1
|
Huang Y, Zhu M, Liu Z, Hu R, Li F, Song Y, Geng Y, Ma W, Song K, Zhang M. Bone marrow mesenchymal stem cells in premature ovarian failure: Mechanisms and prospects. Front Immunol 2022; 13:997808. [PMID: 36389844 PMCID: PMC9646528 DOI: 10.3389/fimmu.2022.997808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/17/2022] [Indexed: 12/31/2022] Open
Abstract
Premature ovarian failure (POF) is a common female reproductive disorder and characterized by menopause, increased gonadotropin levels and estrogen deficiency before the age of 40 years old. The etiologies and pathogenesis of POF are not fully clear. At present, hormone replacement therapy (HRT) is the main treatment options for POF. It helps to ameliorate perimenopausal symptoms and related health risks, but can't restore ovarian function and fertility fundamentally. With the development of regenerative medicine, bone marrow mesenchymal stem cells (BMSCs) have shown great potential for the recovery of ovarian function and fertility based on the advantages of abundant sources, high capacity for self-renewal and differentiation, low immunogenicity and less ethical considerations. This systematic review aims to summarize the possible therapeutic mechanisms of BMSCs for POF. A detailed search strategy of preclinical studies and clinical trials on BMSCs and POF was performed on PubMed, MEDLINE, Web of Science and Embase database. A total of 21 studies were included in this review. Although the standardization of BMSCs need more explorations, there is no doubt that BMSCs transplantation may represent a prospective therapy for POF. It is hope to provide a theoretical basis for further research and treatment for POF.
Collapse
Affiliation(s)
- Yanjing Huang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Mengdi Zhu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhuo Liu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Runan Hu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Fan Li
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yufan Song
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yuli Geng
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wenwen Ma
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Kunkun Song
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China,*Correspondence: Mingmin Zhang, ; Kunkun Song,
| | - Mingmin Zhang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China,*Correspondence: Mingmin Zhang, ; Kunkun Song,
| |
Collapse
|
2
|
Carnitines as Mitochondrial Modulators of Oocyte and Embryo Bioenergetics. Antioxidants (Basel) 2022; 11:antiox11040745. [PMID: 35453430 PMCID: PMC9024607 DOI: 10.3390/antiox11040745] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/04/2022] [Accepted: 04/07/2022] [Indexed: 01/27/2023] Open
Abstract
Recently, the importance of bioenergetics in the reproductive process has emerged. For its energetic demand, the oocyte relies on numerous mitochondria, whose activity increases during embryo development under a fine regulation to limit ROS production. Healthy oocyte mitochondria require a balance of pyruvate and fatty acid oxidation. Transport of activated fatty acids into mitochondria requires carnitine. In this regard, the interest in the role of carnitines as mitochondrial modulators in oocyte and embryos is increasing. Carnitine pool includes the un-esterified l-carnitine (LC) and carnitine esters, such as acetyl-l-carnitine (ALC) and propionyl-l-carnitine (PLC). In this review, carnitine medium supplementation for counteracting energetic and redox unbalance during in vitro culture and cryopreservation is reported. Although most studies have focused on LC, there is new evidence that the addition of ALC and/or PLC may boost LC effects. Pathways activated by carnitines include antiapoptotic, antiglycative, antioxidant, and antiinflammatory signaling. Nevertheless, the potential of carnitine to improve energetic metabolism and oocyte and embryo competence remains poorly investigated. The importance of carnitine as a mitochondrial modulator may suggest that this molecule may exert a beneficial role in ovarian disfunctions associated with metabolic and mitochondrial alterations, including PCOS and reproductive aging.
Collapse
|
3
|
Amerian N, Talebi A, Safari M, Sameni HR, Ghanbari A, Hayat P, Mohammadi M, Ardekanian M, Zarbakhsh S. Effect of sesamol on damaged peripheral nerves: Evaluation of functional, histological, molecular, and oxidative stress parameters. AVICENNA JOURNAL OF PHYTOMEDICINE 2022; 12:602-613. [PMID: 36583179 PMCID: PMC9768853 DOI: 10.22038/ajp.2022.20663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/25/2022] [Accepted: 05/02/2022] [Indexed: 12/31/2022]
Abstract
Objective Peripheral nerve injury is a clinical problem that may cause sensory and motor inabilities. Sesamol is an antioxidant that can help in repairing damaged central nervous system (CNS) and other organs. The present study aimed to investigate whether the antioxidant effects of sesamol could improve the function, structure, and myelination in rats' damaged peripheral nervous system (PNS). Materials and Methods In this study, 28 adult male Wistar rats were randomly divided into four groups. In the sham group, the sciatic nerve was exposed and restored to its place without inducing crush injury. The control received DMSO (solvent) and the two experimental groups received 50 or 100 mg/kg sesamol intraperitoneally for 28 days after sciatic nerve crush injury, respectively. Next, sciatic function index (SFI), superoxide dismutase (SOD) activity, malondialdehyde (MDA) level, expression of nerve growth factor (NGF) and myelin protein zero (MPZ) proteins in the sciatic nerve, and histological indices of the sciatic nerve and gastrocnemius muscle were evaluated. Results The results showed that sesamol reduced oxidative stress parameters, increased expression of NGF and MPZ proteins, and improved function and regeneration of the damaged sciatic nerve. Furthermore, a significant regeneration was observed in the gastrocnemius muscle after treatment with sesamol. Although administration of both doses of sesamol was useful, the 100 mg/kg dose was more effective than the 50 mg/kg one. Conclusion The results suggest that sesamol may be effective in improving damaged peripheral nerves in rats by reducing oxidative stress and increasing the expression of NGF and MPZ proteins.
Collapse
Affiliation(s)
- Nastaran Amerian
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Athar Talebi
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Manouchehr Safari
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Hamid Reza Sameni
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Ali Ghanbari
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| | - Parisa Hayat
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Moslem Mohammadi
- Department of Physiology, Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Maryam Ardekanian
- Department of Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Sam Zarbakhsh
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran,Corresponding Author: Tel: +98-2333654162, Fax: +98-2333654209,
| |
Collapse
|
4
|
Is It Possible to Treat Infertility with Stem Cells? Reprod Sci 2021; 28:1733-1745. [PMID: 33834375 DOI: 10.1007/s43032-021-00566-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 03/31/2021] [Indexed: 02/06/2023]
Abstract
Infertility is a major health problem, and despite improved treatments over the years, there are still some conditions that cannot be treated successfully using a conventional approach. Therefore, new options are being considered and one of them is cell therapy using stem cells. Stem cell treatments for infertility can be divided into two major groups, the first one being direct transplantation of stem cells or their paracrine factors into reproductive organs and the second one being in vitro differentiation into germ cells or gametes. In animal models, all of these approaches were able to improve the reproductive potential of tested animals, although in humans there is still too little evidence to suggest successful use. The reasons for lack of evidence are unavailability of proper material, the complexity of explored biological processes, and ethical considerations. Despite all of the above-mentioned hurdles, researchers were able to show that in women, it seems to be possible to improve some conditions, but in men, no similar clinically important improvement was achieved. To conclude, the data presented in this review suggest that the treatment of infertility with stem cells seems plausible, because some types of treatments have already been tested in humans, achieving live births, while others show great potential only in animal studies, for now.
Collapse
|
5
|
Talebi A, Hayati Roodbari N, Reza Sameni H, Zarbakhsh S. Impact of coadministration of apigenin and bone marrow stromal cells on damaged ovaries due to chemotherapy in rat: An experimental study. Int J Reprod Biomed 2020; 18:551-560. [PMID: 32803119 PMCID: PMC7385912 DOI: 10.18502/ijrm.v13i7.7372] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/04/2019] [Accepted: 12/30/2019] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Apigenin is a plant-derived flavonoid with antioxidative and antiapoptotic effects. Bone marrow stromal cells (BMSCs) are a type of mesenchymal stem cells (MSCs) that may recover damaged ovaries. It seems that apigenin may promote the differentiation of MSCs. OBJECTIVE The aim of this study was to investigate the effect of coadministration of apigenin and BMSCs on the function, structure, and apoptosis of the damaged ovaries after creating a chemotherapy model with cyclophosphamide in rat. MATERIALS AND METHODS For chemotherapy induction and ovary destruction, cyclophosphamide was injected intraperitoneally to 40 female Wistar rats (weighing 180-200 gr, 10 wk old) for 14 days. Then, the rats were randomly divided into four groups (n = 10/each): control, apigenin, BMSCs and coadministration of apigenin and BMSCs. Injection of apigenin was performed intraperitoneally and BMSC transplantation was performed locally in the ovaries. The level of anti-mullerian hormone serum by ELISA kit, the number of oocytes by superovulation, the number of ovarian follicles in different stages by H&E staining, and the expression of ovarian Bcl-2 and Bax proteins by western blot were assessed after four wk. RESULTS The results of serum anti-mullerian hormone level, number of oocytes and follicles, and Bcl-2/Bax expression ratio showed that coadministration of apigenin and BMSCs significantly recovered the ovarian function, structure, and apoptosis compared to the control, BMSC, and apigenin groups (p < 0.001). CONCLUSION The results suggest that the effect of coadministration of apigenin and BMSCs is maybe more effective than the effect of their administrations individually on the recovery of damaged ovaries following the chemotherapy with cyclophosphamide in rats.
Collapse
Affiliation(s)
- Athar Talebi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Nasim Hayati Roodbari
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Hamid Reza Sameni
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran.
| | - Sam Zarbakhsh
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran.
| |
Collapse
|