541 PMCID: PMC11677886 DOI: 10.3390/ph17121700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/09/2024] [Accepted: 12/14/2024] [Indexed: 01/11/2025] Open
Abstract
Cinnamon oil, an essential oil extracted from plants of the genus Cinnamomum, has been highly valued in ancient Chinese texts for its medicinal properties. This review summarizes the chemical composition, pharmacological actions, and various applications of cinnamon oil, highlighting its potential in medical and industrial fields. By systematically searching and evaluating studies from major scientific databases including Web of Science, PubMed, and ScienceDirect, we provide a comprehensive analysis of the therapeutic potential of cinnamon oil. Research indicates that cinnamon oil possesses a wide range of pharmacological activities, covering antibacterial, anti-inflammatory, anti-tumor, and hypoglycemic effects. It is currently an active ingredient in over 500 patented medicines. Cinnamon oil has demonstrated significant inhibitory effects against various pathogens comprising Staphylococcus aureus, Salmonella, and Escherichia coli. Its mechanisms of action include disrupting cell membranes, inhibiting ATPase activity, and preventing biofilm formation, suggesting its potential as a natural antimicrobial agent. Its anti-inflammatory properties are evidenced by its ability to suppress inflammatory markers like vascular cell adhesion molecules and macrophage colony-stimulating factors. Moreover, cinnamon oil has shown positive effects in lowering blood pressure and improving metabolism in diabetic patients by enhancing glucose uptake and increasing insulin sensitivity. The main active components of cinnamon oil include cinnamaldehyde, cinnamic acid, and eugenol, which play key roles in its pharmacological effects. Recently, the applications of cinnamon oil in industrial fields, including food preservation, cosmetics, and fragrances, have also become increasingly widespread. Despite the extensive research supporting its medicinal value, more clinical trials are needed to determine the optimal dosage, administration routes, and possible side effects of cinnamon oil. Additionally, exploring the interactions between cinnamon oil and other drugs, as well as its safety in different populations, is crucial. Considering the current increase in antibiotic resistance and the demand for sustainable and effective medical treatments, this review emphasizes the necessity for further research into the mechanisms and safety of cinnamon oil to confirm its feasibility as a basis for new drug development. In summary, as a versatile natural product, cinnamon oil holds broad application prospects and is expected to play a greater role in future medical research and clinical practice.
Collapse
Affiliation(s)
- Jiageng Guo
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530000, China; (J.G.); (X.J.); (Y.T.); (S.Y.); (J.L.); (J.X.); (F.Z.)
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning 530000, China
| | - Xinya Jiang
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530000, China; (J.G.); (X.J.); (Y.T.); (S.Y.); (J.L.); (J.X.); (F.Z.)
| | - Yu Tian
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530000, China; (J.G.); (X.J.); (Y.T.); (S.Y.); (J.L.); (J.X.); (F.Z.)
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning 530000, China
| | - Shidu Yan
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530000, China; (J.G.); (X.J.); (Y.T.); (S.Y.); (J.L.); (J.X.); (F.Z.)
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning 530000, China
| | - Jiaojiao Liu
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530000, China; (J.G.); (X.J.); (Y.T.); (S.Y.); (J.L.); (J.X.); (F.Z.)
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning 530000, China
| | - Jinling Xie
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530000, China; (J.G.); (X.J.); (Y.T.); (S.Y.); (J.L.); (J.X.); (F.Z.)
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning 530000, China
| | - Fan Zhang
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530000, China; (J.G.); (X.J.); (Y.T.); (S.Y.); (J.L.); (J.X.); (F.Z.)
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning 530000, China
| | - Chun Yao
- Engineering Research Center of Innovative Drugs for Traditional Chinese Medicine and Zhuang and Yao Medicine, Ministry of Education, Guangxi University of Chinese Medicine, Nanning 530000, China
| | - Erwei Hao
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530000, China; (J.G.); (X.J.); (Y.T.); (S.Y.); (J.L.); (J.X.); (F.Z.)
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning 530000, China
- Engineering Research Center of Innovative Drugs for Traditional Chinese Medicine and Zhuang and Yao Medicine, Ministry of Education, Guangxi University of Chinese Medicine, Nanning 530000, China
| |
Collapse
|
2
|
Aioub AAA, Abdelnour SA, Hashem AS, Maher M, Abdel-Wahab SIZ, Alkeridis LA, Shukry M, Sayed SM, Elsobki AEA. Cinnamon nanoemulsion mitigates acetamiprid-induced hepatic and renal toxicity in rats: biochemical, histopathological, immunohistochemical, and molecular docking analysis. BMC Vet Res 2024; 20:256. [PMID: 38867202 PMCID: PMC11167909 DOI: 10.1186/s12917-024-04084-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/16/2024] [Indexed: 06/14/2024] Open
Abstract
Acetamiprid (ACDP) is a widely used neonicotinoid insecticide that is popular for its efficacy in controlling fleas in domestic settings and for pets. Our study aims to offer a comprehensive examination of the toxicological impacts of ACDP and the prophylactic effects of cinnamon nanoemulsions (CMNEs) on the pathological, immunohistochemical, and hematological analyses induced by taking ACDP twice a week for 28 days. Forty healthy rats were divided into four groups (n = 10) at random; the first group served as control rats; the second received CMNEs (2 mg/Kg body weight); the third group received acetamiprid (ACDP group; 21.7 mg/Kg body weight), and the fourth group was given both ACDP and CMNEs by oral gavage. Following the study period, tissue and blood samples were extracted and prepared for analysis. According to a GC-MS analysis, CMNEs had several bioactive ingredients that protected the liver from oxidative stress by upregulating antioxidant and anti-inflammatory agents. Our findings demonstrated that whereas ACDP treatment considerably boosted white blood cells (WBCs) and lymphocytes, it significantly lowered body weight gain (BWG), red blood cells (RBCs), hemoglobin (Hb), hematocrit (HCT), and platelets (PLT). ACDP notably reduced antioxidant enzyme activities: superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT) and elevated hydrogen peroxide and malondialdehyde levels compared with other groups. ACDP remarkably raised alanine aminotransferase (ALT), aspartate amino transaminase (AST), and alkaline phosphatase (ALP) levels.Moreover, the histopathological and immunohistochemistry assays discovered a severe toxic effect on the liver and kidney following ACDP delivery. Furthermore, cyclooxygenase 2 (COX-2) + immunoexpression was enhanced after treatment with CMNEs. All of the parameters above were returned to nearly normal levels by the coadministration of CMNEs. The molecular docking of cinnamaldehyde with COX-2 also confirmed the protective potential of CMNEs against ACDP toxicity. Our findings highlighted that the coadministration of CMNEs along with ACDP diminished its toxicity by cutting down oxidative stress and enhancing antioxidant capacity, demonstrating the effectiveness of CMNEs in lessening ACDP toxicity.
Collapse
Affiliation(s)
- Ahmed A A Aioub
- Plant Protection Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt.
| | - Sameh A Abdelnour
- Animal Production Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Ahmed S Hashem
- Stored Product Pests Research Department, Plant Protection Research Institute, Agricultural Research Center, Sakha, Kafr El-Sheikh, 33717, Egypt
| | - Mohamed Maher
- Department of Biochemistry, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Sarah I Z Abdel-Wahab
- Plant Protection Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Lamya Ahmed Alkeridis
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Mustafa Shukry
- Physiology Department, Faculty of Veterinary Medicine, kafrelsheikh University, kafrelsheikh, 33516, Egypt
| | - Samy M Sayed
- Department of Economic Entomology and Pesticides, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt
- Department of Science and Technology, University College-Ranyah, Taif University, B.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Ahmed E A Elsobki
- Plant Protection Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| |
Collapse
|
3
|
Al-Jamal H, Idriss S, Roufayel R, Abi Khattar Z, Fajloun Z, Sabatier JM. Treating COVID-19 with Medicinal Plants: Is It Even Conceivable? A Comprehensive Review. Viruses 2024; 16:320. [PMID: 38543686 PMCID: PMC10974729 DOI: 10.3390/v16030320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/15/2024] [Accepted: 02/18/2024] [Indexed: 05/23/2024] Open
Abstract
In 2020, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) challenged the world with a global outbreak that led to millions of deaths worldwide. Coronavirus disease 2019 (COVID-19) is the symptomatic manifestation of this virus, which can range from flu-like symptoms to utter clinical complications and even death. Since there was no clear medicine that could tackle this infection or lower its complications with minimal adverse effects on the patients' health, the world health organization (WHO) developed awareness programs to lower the infection rate and limit the fast spread of this virus. Although vaccines have been developed as preventative tools, people still prefer going back to traditional herbal medicine, which provides remarkable health benefits that can either prevent the viral infection or limit the progression of severe symptoms through different mechanistic pathways with relatively insignificant side effects. This comprehensive review provides scientific evidence elucidating the effect of 10 different plants against SARS-CoV-2, paving the way for further studies to reconsider plant-based extracts, rich in bioactive compounds, into more advanced clinical assessments in order to identify their impact on patients suffering from COVID-19.
Collapse
Affiliation(s)
- Hadi Al-Jamal
- Faculty of Public Health 3, Lebanese University, Tripoli 1100, Lebanon;
| | - Sara Idriss
- Laboratory of Applied Biotechnology (LBA3B), Azm Center for Research in Biotechnology and Its Applications, EDST, Lebanese University, Tripoli 1300, Lebanon;
| | - Rabih Roufayel
- College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait;
| | - Ziad Abi Khattar
- Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, Tripoli P.O. Box 100, Lebanon;
| | - Ziad Fajloun
- Laboratory of Applied Biotechnology (LBA3B), Azm Center for Research in Biotechnology and Its Applications, EDST, Lebanese University, Tripoli 1300, Lebanon;
- Department of Biology, Faculty of Sciences 3, Campus Michel Slayman Ras Maska, Lebanese University, Tripoli 1352, Lebanon
| | - Jean-Marc Sabatier
- INP, Inst Neurophysiopathol, Aix-Marseille Université, CNRS, 13385 Marseille, France
| |
Collapse
|
4
|
Garg P, Alambayan J, Garg V. Herbal Approaches in the Management of Mental Depression. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2023; 22:98-124. [PMID: 35088681 DOI: 10.2174/1871527321666220128091408] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/21/2021] [Accepted: 10/21/2021] [Indexed: 01/01/2023]
Abstract
BACKGROUND Human's existence has become more stressful these days, most likely for the sake of improving one's lifestyle and fulfilling one's aspirations and needs. Depression is the most frequent neurological disorder, which affects millions of individuals worldwide. In clinical research, depression is the second most frequent chronic disease. A variety of herbal medications thought to have antidepressant-like effects have been reported in ancient pharmacopoeias from around the world. These provide several prospective chemicals that could be developed into modern mental medications while also causing no noticeable negative effects. OBJECTIVE The review is written to provide herbal treatment and comprehensive information about depression. METHODS Plants and plant formulations that were found effective in the treatment of depression are thoroughly reviewed. The antidepressant efficacies of medicinal plants, as well as their dosages, are investigated using experimental models. The review article contains 140 plants possessing antidepressant properties, 11 commercial formulations, and 25 active/isolated ingredients, as well as their chemical structure, which have been thoroughly reviewed with antidepressant activity after studying 283 references. RESULTS Literature revealed that a variety of medicinal plants are effective for the treatment of depression such as Hypericum perforatum, Catha edulis, Tinospora cordifolia, Curcuma longa, Ferula foetida, Rhodio larosea, Glycyrrhiza glabra, Crocus sativus, Ocimumba silicum and Embelica officinalis. CONCLUSION Potential compounds isolated from medicinal plants for the treatment of depressive disorders need to be established and herbal plant research could aid in this endeavour.
Collapse
Affiliation(s)
- Preeti Garg
- Department of Pharmacognosy and Phytochemistry, Hindu College of Pharmacy, Sonepat, Haryana, India
| | - Jyoti Alambayan
- Department of Pharmacognosy and Phytochemistry, Hindu College of Pharmacy, Sonepat, Haryana, India
| | - Vandana Garg
- Department of Pharmaceutical Sciences, M.D.U, Rohtak, Haryana, India
| |
Collapse
|
5
|
Anxiolytic-like Effect of Inhaled Cinnamon Essential Oil and Its Main Component Cinnamaldehyde in Animal Models. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227997. [PMID: 36432096 PMCID: PMC9693619 DOI: 10.3390/molecules27227997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/19/2022]
Abstract
Aromatherapy is one of the most common safer alternative treatments for psychiatric disorders with fewer side effects than conventional drugs. Here, we investigated the effects of cinnamon essential oil (CIEO) inhalation on mouse behaviors by performing different behavioral tests. CIEO inhalation showed anxiolytic effects in the elevated plus maze test, as inferred from increased time spent in open arms and decreased time spent in closed arms. Moreover, the CIEO treatment enhanced social behavior by increasing the total contact number, time spent in the center, distance traveled in the center, and total distance in the social interaction test. However, CIEO inhalation did not have any effect on performance in the open field test, tail suspension test, forced swimming test, and Y maze tests. The microarray analysis indicated that the CIEO treatment downregulated 17 genes and upregulated 15 genes in the hippocampus. Among them, Dcc, Egr2, and Fos are the most crucial genes that are involved in anxiety-related biological processes and pathways, including the regulation of neuronal death and neuroinflammation. Gas chromatography/mass spectrometry analysis revealed that cinnamaldehyde is the main component of CIEO. Cinnamaldehyde recovered MK-801-induced anxiety-related changes in the electroencephalogram power spectrum in zebrafish. Taken together, our findings suggest that CIEO and its main component cinnamaldehyde have an anxiolytic effect through the regulation of the expression of genes related to neuroinflammatory response and neuronal death.
Collapse
|
6
|
Soares GABE, Bhattacharya T, Chakrabarti T, Tagde P, Cavalu S. Exploring Pharmacological Mechanisms of Essential Oils on the Central Nervous System. PLANTS (BASEL, SWITZERLAND) 2021; 11:21. [PMID: 35009027 PMCID: PMC8747111 DOI: 10.3390/plants11010021] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/15/2021] [Accepted: 12/19/2021] [Indexed: 06/01/2023]
Abstract
Essential oils (EOs) have been traditionally used as ancient remedies to treat many health disorders due to their enormous biological activities. As mainstream allopathic medication currently used for CNS disorders is associated with adverse effects, the search to obtain safer alternatives as compared to the currently marketed therapies is of tremendous significance. Research conducted suggests that concurrent utilization of allopathic medicines and EOs is synergistically beneficial. Due to their inability to show untoward effects, various scientists have tried to elucidate the pharmacological mechanisms by which these oils exert beneficial effects on the CNS. In this regard, our review aims to improve the understanding of EOs' biological activity on the CNS and to highlight the significance of the utilization of EOs in neuronal disorders, thereby improving patient acceptability of EOs as therapeutic agents. Through data compilation from library searches and electronic databases such as PubMed, Google Scholar, etc., recent preclinical and clinical data, routes of administration, and the required or maximal dosage for the observation of beneficial effects are addressed. We have also highlighted the challenges that require attention for further improving patient compliance, research gaps, and the development of EO-based nanomedicine for targeted therapy and pharmacotherapy.
Collapse
Affiliation(s)
- Giselle A. Borges e Soares
- Department of Medicinal and Biological Chemistry, University of Toledo, 3000 Arlington Ave., Toledo, OH 43614, USA;
| | - Tanima Bhattacharya
- Innovation, Incubation & Industry (I-Cube) Laboratory, Techno India NJR Institute of Technology, Udaipur 313003, Rajasthan, India
- Department of Science & Engineering, Novel Global Community Educational Foundation, Hebersham, NSW 2770, Australia
| | - Tulika Chakrabarti
- Department of Chemistry, Sir Padampat Singhania University, Udaipur 313601, Rajasthan, India;
| | - Priti Tagde
- Bhabha Pharmacy Research Institute, Bhabha University Bhopal, Bhopal 462026, Madhya Pradesh, India;
- PRISAL Foundation (Pharmaceutical Royal International Society), Bhopal 462042, India
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 Decembrie 10, 410087 Oradea, Romania
| |
Collapse
|
7
|
Ameliorating Effect of Combined Cinnamon and Ginger Oils against the Neurotoxicity of Nicotine Administration on the Prefrontal Cortex of Adult Albino Rats: Immunohistochemical and Ultrastructural Study. Sci Pharm 2021. [DOI: 10.3390/scipharm89030041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background: Nicotine is the active alkaloid in cigarettes. It was reported that tobacco smoking has many hazards; one of these hazards is the effect on the cognitive function of the prefrontal cortex. The aim of our study is to investigate the antioxidant effects of ginger, cinnamon oils, and their combination on morphological changes in the prefrontal cortex that were induced by nicotine. Materials and methods: Fifty adult male albino rats were divided into five groups: group I (control group), group II (nicotine), group III (nicotine + cinnamon), group IV (nicotine + ginger), and group V (nicotine + cinnamon + ginger). The coronal sections from the anterior part of the rat brain at the site of prefrontal cortex were examined by light microscope for (H&E and immunohistochemical staining with TNF-α and GFAP), while the ultrastructure morphology was examined by transmission electron microscopy. Levels of the oxidative stress markers (MDA, GSH) in the rats’ brain tissue homogenate were biochemically assessed. Results: Compared to the control group, the rats that were treated with nicotine (group II) showed a significant oxidative stress in the form of marked elevation of MDA and decrease in GSH, apoptotic changes especially in the pyramidal cells in the form of neuronal cell degeneration and pyknosis, and an elevation in the inflammatory marker TNF-α and GFAP expressions. These changes were observed to a lesser degree in rat group (III) and group (IV), while there was a marked improvement achieved by the combined usage of cinnamon and ginger oils, together compared to the nicotine group. Conclusions: Ginger and cinnamon are powerful antioxidants which ameliorate the degenerative and oxidative effects produced by nicotine on a rat’s prefrontal cortex.
Collapse
|
8
|
Etaee F, Komaki A, Faraji N, Rezvani-Kamran A, Komaki S, Hasanein P, Taheri M, Omidi G. The effects of cinnamaldehyde on acute or chronic stress-induced anxiety-related behavior and locomotion in male mice. Stress 2019; 22:358-365. [PMID: 30806129 DOI: 10.1080/10253890.2019.1567710] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Anxiety and stress are considered as universal psychiatric exhibitions of the present societies and lifestyles. Several experiments have been conducted to examine natural anxiolytic agents to find out an alternative to synthetic anxiolytic drugs. The present study investigated the anxiolytic effects of cinnamaldehyde (Cin) on mice behavior in the elevated plus maze (EPM) and open field (OF) tests. Sixty male Swiss mice, weighing 20-30 g, were divided into six groups including: acute stress + mazola oil; chronic stress + oil; acute stress + Cin (20 mg/kg); chronic stress + Cin; non-stress + oil; and non-stress + Cin groups. The groups were administered for seven days (once a day). The acute stress + Cin group showed a meaningful rise in the percentage of entries into the open arms compared to the acute stress + oil group (p <.05). The percentage of time spent in the open arms in the chronic stress + Cin group was significantly higher compared to the chronic stress + oil group (p < .01). The percentage of entries into the open arms increased significantly (p < .01) in the chronic stress + Cin group in comparison with the chronic stress + oil group. The Cin treated groups showed significant increases in the time spent in the center area and in the number of entries into the center area compared with the oil treated groups in OF test. The number of entries into the arms (total activity), as well as locomotor activity was not significant among groups. The results of the present study indicated that Cin, as a natural product, might have anxiolytic effects in mice behavior in the EPM and OF tests. Lay summary The results demonstrated that the administration of cinnamaldehyde (Cin) produced anxiolytic effects in mice. Natural antioxidant products have been reported effective for anxiety. Synthetic medications have notable adverse effects. Therefore, these natural substances with broad therapeutic applicability are able to reduce anxiety-related behavior with rare side effects. According to the results, Cin could decrease anxiety-related behavior in mice.
Collapse
Affiliation(s)
- Farshid Etaee
- a Neurophysiology Research Center , Hamadan University of Medical Sciences , Hamadan , Iran
- b Rahe Sabz Addiction Rehabilitation Clinic , Hamadan University of Medical Sciences , Hamadan , Iran
| | - Alireza Komaki
- a Neurophysiology Research Center , Hamadan University of Medical Sciences , Hamadan , Iran
| | - Nafiseh Faraji
- a Neurophysiology Research Center , Hamadan University of Medical Sciences , Hamadan , Iran
| | - Arezoo Rezvani-Kamran
- a Neurophysiology Research Center , Hamadan University of Medical Sciences , Hamadan , Iran
| | - Somayeh Komaki
- a Neurophysiology Research Center , Hamadan University of Medical Sciences , Hamadan , Iran
| | - Parisa Hasanein
- c Department of Biology, School of Basic Sciences , University of Zabol , Zabol , Iran
| | - Mohammad Taheri
- d Department of Medical Genetics , Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Ghazaleh Omidi
- a Neurophysiology Research Center , Hamadan University of Medical Sciences , Hamadan , Iran
| |
Collapse
|
9
|
Adalat M, Khalili M, Ayromlou H, Haririan S, Fazljou SMB, Rezaeizadeh H, Safari AA, Zargaran A. Antidepressant Effects of a Persian Medicine Remedy on Multiple Sclerosis Patients: A Double-Blinded Randomized Clinical Trial. Galen Med J 2019; 8:e1212. [PMID: 34466472 PMCID: PMC8343653 DOI: 10.31661/gmj.v8i0.1212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 08/11/2018] [Accepted: 09/03/2018] [Indexed: 10/26/2022] Open
Abstract
Background Multiple sclerosis (MS), an inflammatory neurodegenerative disease of the central nervous system, is accompanied by some psychiatric disorders, one prominent example of which is depression. The aim of this study was to investigate the effects of a Persian herbal medicine treatment that contains Crocus sativus, Hypericum perforatum, Cinnamon verum, and Vitis vinifera on fatigue and sleep disorders in MS patients. Materials and Methods A Persian medicine remedy containing C.sativus, H.perforatum, C.verum, and V.vinifera was tested for its ability to improve the symptoms of depression in MS patients. This randomized double-blind clinical study was performed among 52 patients with MS who were allocated to their respective research groups through blocked randomization. The patients were treated for 4 weeks with either the drug or the placebo. To quantify the symptoms of depression, Beck depression inventory (BDI) was used. Results Forty-six patients completed the study. In the course of the study, as the primary outcome, BDI decreased in the drug group (p =0.000) and the placebo group (p =0.001) significantly, but the rate of change in the drug group was significantly higher than in the placebo group (-13.9 ± 8.6 vs. -3.9 ± 4.3, p =0.000). While analyzing time and treatment effect for BDI, significant decreases in BDI were observed for the drug group, but not in the placebo group (p = 0.001). Conclusion The present study suggests that Persian medicine remedy treatment in combination with chemical drugs may improve depression symptoms in MS patients. More investigations are needed to discover the exact mechanisms and processes involved.
Collapse
Affiliation(s)
- Maryam Adalat
- Department of Traditional Medicine, School of Traditional Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Khalili
- Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Neurosciences Research Center; Tabriz University of Medical Sciences, Tabriz, Iran
- Correspondence to: Mohammad Khalili, PhD, Multiple Sclerosis Research Center, Tehran University of Medical Sciences, Tehran, Iran Telephone Number: +98216312374 Email Address:
| | - Hormoz Ayromlou
- Neurosciences Research Center; Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Neurology, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Hossein Rezaeizadeh
- Department of Traditional Medicine, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Akbar Safari
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Arman Zargaran
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Synergistic Effect of the Lactoperoxidase System and Cinnamon Essential Oil on Total Flora andSalmonellaGrowth Inhibition in Raw Milk. J FOOD QUALITY 2018. [DOI: 10.1155/2018/8547954] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Despite its antibacterial and antipathogenic effects, the heat treatment of milk induces undesirable changes that can be noted in the overall properties of ultrahigh temperature (UHT) milk, such as changes in nutritional and organoleptic properties. Our goal is to find new nonthermal antibacterial technologies for the preservation of raw milk (RM). This study investigates the possible synergistic effect of using a combination of the lactoperoxidase system (LS) and 3 μg mL−1of cinnamon essential oil (cinnamon EO) to inactivate the total flora of milk andSalmonellaHadar (S. Hadar). The LS was activated with 30 mg L−1sodium percarbonate and 14 mg L−1of sodium thiocyanate. Using this approach, we obtained a synergistic effect with a complete inhibition of the activity of the total flora of the milk andS.Hadar after 12 hours at 25°C. In addition, the attainment of synergy was defined when the inhibitory effect of the two compounds together was greater than the effect observed by each compound added alone. Moreover, the monitoring of the synergistic effect at 4°C for 5 days showed complete inhibition of total flora for 3 days and forS. Hadar it was up to 5 days. To summarize, the current study clearly identified a new inhibitory combination that may be used in food-based applications.
Collapse
|