1
|
Shen H, Gong M, Zhang M, Sun S, Zheng R, Yan Q, Hu J, Xie X, Wu Y, Yang J, Wu J, Yang J. Effects of PM 2.5 exposure on clock gene BMAL1 and cell cycle in human umbilical vein endothelial cells. Toxicol Res (Camb) 2024; 13:tfae022. [PMID: 38419835 PMCID: PMC10898333 DOI: 10.1093/toxres/tfae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/02/2024] [Accepted: 02/07/2024] [Indexed: 03/02/2024] Open
Abstract
Background Fine particulate matter (PM2.5) exposure has been closely associated with cardiovascular diseases, which are relevant to cell cycle arrest. Brain and muscle aryl-hydrocarbon receptor nuclear translocator-like protein 1 (BMAL1) not only participates in regulating the circadian clock but also plays a role in modulating cell cycle. However, the precise contribution of the circadian clock gene BMAL1 to PM2.5-induced cell cycle change remains unclear. This study aims to explore the impact of PM2.5 exposure on BMAL1 expression and the cell cycle in human umbilical vein endothelial cells (HUVECs). Methods HUVECs was exposed to PM2.5 for 24 hours at different concentrations ((0, 12.5, 25, 75 and 100 μg.mL-1) to elucidate the potential toxic mechanism. Following exposure to PM2.5, cell viability, ROS, cell cycle, and the expression of key genes and proteins were detected. Results A remarkable decrease in cell viability is observed in the PM2.5-exposed HUVECs, as well as a significant increase in ROS production. In addition, PM2.5-exposed HUVECs have cycle arrest in G0/G1 phase, and the gene expression of p27 is also markedly increased. The protein expression of BMAL1 and the gene expression of BMAL1 are increased significantly. Moreover, the protein expressions of p-p38 MAPK and p-ERK1/2 exhibit a marked increase in the PM2.5-exposed HUVECs. Furthermore, following the transfection of HUVECs with siBMAL1 to suppress BMAL1 expression, we observed a reduction in both the protein and gene expression of the MAPK/ERK pathway in HUVECs exposed to PM2.5. Conclusions Overall, our results indicate that PM2.5 exposure significantly upregulates the circadian clock gene expression of BMAL1 and regulates G0/G1 cell cycle arrest in HUVECs through the MAPK/ERK pathway, which may provide new insights into the potential molecular mechanism regarding BMAL1 on PM2.5-induced cardiovascular diseases.
Collapse
Affiliation(s)
- Haochong Shen
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, 199 Renai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China
| | - Meidi Gong
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, 199 Renai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China
| | - Minghao Zhang
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, 199 Renai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China
| | - Shikun Sun
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, 199 Renai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China
| | - Rao Zheng
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, 199 Renai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China
| | - Qing Yan
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, 199 Renai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China
| | - Juan Hu
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, 199 Renai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China
| | - Xiaobin Xie
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, 199 Renai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China
| | - Yan Wu
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, 199 Renai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China
| | - Junjie Yang
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, 199 Renai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China
| | - Jing Wu
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, 199 Renai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China
| | - Jing Yang
- School of Basic Medicine and Forensic Medicine, Baotou Medical College, Inner Mongolia University of Science and Technology, 31 Jianshe Road, Donghe District, Baotou, Inner Mongolia 014040, China
| |
Collapse
|
2
|
Naserinejad N, Costanian C, Birot O, Barboni T, Roudier E. Wildland fire, air pollution and cardiovascular health: is it time to focus on the microvasculature as a risk assessment tool? Front Physiol 2023; 14:1225195. [PMID: 37538378 PMCID: PMC10394245 DOI: 10.3389/fphys.2023.1225195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/06/2023] [Indexed: 08/05/2023] Open
Abstract
Climate change favors weather conditions conducive to wildland fires. The intensity and frequency of forest fires are increasing, and fire seasons are lengthening. Exposure of human populations to smoke emitted by these fires increases, thereby contributing to airborne pollution through the emission of gas and particulate matter (PM). The adverse health outcomes associated with wildland fire exposure represent an important burden on the economies and health systems of societies. Even though cardiovascular diseases (CVDs) are the main of cause of the global burden of diseases attributable to PM exposure, it remains difficult to show reliable associations between exposure to wildland fire smoke and cardiovascular disease risk in population-based studies. Optimal health requires a resilient and adaptable network of small blood vessels, namely, the microvasculature. Often alterations of this microvasculature precede the occurrence of adverse health outcomes, including CVD. Biomarkers of microvascular health could then represent possible markers for the early detection of poor cardiovascular outcomes. This review aims to synthesize the current literature to gauge whether assessing the microvasculature can better estimate the cardiovascular impact of wildland fires.
Collapse
Affiliation(s)
- Nazgol Naserinejad
- School of Global Health, Faculty of Health, York University, Toronto, ON, Canada
| | - Christy Costanian
- School of Global Health, Faculty of Health, York University, Toronto, ON, Canada
- Department of Family and Community Medicine, St. Michael’s Hospital, Toronto, ON, Canada
| | - Olivier Birot
- Muscle Health Research Center, School of Kinesiology and Health Science, Faculty of Health, York University, Toronto, ON, Canada
| | - Toussaint Barboni
- Laboratoire des Sciences Pour l’Environnement (SPE), UMR-CNRS 6134, University of Corsica Pasquale Paoli, Campus Grimaldi, Corte, France
| | - Emilie Roudier
- School of Global Health, Faculty of Health, York University, Toronto, ON, Canada
- Muscle Health Research Center, School of Kinesiology and Health Science, Faculty of Health, York University, Toronto, ON, Canada
| |
Collapse
|
3
|
Advances in the Bioactivities of Phytochemical Saponins in the Prevention and Treatment of Atherosclerosis. Nutrients 2022; 14:nu14234998. [PMID: 36501028 PMCID: PMC9735883 DOI: 10.3390/nu14234998] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/16/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022] Open
Abstract
Atherosclerosis (AS) is a chronic inflammatory disease characterized by hardening and narrowing of arteries. AS leads to a number of arteriosclerotic vascular diseases including cardiovascular diseases, cerebrovascular disease and peripheral artery disease, which pose a big threat to human health. Phytochemicals are a variety of intermediate or terminal low molecular weight secondary metabolites produced during plant energy metabolism. Phytochemicals from plant foods (vegetables, fruits, whole grains) and traditional herb plants have been shown to exhibit multiple bioactivities which are beneficial for prevention and treatment against AS. Many types of phytochemicals including polyphenols, saponins, carotenoids, terpenoids, organic sulfur compounds, phytoestrogens, phytic acids and plant sterols have already been identified, among which saponins are a family of glycosidic compounds consisting of a hydrophobic aglycone (sapogenin) linked to hydrophilic sugar moieties. In recent years, studies have shown that saponins exhibit a number of biological activities such as anti-inflammation, anti-oxidation, cholesterol-lowering, immunomodulation, anti-platelet aggregation, etc., which are helpful in the prevention and treatment of AS. This review aims to summarize the recent advances in the anti-atherosclerotic bioactivities of saponins such as ginsenoside, soyasaponin, astra-galoside, glycyrrhizin, gypenoside, dioscin, saikosaponin, etc.
Collapse
|
4
|
He S, Ning Y, Ma F, Liu D, Jiang S, Deng S. IL-23 Inhibits Trophoblast Proliferation, Migration, and EMT via Activating p38 MAPK Signaling Pathway to Promote Recurrent Spontaneous Abortion. J Microbiol Biotechnol 2022; 32:792-799. [PMID: 35637168 PMCID: PMC9628909 DOI: 10.4014/jmb.2112.12056] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 12/15/2022]
Abstract
As a vital problem in reproductive health, recurrent spontaneous abortion (RSA) affects about 1% of women. We performed this study with an aim to explore the molecular mechanism of interleukin-23 (IL-23) and find optimal or effective methods to improve RSA. First, ELISA was applied to evaluate the expressions of IL-23 and its receptor in HTR-8/SVneo cells after IL-23 treatment. CCK-8, TUNEL, wound healing and transwell assays were employed to assess the proliferation, apoptosis, migration and invasion of HTR-8/SVneo cells, respectively. Additionally, the expressions of apoptosis-, migration-, epithelial-mesenchymal transition- (EMT-) and p38 MAPK signaling pathway-related proteins were measured by western blotting. To further investigate the relationship between IL-23 and p38 MAPK signaling pathway, HTR-8/SVneo cells were treated for 1 h with p38 MAPK inhibitor SB239063, followed by a series of cellular experiments on proliferation, apoptosis, migration and invasion, as aforementioned. The results showed that IL-23 and its receptors were greatly elevated in IL-23-treated HTR-8/SVneo cells. Additionally, IL-23 demonstrated suppressive effects on the proliferation, apoptosis, migration, invasion and EMT of IL-23-treated HTR-8/SVneo cells. More importantly, the molecular mechanism of IL-23 was revealed in this study; that is to say, IL-23 inhibited the proliferation, apoptosis, migration, invasion and EMT of IL-23-treated HTR-8/SVneo cells via activating p38 MAPK signaling pathway. In conclusion, IL-23 inhibits trophoblast proliferation, migration, and EMT via activating p38 MAPK signaling pathway, suggesting that IL-23 might be a novel target for the improvement of RSA.
Collapse
Affiliation(s)
- Shan He
- Department of Pharmacy, Affiliated Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, Guangdong 518028, P.R. China
| | - Yan Ning
- Department of Traditional Chinese Medicine, Affiliated Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, Guangdong 518028, P.R. China,Corresponding author Phone: +0755-82889999 E-mail:
| | - Fei Ma
- Department of Traditional Chinese Medicine, Affiliated Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, Guangdong 518028, P.R. China
| | - Dayan Liu
- Department of Genesiology, Affiliated Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, Guangdong 518028, P.R. China
| | - Shaoyan Jiang
- Department of Pharmacy, Affiliated Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, Guangdong 518028, P.R. China
| | - Shaojie Deng
- Department of Pharmacy, Affiliated Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, Guangdong 518028, P.R. China
| |
Collapse
|
5
|
Jiang H, Gong R, Wu Y. miR‑129‑5p inhibits oxidized low‑density lipoprotein‑induced A7r5 cell viability and migration by targeting HMGB1 and the PI3k/Akt signaling pathway. Exp Ther Med 2022; 23:243. [PMID: 35222720 PMCID: PMC8815026 DOI: 10.3892/etm.2022.11168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 08/17/2021] [Indexed: 11/28/2022] Open
Abstract
The mechanisms underlying gene therapy for the treatment of cardiovascular diseases remain to be elucidated. microRNAs (miRs) have been recognized as key regulators in vascular smooth muscle cells, which are involved in the formation of atherosclerosis. The present study aimed to explore the role of miR-129-5p in the regulation of high-mobility group box 1 protein (HMGB1) and the PI3k/Akt signaling pathway, and further explore the role of miR-129-5p in the viability and migration of A7r5 cells induced by oxidized low-density lipoprotein (ox-LDL). Cell viability, viability and migration were determined using Cell Counting Kit-8, colony formation, wound healing and Transwell assays. The expression levels of miR-129-5p and HMGB1 were detected using reverse transcription-quantitative PCR and western blotting. A dual-luciferase assay was used to confirm the association between miR-129-5p and HMGB1. RT-qPCR results in the present study demonstrated that the expression levels of miR-129-5p in A7r5 cells induced by ox-LDL were significantly decreased, compared with the control cells. Moreover, the viability and migration of A7r5 cells induced by ox-LDL were increased compared with control group. Western blot and RT-qPCR results showed that miR-129-5p decreased the expression of HMGB1 in A7r5 cells compared with control group. The present results demonstrated that miR-129-5p inhibited the viability, viability and migration of A7r5 cells induced by ox-LDL, and directly targeted HMGB1 to regulate the PI3k/Akt signaling pathway. In conclusion, miR-129-5p inhibited the PI3k/Akt signaling pathway by directly targeting HMGB1, and reduced the viability, viability and migration of A7r5 cells induced by ox-LDL.
Collapse
Affiliation(s)
- Hongfei Jiang
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Ren Gong
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yanqing Wu
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|