1
|
Chi ZC. Progress in research of ferroptosis in gastrointestinal tumors. Shijie Huaren Xiaohua Zazhi 2024; 32:699-715. [DOI: 10.11569/wcjd.v32.i10.699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/04/2024] [Accepted: 09/19/2024] [Indexed: 10/28/2024] Open
Abstract
Ferroptosis is a non-apoptotic and oxidation-damaged regulated cell death caused by iron accumulation, lipid peroxidation, and subsequent plasma membrane rupture. Ferroptosis is the main cause of tissue damage caused by iron overload and lipid peroxidation. With the deepening of the research in recent years, the understanding of the occurrence and treatment of tumors has made a major breakthrough, which brings new strategies for anti-cancer treatment. This paper reviews the relationship between ferroptosis and gastrointestinal tumors, the research of ferroptosis in cancer prevention and treatment, and the role of ferroptosis in the prevention and treatment of gastrointestinal tumors.
Collapse
Affiliation(s)
- Zhao-Chun Chi
- Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao 266011, Shandong Province, China
| |
Collapse
|
2
|
Xu T, Fan W, Chen C, Feng K, Sheng X, Wang H, Yang K, Chen B, Wang X, Wang Y. Transcriptome analysis of the diseased intervertebral disc tissue in patients with spinal tuberculosis. BMC Med Genomics 2024; 17:205. [PMID: 39135040 PMCID: PMC11318271 DOI: 10.1186/s12920-024-01981-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 08/05/2024] [Indexed: 08/16/2024] Open
Abstract
OBJECTIVE To investigate the differential expression genes (DEGs) in spinal tuberculosis using transcriptomics, with the aim of identifying novel therapeutic targets and prognostic indicators for the clinical management of spinal tuberculosis. METHODS Patients who visited the Department of Orthopedics at the Second Hospital, Lanzhou University from January 2021 to May 2023 were enrolled. Based on the inclusion and exclusion criteria, there were 5 patients in the test group and 5 patients in the control group. Total RNA was extracted and paired-end sequencing was conducted on the sequencing platform. After processing the sequencing data with clean reads and annotating the reference genome, FPKM normalization and differential expression analysis were performed. The DEGs and long non-coding RNAs (LncRNAs) were analyzed for Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) enrichment. The cis-regulation of differentially expressed mRNAs (DE mRNAs) by LncRNAs was predicted and analyzed to establish a co-expression network. RESULTS This study identified 2366 DEGs, with 974 genes significantly upregulated and 1392 genes significantly downregulated. The upregulated genes are associated with cytokine-cytokine receptor interactions, tuberculosis, and TNF-α signaling pathways, primarily enriched in biological processes such as immunity and inflammation. The downregulated genes are related to muscle development, contraction, fungal defense response, and collagen metabolism processes. Analysis of LncRNAs from bone tuberculosis RNA-seq data detected a total of 3652 LncRNAs, with 356 significantly upregulated and 184 significantly downregulated. Further analysis identified 311 significantly different LncRNAs that could cis-regulate 777 target genes, enriched in pathways such as muscle contraction, inflammatory response, and immune response, closely related to bone tuberculosis. There are 51 genes enriched in the immune response pathway regulated by cis-acting LncRNAs. LncRNAs that regulate immune response-related genes, such as upregulated RP11-451G4.2, RP11-701P16.5, AC079767.4, AC017002.1, LINC01094, CTA-384D8.35, and AC092484.1, as well as downregulated RP11-2C24.7, may serve as potential prognostic and therapeutic targets. CONCLUSION The DE mRNAs and LncRNAs in spinal tuberculosis are both associated with immune regulatory pathways. These pathways promote or inhibit the tuberculosis infection and development at the mechanistic level and play an important role in the process of tuberculosis transferring to bone tissue.
Collapse
Affiliation(s)
- Tian'en Xu
- Department of Orthopaedics, the Second Hospital & Clinical Medical School, Lanzhou University, 82 Cuiyingmen, Chengguan District, Lanzhou, Gansu, Lanzhou City, 730000, Gansu Province, PR China
| | - Wenjuan Fan
- Departments of Cardiovascular Surgery, Gansu Provincial Maternity and Child care Hospital, Gansu Provincial Central Hospital, Lanzhou, Gansu, 730000, PR China
| | - Cong Chen
- Department of Orthopaedics, the Second Hospital & Clinical Medical School, Lanzhou University, 82 Cuiyingmen, Chengguan District, Lanzhou, Gansu, Lanzhou City, 730000, Gansu Province, PR China
| | - Kai Feng
- Department of Orthopaedics, the Second Hospital & Clinical Medical School, Lanzhou University, 82 Cuiyingmen, Chengguan District, Lanzhou, Gansu, Lanzhou City, 730000, Gansu Province, PR China
| | - Xiaoyun Sheng
- Department of Orthopaedics, the Second Hospital & Clinical Medical School, Lanzhou University, 82 Cuiyingmen, Chengguan District, Lanzhou, Gansu, Lanzhou City, 730000, Gansu Province, PR China
| | - Hong Wang
- Department of Orthopaedics, the Second Hospital & Clinical Medical School, Lanzhou University, 82 Cuiyingmen, Chengguan District, Lanzhou, Gansu, Lanzhou City, 730000, Gansu Province, PR China
| | - Kai Yang
- Department of Orthopaedics, the Second Hospital & Clinical Medical School, Lanzhou University, 82 Cuiyingmen, Chengguan District, Lanzhou, Gansu, Lanzhou City, 730000, Gansu Province, PR China
| | - Bao Chen
- Department of Orthopaedics, the Second Hospital & Clinical Medical School, Lanzhou University, 82 Cuiyingmen, Chengguan District, Lanzhou, Gansu, Lanzhou City, 730000, Gansu Province, PR China
| | - Xu Wang
- Department of Orthopaedics, the Second Hospital & Clinical Medical School, Lanzhou University, 82 Cuiyingmen, Chengguan District, Lanzhou, Gansu, Lanzhou City, 730000, Gansu Province, PR China
| | - Yapeng Wang
- Department of Orthopaedics, the Second Hospital & Clinical Medical School, Lanzhou University, 82 Cuiyingmen, Chengguan District, Lanzhou, Gansu, Lanzhou City, 730000, Gansu Province, PR China.
| |
Collapse
|
3
|
Lin Y, Zhao W, Lv Z, Xie H, Li Y, Zhang Z. The functions and mechanisms of long non-coding RNA in colorectal cancer. Front Oncol 2024; 14:1419972. [PMID: 39026978 PMCID: PMC11254705 DOI: 10.3389/fonc.2024.1419972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/18/2024] [Indexed: 07/20/2024] Open
Abstract
CRC poses a significant challenge in the global health domain, with a high number of deaths attributed to this disease annually. If CRC is detected only in its advanced stages, the difficulty of treatment increases significantly. Therefore, biomarkers for the early detection of CRC play a crucial role in improving patient outcomes and increasing survival rates. The development of a reliable biomarker for early detection of CRC is particularly important for timely diagnosis and treatment. However, current methods for CRC detection, such as endoscopic examination, blood, and stool tests, have certain limitations and often only detect cases in the late stages. To overcome these constraints, researchers have turned their attention to molecular biomarkers, which are considered a promising approach to improving CRC detection. Non-invasive methods using biomarkers such as mRNA, circulating cell-free DNA, microRNA, LncRNA, and proteins can provide more reliable diagnostic information. These biomarkers can be found in blood, tissue, stool, and volatile organic compounds. Identifying molecular biomarkers with high sensitivity and specificity for the early and safe, economic, and easily measurable detection of CRC remains a significant challenge for researchers.
Collapse
Affiliation(s)
- Yuning Lin
- Medical Laboratory, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, China
| | - Wenzhen Zhao
- Medical Laboratory, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, China
| | - Zhenyi Lv
- Medical Laboratory, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, China
| | - Hongyan Xie
- Medical Laboratory, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, China
| | - Ying Li
- Ultrasonography Department, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Zhongying Zhang
- Medical Laboratory, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, China
| |
Collapse
|
4
|
Wang J, Jia Q, Jiang S, Lu W, Ning H. POU6F1 promotes ferroptosis by increasing lncRNA-CASC2 transcription to regulate SOCS2/SLC7A11 signaling in gastric cancer. Cell Biol Toxicol 2024; 40:3. [PMID: 38267746 PMCID: PMC10808632 DOI: 10.1007/s10565-024-09843-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/22/2023] [Indexed: 01/26/2024]
Abstract
OBJECTIVE This study investigated the effect and mechanism of POU6F1 and lncRNA-CASC2 on ferroptosis of gastric cancer (GC) cells. METHODS GC cells treated with erastin and RSL3 were detected for ferroptosis, reactive oxygen species (ROS) level, and cell viability. The expression levels of POU6F1, lncRNA-CASC2, SOCS2, and ferroptosis-related molecules (GPX4 and SLC7A11) were also measured. The regulations among POU6F1, lncRNA-CASC2, FMR1, SOCS2, and SLC7A11 were determined. Subcutaneous tumor models were established, in which the expressions of Ki-67, SOCS2, and GPX4 were detected by immunohistochemistry. RESULTS GC patients with decreased expressions of POU6F1 and lncRNA-CASC2 had lower survival rate. Overexpression of POU6F1 or lncRNA-CASC2 decreased cell proliferation and GSH levels in GC cells, in addition to increasing total iron, Fe2+, MDA, and ROS levels. POU6F1 directly binds to the lncRNA-CASC2 promoter to promote its transcription. LncRNA-CASC2 can target FMR1 and increase SOCS2 mRNA stability to promote SLC7A11 ubiquitination degradation and activate ferroptosis signaling. Knockdown of SOCS2 inhibited the ferroptosis sensitivity of GC cells and reversed the effects of POU6F1 and lncRNA-CASC2 overexpression on ferroptosis in GC cells. CONCLUSION Transcription factor POU6F1 binds directly to the lncRNA-CASC2 promoter to promote its expression, while upregulated lncRNA-CASC2 increases SOCS2 stability and expression by targeting FMR1, thereby inhibiting SLC7A11 signaling to promote ferroptosis in GC cells and inhibit GC progression.
Collapse
Affiliation(s)
- Jingyun Wang
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Erqi District, Zhengzhou, Henan, 450000, People's Republic of China
| | - Qiaoyu Jia
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Erqi District, Zhengzhou, Henan, 450000, People's Republic of China
| | - Shuqin Jiang
- Department of Child Development and Behavior, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450000, People's Republic of China
| | - Wenquan Lu
- Department of Gastroenterology, The Second Affiliated Hospital of Zhengzhou University, No.2 JingBa Road, Jinshui District, Zhengzhou, Henan, 450014, People's Republic of China
| | - Hanbing Ning
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Erqi District, Zhengzhou, Henan, 450000, People's Republic of China.
| |
Collapse
|