1
|
Zoghi S, Mingels C, Badawi RD, Spencer BA, Yarbrough TL, Nardo L, Chaudhari AJ. Role of Total Body PET/CT in Inflammatory Disorders. Semin Nucl Med 2025; 55:41-51. [PMID: 39578110 PMCID: PMC11645246 DOI: 10.1053/j.semnuclmed.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 11/24/2024]
Abstract
Inflammatory disorders historically have been difficult to monitor with conventional PET imaging due to limitations including radiation exposure, lack of validated imaging biomarkers, low spatial resolution, and long acquisition durations. However, the recent development of long-axial field-of-view (LAFOV) PET/CT scanners may allow utilization of novel noninvasive biomarkers to diagnose, predict outcomes, and monitor therapeutic response of inflammatory conditions. LAFOV PET scanners can image most of the human body (if not the entire body) simultaneously in one bed position, with improved signal collection efficiency compared to conventional PET scanners. This allows for imaging with shorter acquisition durations, decreased injected radiotracer dose, prolonged uptake times, or a combination of any of these. In addition, LAFOV PET scanners enable whole-body dynamic imaging. Altogether, these intrinsically superior capabilities in assessing both local and systemic diseases, have allowed these scanners to make increasingly significant contributions to the assessment of inflammatory conditions. This review aims to further explore the role and benefits of LAFOV scanners for imaging various inflammatory conditions while addressing future developments and challenges faced by this technology.
Collapse
Affiliation(s)
- Shervin Zoghi
- Department of Radiology, University of California Davis, Sacramento, CA, USA.
| | - Clemens Mingels
- Department of Radiology, University of California Davis, Sacramento, CA, USA; Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Ramsey D Badawi
- Department of Radiology, University of California Davis, Sacramento, CA, USA
| | - Benjamin A Spencer
- Department of Radiology, University of California Davis, Sacramento, CA, USA
| | - Tracy L Yarbrough
- Department of Radiology, University of California Davis, Sacramento, CA, USA
| | - Lorenzo Nardo
- Department of Radiology, University of California Davis, Sacramento, CA, USA
| | - Abhijit J Chaudhari
- Department of Radiology, University of California Davis, Sacramento, CA, USA
| |
Collapse
|
2
|
Sartin SL, Shetty DR, Strange CD, Gayer G, Ahuja J, Agrawal R, Truong MT. Pitfalls in Positron Emission Tomography/Computed Tomography in the Thorax and Abdomen. Semin Ultrasound CT MR 2024; 45:488-495. [PMID: 39069275 DOI: 10.1053/j.sult.2024.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Positron emission tomography/computed tomography (PET/CT) using [18F]-fluoro-2-deoxy-D-glucose (FDG) has become the mainstay imaging modality for evaluating oncology patients with certain cancers. The most common FDG PET/CT applications include staging/restaging, assessing response to therapy and detecting tumor recurrence. It is important to be aware of potential pitfalls and technical artifacts on PET/CT in the chest and abdomen to ensure accurate interpretation, avoid unnecessary intervention and optimize patient care.
Collapse
Affiliation(s)
- Stephen L Sartin
- Department of Thoracic Imaging, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Dhanwin R Shetty
- Department of Thoracic Imaging, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Chad D Strange
- Department of Thoracic Imaging, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Gabriela Gayer
- Department of Radiology, Beth Israel Deaconess Medical Center, Boston, MA
| | - Jitesh Ahuja
- Department of Thoracic Imaging, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Rishi Agrawal
- Department of Thoracic Imaging, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Mylene T Truong
- Department of Thoracic Imaging, University of Texas MD Anderson Cancer Center, Houston, TX.
| |
Collapse
|
3
|
Metrard G, Cohen C, Bailly M. Comprehensive literature review of oral and intravenous contrast-enhanced PET/CT: a step forward? Front Med (Lausanne) 2024; 11:1373260. [PMID: 38566921 PMCID: PMC10985176 DOI: 10.3389/fmed.2024.1373260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/06/2024] [Indexed: 04/04/2024] Open
Abstract
The integration of diagnostic CT scans into PET/CT facilitates a comprehensive single examination, presenting potential advantages for patients seeking a thorough one-shot check-up. The introduction of iodinated contrast media during PET scanning raises theoretical concerns about potential interference with uptake quantification, due to the modification of tissue density on CT. Nevertheless, this impact appears generally insignificant for clinical use, compared to the intrinsic variability of standardized uptake values. On the other hand, with the growing indications of PET, especially 18F-FDG PET, contrast enhancement increases the diagnostic performances of the exam, and provides additional information. This improvement in performance achieved through contrast-enhanced PET/CT must be carefully evaluated considering the associated risks and side-effects stemming from the administration of iodinated contrast media. Within this article, we present a comprehensive literature review of contrast enhanced PET/CT, examining the potential impact of iodinated contrast media on quantification, additional side-effects and the pivotal clinically demonstrated benefits of an all-encompassing examination for patients. In conclusion, the clinical benefits of iodinated contrast media are mainly validated by the large diffusion in PET protocols. Contrary to positive oral contrast, which does not appear to offer any major advantage in patient management, intravenous iodine contrast media provides clinical benefits without significant artifact on images or quantification. However, studies on the benefit-risk balance for patients are still lacking.
Collapse
Affiliation(s)
- Gilles Metrard
- Nuclear Medicine Department, Orléans University Hospital, Orléans, France
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Université d’Orléans, Orléans, France
| | - Clara Cohen
- Radiology Department, Orléans University Hospital, Orléans, France
| | - Matthieu Bailly
- Nuclear Medicine Department, Orléans University Hospital, Orléans, France
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Université d’Orléans, Orléans, France
| |
Collapse
|
4
|
Mosleh-Shirazi S, Abbasi M, Moaddeli MR, Vaez A, Shafiee M, Kasaee SR, Amani AM, Hatam S. Nanotechnology Advances in the Detection and Treatment of Cancer: An Overview. Nanotheranostics 2022; 6:400-423. [PMID: 36051855 PMCID: PMC9428923 DOI: 10.7150/ntno.74613] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 07/25/2022] [Indexed: 12/01/2022] Open
Abstract
Over the last few years, progress has been made across the nanomedicine landscape, in particular, the invention of contemporary nanostructures for cancer diagnosis and overcoming complexities in the clinical treatment of cancerous tissues. Thanks to their small diameter and large surface-to-volume proportions, nanomaterials have special physicochemical properties that empower them to bind, absorb and transport high-efficiency substances, such as small molecular drugs, DNA, proteins, RNAs, and probes. They also have excellent durability, high carrier potential, the ability to integrate both hydrophobic and hydrophilic compounds, and compatibility with various transport routes, making them especially appealing over a wide range of oncology fields. This is also due to their configurable scale, structure, and surface properties. This review paper discusses how nanostructures can function as therapeutic vectors to enhance the therapeutic value of molecules; how nanomaterials can be used as medicinal products in gene therapy, photodynamics, and thermal treatment; and finally, the application of nanomaterials in the form of molecular imaging agents to diagnose and map tumor growth.
Collapse
Affiliation(s)
- Sareh Mosleh-Shirazi
- Department of Materials Science and Engineering, Shiraz University of Technology, Shiraz, Iran
| | - Milad Abbasi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad reza Moaddeli
- Assistant Professor, Department of Oral and Maxillofacial Surgery, School of Dentistry, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Ahmad Vaez
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mostafa Shafiee
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Reza Kasaee
- Shiraz Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Mohammad Amani
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeid Hatam
- Assistant Lecturer, Azad University, Zarghan Branch, Shiraz, Iran
- ExirBitanic, Science and Technology Park of Fars, Shiraz, Iran
| |
Collapse
|
5
|
Allen TJ, Bancroft LCH, Kumar M, Bradshaw TJ, Strigel RM, McMillan AB, Fowler AM. Gadolinium-Based Contrast Agent Attenuation Does Not Impact PET Quantification in Simultaneous Dynamic Contrast Enhanced Breast PET/MR. Med Phys 2022; 49:5206-5215. [PMID: 35621727 DOI: 10.1002/mp.15781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 04/18/2022] [Accepted: 05/17/2022] [Indexed: 11/12/2022] Open
Abstract
PURPOSE Simultaneous PET/MR imaging involves injection of a radiopharmaceutical and often also includes administration of a gadolinium-based contrast agent (GBCA). Phantom model studies indicate that attenuation of annihilation photons by GBCAs does not bias quantification metrics of PET radiopharmaceutical uptake. However, a direct comparison of attenuation corrected PET values before and after administration of GBCA has not been performed in patients imaged with simultaneous dynamic PET/MR. The purpose of this study was to investigate the attenuating effect of GBCAs on standardized uptake value (SUV) quantification of 18 F-fluorodeoxyglucose (FDG) uptake in invasive breast cancer and normal tissues using simultaneous PET/MR. METHODS The study included 13 women with newly diagnosed invasive breast cancer imaged using simultaneous dedicated prone breast PET/MR with FDG. PET data collection and two-point Dixon based MR attenuation correction sequences began simultaneously before the administration of GBCA to avoid a potential impact of GBCA on the attenuation correction map. A standard clinical dose of GBCA was intravenously administered for the dynamic contrast enhanced MR sequences obtained during the simultaneous PET data acquisition. PET data were dynamically reconstructed into 60 frames of 30 seconds each. Three timing windows were chosen consisting of a single frame (30 seconds), two frames (60 seconds), or four frames (120 seconds) immediately before and after contrast administration. SUVmax and SUVmean of the biopsy-proven breast malignancy, fibroglandular tissue of the contralateral normal breast, descending aorta, and liver were calculated prior to and following GBCA administration. Percent change in the SUV metrics were calculated to test for a statistically significant, non-zero percent change using Wilcoxon signed-rank tests. RESULTS No statistical change in SUVmax or SUVmean was found for the breast malignancies or normal anatomical regions during the timing windows before and after GBCA administration. CONCLUSIONS GBCAs do not significantly impact the results of PET quantification by means of additional attenuation. However, GBCAs may still affect quantification by affecting MR acquisitions used for MR-based attenuation correction which this study did not address. Corrections to account for attenuation due to clinical concentrations of GBCAs are not necessary in simultaneous PET/MR examinations when MR-based attenuation correction sequences are performed prior to GBCA administration. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Timothy J Allen
- Department of Medical Physics, University of Wisconsin-Madison, 1111 Highland Ave, Madison, WI, 53705, USA
| | - Leah C Henze Bancroft
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, 600 Highland Ave., Madison, WI, 53792-3252, USA
| | - Manoj Kumar
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, 600 Highland Ave., Madison, WI, 53792-3252, USA
| | - Tyler J Bradshaw
- Department of Medical Physics, University of Wisconsin-Madison, 1111 Highland Ave, Madison, WI, 53705, USA.,Department of Radiology, University of Wisconsin School of Medicine and Public Health, 600 Highland Ave., Madison, WI, 53792-3252, USA
| | - Roberta M Strigel
- Department of Medical Physics, University of Wisconsin-Madison, 1111 Highland Ave, Madison, WI, 53705, USA.,Department of Radiology, University of Wisconsin School of Medicine and Public Health, 600 Highland Ave., Madison, WI, 53792-3252, USA.,University of Wisconsin Carbone Cancer Center, 600 Highland Ave., Madison, WI, 53792, USA
| | - Alan B McMillan
- Department of Medical Physics, University of Wisconsin-Madison, 1111 Highland Ave, Madison, WI, 53705, USA.,Department of Radiology, University of Wisconsin School of Medicine and Public Health, 600 Highland Ave., Madison, WI, 53792-3252, USA
| | - Amy M Fowler
- Department of Medical Physics, University of Wisconsin-Madison, 1111 Highland Ave, Madison, WI, 53705, USA.,Department of Radiology, University of Wisconsin School of Medicine and Public Health, 600 Highland Ave., Madison, WI, 53792-3252, USA.,University of Wisconsin Carbone Cancer Center, 600 Highland Ave., Madison, WI, 53792, USA
| |
Collapse
|
6
|
Strange C, Shroff GS, Truong MT, Rohren EM. Pitfalls in Interpretation of PET/CT in the Chest. Semin Ultrasound CT MR 2021; 42:588-598. [PMID: 34895614 DOI: 10.1053/j.sult.2021.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Whole body positron emission tomography (PET)/computed tomography (CT) imaging with [18F]-fluoro-2-deoxy-D-glucose (FDG) is widely used in oncologic imaging. In the chest, common PET/CT applications include the evaluation of solitary pulmonary nodules, cancer staging, assessment of response to therapy, and detection of residual or recurrent disease. Knowledge of the technical artifacts and potential pitfalls that radiologists may encounter in the interpretation of PET/CT in the thorax is important to avoid misinterpretation and optimize patient management. This article will review pitfalls in the interpretation of PET/CT in the chest related to technical factors, physiologic uptake, false positive findings, false negative findings, and iatrogenic conditions.
Collapse
Affiliation(s)
- Chad Strange
- MD Anderson Cancer Center, University of Texas, TX.
| | | | | | | |
Collapse
|
7
|
Multi-Aspect Optoacoustic Imaging of Breast Tumors under Chemotherapy with Exogenous and Endogenous Contrasts: Focus on Apoptosis and Hypoxia. Biomedicines 2021; 9:biomedicines9111696. [PMID: 34829925 PMCID: PMC8615838 DOI: 10.3390/biomedicines9111696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/29/2021] [Accepted: 11/08/2021] [Indexed: 12/01/2022] Open
Abstract
Breast cancer is a complex tumor type involving many biological processes. Most chemotherapeutic agents exert their antitumoral effects by rapid induction of apoptosis. Another main feature of breast cancer is hypoxia, which may drive malignant progression and confer resistance to various forms of therapy. Thus, multi-aspect imaging of both tumor apoptosis and oxygenation in vivo would be of enormous value for the effective evaluation of therapy response. Herein, we demonstrate the capability of a hybrid imaging modality known as multispectral optoacoustic tomography (MSOT) to provide high-resolution, simultaneous imaging of tumor apoptosis and oxygenation, based on both the exogenous contrast of an apoptosis-targeting dye and the endogenous contrast of hemoglobin. MSOT imaging was applied on mice bearing orthotopic 4T1 breast tumors before and following treatment with doxorubicin. Apoptosis was monitored over time by imaging the distribution of xPLORE-APOFL750©, a highly sensitive poly-caspase binding apoptotic probe, within the tumors. Oxygenation was monitored by tracking the distribution of oxy- and deoxygenated hemoglobin within the same tumor areas. Doxorubicin treatment induced an increase in apoptosis-depending optoacoustic signal of xPLORE-APOFL750© at 24 h after treatment. Furthermore, our results showed spatial correspondence between xPLORE-APO750© and deoxygenated hemoglobin. In vivo apoptotic status of the tumor tissue was independently verified by ex vivo fluorescence analysis. Overall, our results provide a rationale for the use of MSOT as an effective tool for simultaneously investigating various aspects of tumor pathophysiology and potential effects of therapeutic regimes based on both endogenous and exogenous molecular contrasts.
Collapse
|
8
|
Pilkington P, Lopci E, Adam JA, Kobe C, Goffin K, Herrmann K. FDG-PET/CT Variants and Pitfalls in Haematological Malignancies. Semin Nucl Med 2021; 51:554-571. [PMID: 34272037 DOI: 10.1053/j.semnuclmed.2021.06.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hematologic malignancies represent a vast group of hematopoietic and lymphoid cancers that typically involve the blood, the bone marrow, and the lymphatic organs. Due to extensive research and well defined and standardized response criteria, the role of [18F]FDG-PET/CT is well defined in these malignancies. Never the less, the reliability of visual and quantitative interpretation of PET/CT may be impaired by several factors including inconsistent scanning protocols and image reconstruction methods. Furthermore, the uptake of [18F]FDG not only reflects tissue glucose consumption by malignant lesions, but also in other situations such as in inflammatory lesions, local and systemic infections, benign tumors, reactive thymic hyperplasia, histiocytic infiltration, among others; or following granulocyte colony stimulating factors therapy, radiation therapy, chemotherapy or surgical interventions, all of which are a potential source of false-positive or negative interpretations. Therefore it is of paramount importance for the Nuclear Medicine Physician to be familiar with, not only the normal distribution of [18F]FDG in the body, but also with the most frequent findings that may hamper a correct interpretation of the scan, which could ultimately alter the patients management. In this review, we describe these myriad of situations so the interpreting physician can be familiar with them, providing tools for their correct identification and interpretation when possible.
Collapse
Affiliation(s)
- Patrick Pilkington
- Department of Nuclear Medicine, University Hospital 12 de Octubre, Madrid, Spain.
| | - Egesta Lopci
- Nuclear Medicine Unit, IRCCS-Humanitas Research Hospital, Rozzano (Milano), Italy
| | - Judit A Adam
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Carsten Kobe
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Karolien Goffin
- Department of Nuclear Medicine, University Hospital Leuven, Division of Nuclear Medicine and Molecular Imaging, KU Leuven, Leuven, Belgium
| | - Ken Herrmann
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Essen Germany; West German Cancer Center
| |
Collapse
|
9
|
Abstract
Hybrid FDG PET/CT plays a vital role in oncologic imaging and has been widely adopted for the staging and restaging of a variety of malignancies. Its diagnostic value in urogenital malignancies is less well-known, not at least because of the variable FDG avidity of these tumor entities, the sites of these tumors, and technical challenges associated with sequential imaging of CT and PET. PET/CT interpretation thus can be especially challenging and is associated with many pitfalls, which can lead to both false-positive and false-negative diagnoses as well as incorrect assessment of metabolic change following therapy. Currently, FDG PET/CT is not the standard of care for the initial diagnosis or staging of early-stage or low-risk urogenital cancers; however, it can help evaluate distant metastatic disease, response to therapy, and disease recurrence in high-risk patients. Knowledge of imaging features of tumor metabolic avidity and pitfalls is essential for accurate interpretation.
Collapse
Affiliation(s)
- Anil Vasireddi
- Department of Radiology, University of Pittsburgh Medical Center, UPMC Presbyterian Hospital, Pittsburgh, PA
| | - Nghi C Nguyen
- Department of Radiology, University of Pittsburgh Medical Center, UPMC Presbyterian Hospital, Pittsburgh, PA.
| |
Collapse
|
10
|
Abstract
PET/CT has become a preferred imaging modality over PET-only scanners in clinical practice. However, along with the significant improvement in diagnostic accuracy and patient throughput, pitfalls on PET/CT are reported as well. This review provides a general overview on the potential influence of the limitations with respect to PET/CT instrumentation and artifacts associated with the modality integration on the image appearance and quantitative accuracy of PET. Approaches proposed in literature to address the limitations or minimize the artifacts are discussed as well as their current challenges for clinical applications. Although the CT component can play an important role in assisting clinical diagnosis, we concentrate on the imaging scenarios where CT is used to provide auxiliary information for attenuation compensation and scatter correction in PET.
Collapse
Affiliation(s)
- Yu-Jung Tsai
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT
| | - Chi Liu
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT; Department of Biomedical Engineering, Yale University, New Haven, CT.
| |
Collapse
|
11
|
Shapira N, Scheuermann J, Perkins AE, Kim J, Liu LP, Karp JS, Noël PB. Quantitative positron emission tomography imaging in the presence of iodinated contrast media using electron density quantifications from dual-energy computed tomography. Med Phys 2020; 48:273-286. [PMID: 33170953 DOI: 10.1002/mp.14589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/31/2020] [Accepted: 11/02/2020] [Indexed: 11/10/2022] Open
Abstract
PURPOSE As preparation for future positron emission tomography (PET)/dual-energy computed tomography (DECT)T imaging modality and new possible clinical applications, the study aimed to evaluate the utility of clinically available spectral results from a DECT system for improving attenuation corrections of PET acquisitions in the presence of iodinated contrast media. The dependence of the accuracy of PET quantification values, reconstructed with conventional and spectral-based attenuation corrections, was examined as a function of the amount of iodine content and x-ray radiation exposure. METHODS Measurements were performed on commercial PET/CT and DECT systems, using a semi-anthropomorphic phantom with seven centrifuge tubes in its bore. Five different configurations of tube contents were scanned by both PET/CT and DECT. With the aim of mimicking clinically observed concentrations, in all phantom configurations the center tube contained a high concentration of radionuclide while the peripheral tubes contained a lower concentration of radionuclide. Iodine content was incrementally increased between phantom configurations by replacing iodine-free tubes with tubes that contained the original radionuclide concentration within a 10 mg/ml iodine dilution. DECT-based attenuation correction maps were generated by scaling electron density spectral results into corresponding 511 keV photon linear attenuation coefficients. RESULTS Mean SUV values obtained from the nominal PET reconstruction, using conventional CT images as input for the attenuation correction, demonstrate a monotonic increase of 8.6% when the water and radionuclide mixtures were replaced by iodine, water, and radionuclide (same level of activity) mixture. Mean SUV values obtained from the DECT-based reconstruction, in which the attenuation correction utilizes electron density values as input, demonstrate different, more stable behavior across all iodine insert configurations, with a standard deviation to mean ratio of less than 1%. This observed behavior was independent of the area size used for measurement. A minor radiation dose dependency of the electron density values (below 0.5%) was observed. This resulted in consistent (iodine independent) PET quantification behavior, which persisted even at the lowest radiation dose levels tested in our experiment, that is, 25% of the radiation dose utilized for CT acquisition in the clinical PET/CT protocol. CONCLUSIONS Utilization of DECT-generated electron density estimations for attenuation correction benefit PET quantification consistency in the presence of iodine and at nominal and low DECT radiation exposure levels. The ability to correctly account for iodinated contrast media in PET acquisitions will allow the development of new clinical applications that rely on the quantitative capabilities of spectral CT technologies and modern PET systems.
Collapse
Affiliation(s)
- Nadav Shapira
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Joshua Scheuermann
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Johoon Kim
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Leening P Liu
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Joel S Karp
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Peter B Noël
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA.,Department of Diagnostic and Interventional Radiology, School of Medicine & klinikum rechts der Isar, Technical University of Munich, München, Germany
| |
Collapse
|
12
|
Technical note on the administration of intravenous contrast media in hybrid imaging. Nucl Med Commun 2020; 41:706-713. [DOI: 10.1097/mnm.0000000000001192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Reinert CP, Sekler J, la Fougère C, Pfannenberg C, Gatidis S. Impact of PET/CT on clinical management in patients with cancer of unknown primary—a PET/CT registry study. Eur Radiol 2019; 30:1325-1333. [DOI: 10.1007/s00330-019-06518-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/28/2019] [Accepted: 10/16/2019] [Indexed: 11/30/2022]
|
14
|
|
15
|
ACR Practice Parameter for the Performance of Gallium-68 DOTATATE PET/CT for Neuroendocrine Tumors. Clin Nucl Med 2018; 43:899-908. [PMID: 30394933 DOI: 10.1097/rlu.0000000000002309] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Radiopharmaceuticals targeting cell surface expression of somatostatin receptors (SSTRs) are particularly useful in the evaluation of neuroendocrine tumors. Gallium-68 DOTA-Tyr-octreotatate (Ga-DOTATATE) primarily binds to SSTR type 2 receptors. Ga DOTATATE PET/CT is proven to have high impact on the management of neuroendocrine patients compared to traditional anatomical imaging as well as provides additional information over that of conventional nuclear medicine studies (indium-III DTPA-octreotide). It can result in change in management of approximately 75% of patients with neuroendocrine tumors. Ga DOTATATE and F FDG PET/CT imaging are complementary, with the degree of uptake varying depending on the degree of differentiation of the tumor. Well-differentiated tumors maintain their SSTRs and are positive on Ga DOTATATE PET/CT scan, while dedifferentiated tumors are less likely to demonstrate uptake of Ga DOTATATE but will demonstrate uptake with F FDG PET/CT. In addition, Ga DOTATATE PET/CT identifies patients with SSTR expression in their tumors, who have progressed on somatostatin analog therapy, for treatment with Lu DOTATATE.
Collapse
|
16
|
ACR-ACNM Practice Parameter for the Performance of Fluorine-18 Fluciclovine-PET/CT for Recurrent Prostate Cancer. Clin Nucl Med 2018; 43:909-917. [PMID: 30325827 DOI: 10.1097/rlu.0000000000002310] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The American College of Radiology (ACR) and American College of Nuclear Medicine (ACNM) collaborated to develop a clinical practice document for the performance of fluciclovine positron-emission tomography (PET) / computed tomography (CT) in the evaluation of patients with suspected prostate cancer recurrence based on the elevation of prostate-specific antigen (PSA) level (biochemical recurrence) after prior therapy. Prostate cancer is the third leading cause of cancer death in the United States. Up to 50% of patients diagnosed with prostate cancer will develop biochemical failure after initial therapy. The differentiation of local from extraprostatic recurrence plays a critical role in patient management. The use of functional imaging targeting features of cancer metabolism has proven highly useful in this regard. Amino acid transport is upregulated in prostate cancer. Fluciclovine (anti-1-amino-3-F-18-fluorocyclobutane-1-carboxylic acid, FACBC, Axumin™) is an artificial amino acid PET tracer which demonstrates utility in the diagnosis of recurrent prostate cancer with significant added value to conventional imaging.
Collapse
|
17
|
Mannheim JG, Schmid AM, Schwenck J, Katiyar P, Herfert K, Pichler BJ, Disselhorst JA. PET/MRI Hybrid Systems. Semin Nucl Med 2018; 48:332-347. [PMID: 29852943 DOI: 10.1053/j.semnuclmed.2018.02.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Over the last decade, the combination of PET and MRI in one system has proven to be highly successful in basic preclinical research, as well as in clinical research. Nowadays, PET/MRI systems are well established in preclinical imaging and are progressing into clinical applications to provide further insights into specific diseases, therapeutic assessments, and biological pathways. Certain challenges in terms of hardware had to be resolved concurrently with the development of new techniques to be able to reach the full potential of both combined techniques. This review provides an overview of these challenges and describes the opportunities that simultaneous PET/MRI systems can exploit in comparison with stand-alone or other combined hybrid systems. New approaches were developed for simultaneous PET/MRI systems to correct for attenuation of 511 keV photons because MRI does not provide direct information on gamma photon attenuation properties. Furthermore, new algorithms to correct for motion were developed, because MRI can accurately detect motion with high temporal resolution. The additional information gained by the MRI can be employed to correct for partial volume effects as well. The development of new detector designs in combination with fast-decaying scintillator crystal materials enabled time-of-flight detection and incorporation in the reconstruction algorithms. Furthermore, this review lists the currently commercially available systems both for preclinical and clinical imaging and provides an overview of applications in both fields. In this regard, special emphasis has been placed on data analysis and the potential for both modalities to evolve with advanced image analysis tools, such as cluster analysis and machine learning.
Collapse
Affiliation(s)
- Julia G Mannheim
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Andreas M Schmid
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Johannes Schwenck
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Eberhard Karls University Tuebingen, Tuebingen, Germany; Department of Nuclear Medicine and Clinical Molecular Imaging, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Prateek Katiyar
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Kristina Herfert
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Bernd J Pichler
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Eberhard Karls University Tuebingen, Tuebingen, Germany.
| | - Jonathan A Disselhorst
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Eberhard Karls University Tuebingen, Tuebingen, Germany
| |
Collapse
|
18
|
Wondergem M, van der Zant FM, Vlottes PW, Knol RJJ. Effects of Fasting on 18F-DCFPyL Uptake in Prostate Cancer Lesions and Tissues with Known High Physiologic Uptake. J Nucl Med 2018; 59:1081-1084. [PMID: 29496983 DOI: 10.2967/jnumed.117.207316] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 02/06/2018] [Indexed: 11/16/2022] Open
Abstract
In the literature, a 4- to 6-h fast is recommended before a patient undergoes PET/CT with 2-(3-(1-carboxy-5-[(6-18F-fluoro-pyridine-3-carbonyl)-amino]-pentyl)-ureido)-pentanedioic acid (18F-DCFPyL); however, a scientific underpinning for this recommendation is lacking. Therefore, we performed a study to determine the impact of fasting on 18F-DCFPyL uptake. Methods: The study included 50 patients who fasted at least 6 h before 18F-DCFPyL administration and 50 patients who did not. Activity (SUVmax) was measured in lesions characteristic of prostate cancer and in normal tissues known to express high physiologic uptake. Results: Uptake in suspected lesions did not differ between the cohorts. 18F-DCFPyL uptake in the submandibular gland, liver, and spleen was significantly higher in the fasting than the nonfasting cohort. Conclusion: Our data show that fasting does not significantly affect 18F-DCFPyL uptake in suspected malignant lesions but does result in significantly lower 18F-DCFPyL uptake in tissues with high physiologic uptake. The absolute differences in uptake were relatively small; therefore, the effects of fasting on the diagnostic performance can be considered negligible.
Collapse
Affiliation(s)
- Maurits Wondergem
- Department of Nuclear Medicine, Noordwest Ziekenhuisgroep, Alkmaar, The Netherlands; and
| | - Friso M van der Zant
- Department of Nuclear Medicine, Noordwest Ziekenhuisgroep, Alkmaar, The Netherlands; and
| | - Peter W Vlottes
- Radiopharmacy, Noordwest Ziekenhuisgroep, Alkmaar, The Netherlands
| | - Remco J J Knol
- Department of Nuclear Medicine, Noordwest Ziekenhuisgroep, Alkmaar, The Netherlands; and
| |
Collapse
|
19
|
Clinical Practice in PET/CT for the Management of Head and Neck Squamous Cell Cancer. AJR Am J Roentgenol 2017; 209:289-303. [PMID: 28731808 DOI: 10.2214/ajr.17.18301] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OBJECTIVE The purpose of this article is to summarize the evidence for the value of PET/CT for the management of patients with head and neck squamous cell cancer and suggest best clinical practices. CONCLUSION FDG PET/CT is a valuable imaging tool for identifying unknown primary tumors in patients with known cervical node metastases leading to management change and is the standard of care for the initial staging of stage III and IV head and neck squamous cell carcinomas (HNSCCs), for assessing therapy response when performed at least 12 weeks after chemoradiation therapy, and for avoiding unnecessary planned neck dissection. Neck dissection is avoided if PET/CT findings are negative-regardless of the size of the residual neck nodes-because survival outcomes are not compromised. FDG PET/CT is valuable in detecting recurrences and metastases during follow-up when suspected because of clinical symptoms and serves as a prognostic marker for patient survival outcomes, for 5 years. Using FDG PET/CT for routine surveillance of HNSCC after 6 months of treatment without any clinical suspicion should be discouraged.
Collapse
|
20
|
Ohliger MA, Hope TA, Chapman JS, Chen LM, Behr SC, Poder L. PET/MR Imaging in Gynecologic Oncology. Magn Reson Imaging Clin N Am 2017; 25:667-684. [DOI: 10.1016/j.mric.2017.03.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
21
|
Wondergem M, van der Zant FM, Knol RJJ, Lazarenko SV, Pruim J, de Jong IJ. 18F-DCFPyL PET/CT in the Detection of Prostate Cancer at 60 and 120 Minutes: Detection Rate, Image Quality, Activity Kinetics, and Biodistribution. J Nucl Med 2017; 58:1797-1804. [PMID: 28450569 DOI: 10.2967/jnumed.117.192658] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 04/11/2017] [Indexed: 01/12/2023] Open
Abstract
There is increasing interest in PET/CT with prostate-specific membrane antigen (PSMA) tracers for imaging of prostate cancer because of the higher detection rates of prostate cancer lesions than with PET/CT with choline. For 68Ga-PSMA-11 tracers, late imaging at 180 min after injection instead of imaging at 45-60 min after injection improves the detection of prostate cancer lesions. For 18F-DCFPyL, improved detection rates have recently been reported in a small pilot study. In this study, we report the effects of PET/CT imaging at 120 min after injection of 18F-DCFPyL in comparison to images acquired at 60 min after injection in a larger clinical cohort of 66 consecutive patients with histopathologically proven prostate cancer. Methods: Images were acquired 60 and 120 min after injection of 18F-DCFPyL. We report the positive lesions specified for anatomic locations (prostate, seminal vesicles, local lymph nodes, distant lymph nodes, bone, and others) at both time points by visual analysis, the image quality at both time points, and a semiquantitative analysis of the tracer activity in both prostate cancer lesions as well as normal tissues at both time points. Results: Our data showed a significantly increasing uptake of 18F-DCFPyL between 60 and 120 min after injection in 203 lesions characteristic for prostate cancer (median, 10.78 vs. 12.86, P < 0.001, Wilcoxon signed-rank test). By visual analysis, 38.5% of all patients showed more lesions using images at 120 min after injection than using images at 60 min after injection, and in 9.2% a change in TNM staging was found. All lesions seen on images 60 min after injection were also visible on images 120 min after injection. A significantly better mean signal-to-noise ratio of 11.93 was found for images acquired 120 min after injection (P < 0.001, paired t test; signal-to-noise ratio at 60 min after injection, 11.15). Conclusion:18F-DCFPyL PET/CT images at 120 min after injection yield a higher detection rate of prostate cancer characteristic lesions than images at 60 min after injection. Further studies are needed to elucidate the best imaging time point for 18F-DCFPyL.
Collapse
Affiliation(s)
- Maurits Wondergem
- Department of Nuclear Medicine, Noordwest Ziekenhuisgroep locatie Alkmaar, Alkmaar, The Netherlands .,Department of Urology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Friso M van der Zant
- Department of Nuclear Medicine, Noordwest Ziekenhuisgroep locatie Alkmaar, Alkmaar, The Netherlands
| | - Remco J J Knol
- Department of Nuclear Medicine, Noordwest Ziekenhuisgroep locatie Alkmaar, Alkmaar, The Netherlands
| | - Sergiy V Lazarenko
- Department of Nuclear Medicine, Noordwest Ziekenhuisgroep locatie Alkmaar, Alkmaar, The Netherlands
| | - Jan Pruim
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; and.,Department of Nuclear Medicine, Tygerberg Hospital, Stellenbosch University, Stellenbosch, South Africa
| | - Igle J de Jong
- Department of Urology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
22
|
Pak K, Kim SJ. What Do We Measure in Oncology PET? Nucl Med Mol Imaging 2016; 51:212-216. [PMID: 28878846 DOI: 10.1007/s13139-016-0416-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 03/08/2016] [Accepted: 04/01/2016] [Indexed: 12/13/2022] Open
Abstract
Positron emission tomography (PET) has come to the practice of oncology. It is known that 18F-fluorodeoxyglucose (FDG) PET is more sensitive for the assessment of treatment response than conventional imaging. In addition, PET has an advantage in the use of quantitative analysis of the study. Nowadays, various PET parameters are adopted in clinical settings. In addition, a wide range of factors has been known to be associated with FDG uptake. Therefore, there has been a need for standardization and harmonization of protocols and PET parameters. We will introduce PET parameters and discuss major issues in this review.
Collapse
Affiliation(s)
- Kyoungjune Pak
- Department of Nuclear Medicine and Biomedical Research Institute, Pusan National University Hospital, Busan, Korea
| | - Seong-Jang Kim
- Department of Nuclear Medicine and Biomedical Research Institute, Pusan National University Hospital, Busan, Korea.,Department of Nuclear Medicine and Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Pusan National University, Yangsan, Korea
| |
Collapse
|
23
|
Klausen TL, Mortensen J, de Nijs R, Andersen FL, Højgaard L, Beyer T, Holm S. Intravenous contrast-enhanced CT can be used for CT-based attenuation correction in clinical (111)In-octreotide SPECT/CT. EJNMMI Phys 2015; 2:3. [PMID: 26501805 PMCID: PMC4545801 DOI: 10.1186/s40658-015-0108-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 01/14/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND CT-based attenuation correction (CT-AC) using contrast-enhancement CT impacts (111)In-SPECT image quality and quantification. In this study we assessed and evaluated the effect. METHODS A phantom (5.15 L) was filled with an aqueous solution of In-111. Three SPECT/CT scans were performed: (A) no IV contrast, (B) with 100-mL IV contrast, and (C) with 200-mL IV contrast added. Scan protocol included a localization CT, a low-dose CT (LD), and a full-dose CT (FD). Phantom, LD and FD scan series were performed at 90, 120, and 140 kVp. Phantom data were evaluated looking at mean counts in a central volume. Ten patients referred for (111)In-octreotide scintigraphy were scanned according to our clinical (111)In-SPECT/CT protocol including a topogram, a LD (140 kVp), and a FD (120 kVp). The FD/contrast-enhanced CT was acquired in both arterial (FDAP) and venous phase (FDVP) following a mono-phasic IV injection of 125-mL Optiray (4.5 mL/s). For patient data, we report image quality, Krenning scores, and mean/max values for liver and tumor regions. RESULTS Phantoms: in uncorrected emission data, mean counts (average ± SD) decreased with increasing IV concentration: (A) 119 ± 9, (B) 113 ± 8, and (C) 110 ± 9. For all attenuation correction (AC) scans, the mean values increased with increasing iodine concentration. PATIENTS there were no visible artifacts in single photon emission computed tomography (SPECT) following CT-AC with contrast-enhanced CT. The average score of image quality was 4.1 ± 0.3, 3.8 ± 0.4, and 4.2 ± 0.4 for LD, arterial phase, and venous phase, respectively. A total of 16 lesions were detected. The Krenning scores of 13/16 lesions were identical across all scan series. The max pixel values for the 16 lesions showed generally lower values for LD than for contrast-enhanced CT. CONCLUSIONS In (111)In-SPECT/CT imaging of phantoms and patients, the use of IV CT contrast did neither degrade the SPECT image quality nor affect the clinical Krenning score. Reconstructed counts in healthy liver tissues were unaffected, and there was a generally lower count value in lesions following CT-AC based on the LD non-enhanced images. Overall, for clinical interpretation, no separate low-dose CT is required for CT-AC in (111)In-SPECT/CT.
Collapse
Affiliation(s)
- Thomas Levin Klausen
- Department of Clinical Physiology, Nuclear Medicine and PET, Copenhagen University Hospital Rigshospitalet, Blegdamsvej 9, DK-2100, Copenhagen, Denmark.
| | - Jann Mortensen
- Department of Clinical Physiology, Nuclear Medicine and PET, Copenhagen University Hospital Rigshospitalet, Blegdamsvej 9, DK-2100, Copenhagen, Denmark.
| | - Robin de Nijs
- Department of Clinical Physiology, Nuclear Medicine and PET, Copenhagen University Hospital Rigshospitalet, Blegdamsvej 9, DK-2100, Copenhagen, Denmark.
| | - Flemming Littrup Andersen
- Department of Clinical Physiology, Nuclear Medicine and PET, Copenhagen University Hospital Rigshospitalet, Blegdamsvej 9, DK-2100, Copenhagen, Denmark.
| | - Liselotte Højgaard
- Department of Clinical Physiology, Nuclear Medicine and PET, Copenhagen University Hospital Rigshospitalet, Blegdamsvej 9, DK-2100, Copenhagen, Denmark.
| | - Thomas Beyer
- Department of Clinical Physiology, Nuclear Medicine and PET, Copenhagen University Hospital Rigshospitalet, Blegdamsvej 9, DK-2100, Copenhagen, Denmark. .,Center for Medical Physics and Biomedical Engineering, General Hospital Vienna, Medical University of Vienna, Waehringer Guertel 18-20/4L, 1090, Vienna, Austria.
| | - Søren Holm
- Department of Clinical Physiology, Nuclear Medicine and PET, Copenhagen University Hospital Rigshospitalet, Blegdamsvej 9, DK-2100, Copenhagen, Denmark.
| |
Collapse
|
24
|
Jeraj R, Bradshaw T, Simončič U. Molecular Imaging to Plan Radiotherapy and Evaluate Its Efficacy. J Nucl Med 2015; 56:1752-65. [PMID: 26383148 DOI: 10.2967/jnumed.114.141424] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Accepted: 09/08/2015] [Indexed: 12/25/2022] Open
Abstract
Molecular imaging plays a central role in the management of radiation oncology patients. Specific uses of imaging, particularly to plan radiotherapy and assess its efficacy, require an additional level of reproducibility and image quality beyond what is required for diagnostic imaging. Specific requirements include proper patient preparation, adequate technologist training, careful imaging protocol design, reliable scanner technology, reproducible software algorithms, and reliable data analysis methods. As uncertainty in target definition is arguably the greatest challenge facing radiation oncology, the greatest impact that molecular imaging can have may be in the reduction of interobserver variability in target volume delineation and in providing greater conformity between target volume boundaries and true tumor boundaries. Several automatic and semiautomatic contouring methods based on molecular imaging are available but still need sufficient validation to be widely adopted. Biologically conformal radiotherapy (dose painting) based on molecular imaging-assessed tumor heterogeneity is being investigated, but many challenges remain to fully exploring its potential. Molecular imaging also plays increasingly important roles in both early (during treatment) and late (after treatment) response assessment as both a predictive and a prognostic tool. Because of potentially confounding effects of radiation-induced inflammation, treatment response assessment requires careful interpretation. Although molecular imaging is already strongly embedded in radiotherapy, the path to widespread and all-inclusive use is still long. The lack of solid clinical evidence is the main impediment to broader use. Recommendations for practicing physicians are still rather scarce. (18)F-FDG PET/CT remains the main molecular imaging modality in radiation oncology applications. Although other molecular imaging options (e.g., proliferation imaging) are becoming more common, their widespread use is limited by lack of tracer availability and inadequate reimbursement models. With the increasing presence of molecular imaging in radiation oncology, special emphasis should be placed on adequate training of radiation oncology personnel to understand the potential, and particularly the limitations, of quantitative molecular imaging applications. Similarly, radiologists and nuclear medicine specialists should be sensitized to the special need of the radiation oncologist in terms of quantification and reproducibility. Furthermore, strong collaboration between radiation oncology, nuclear medicine/radiology, and medical physics teams is necessary, as optimal and safe use of molecular imaging can be ensured only within appropriate interdisciplinary teams.
Collapse
Affiliation(s)
- Robert Jeraj
- School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin; and Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana, Slovenia
| | - Tyler Bradshaw
- School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin; and
| | - Urban Simončič
- Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
25
|
Abstract
Is there a need for the contrast-enhanced PET/computed tomography (CT) scan or is the low-dose, non-contrast-enhanced PET/CT scan sufficient? The topic has been debated time and again. Although low-dose noncontrast CT serves the purpose of simple anatomic correlation and attenuation correction of PET images, many times patients have to undergo additional contrast-enhanced diagnostic imaging modalities, which may lead to a delay in decision-making. In this review, the authors have addressed various such issues related to the use of contrast agents and special techniques of clinical interest based on their utility in dual-modality PET/CT.
Collapse
Affiliation(s)
- Varun Singh Dhull
- Department of Nuclear Medicine, All India Institute of Medical Sciences, New Delhi, India.
| | - Neelima Rana
- Department of Radiodiagnosis, MS Ramaiah Medical College, Bengaluru, Karnataka, India
| | - Aftab Hasan Nazar
- Department of Nuclear Medicine, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
26
|
Carter BW, Betancourt SL, Viswanathan C, Mawlawi O, Marom EM, Truong MT. Potential Pitfalls in Interpretation of Positron Emission Tomography/Computed Tomography Findings in the Thorax. Semin Roentgenol 2015; 50:210-6. [DOI: 10.1053/j.ro.2015.01.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
27
|
Mayerhoefer ME, Karanikas G, Kletter K, Prosch H, Kiesewetter B, Skrabs C, Porpaczy E, Weber M, Knogler T, Sillaber C, Jaeger U, Simonitsch-Klupp I, Ubl P, Müllauer L, Dolak W, Lukas J, Raderer M. Evaluation of Diffusion-Weighted Magnetic Resonance Imaging for Follow-up and Treatment Response Assessment of Lymphoma: Results of an 18F-FDG-PET/CT–Controlled Prospective Study in 64 Patients. Clin Cancer Res 2015. [DOI: 10.1158/1078-0432.ccr-14-2454 order by 1-- #] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Abstract
Purpose: To determine the value of diffusion-weighted MRI (DWI-MRI) for treatment response assessment in 2-[18F]fluoro-2-deoxy-D-glucose (FDG)–avid lymphoma.
Experimental Design: Patients with FDG-avid Hodgkin (HL) or non-Hodgkin lymphoma (NHL) at pretherapeutic 18F-FDG-PET/CT, who had also undergone pretherapeutic whole-body DWI-MRI, were included in this prospective study. Depending on the histologic lymphoma subtype, patients received different systemic treatment regimens, and follow-up DWI-MRI and 18F-FDG-PET/CT were performed at one or more time points, depending on the clinical course. For each follow-up DWI-MRI, region-based rates of agreement, and rates of agreement in terms of treatment response (complete remission, partial remission, stable disease, or progressive disease), relative to the corresponding 18F-FDG-PET/CT, were calculated.
Results: Sixty-four patients were included: 10 with HL, 22 with aggressive NHL, and 32 with indolent NHL. The overall region-based agreement of DWI-MRI with 18F-FDG-PET/CT was 99.4%. For the 51 interim examinations (performed after 1–3 therapy cycles), region-based agreement of DWI-MRI with 18F-FDG-PET/CT was 99.2%, and for the 48 end-of-treatment examinations, agreement was 99.8%. No significant differences, in terms of region-based agreement between DWI-MRI and 18F-FDG-PET/CT, were observed between the three lymphoma groups (HL, aggressive NHL, indolent NHL; P = 0.25), or between interim and end-of-treatment examinations (P = 0.21). With regard to treatment response assessment, DWI-MRI agreed with 18F-FDG-PET/CT in 99 of 102 follow-up examinations (97.1%), with a κ value of 0.94 (P < 0.0001).
Conclusions: In patients with FDG-avid lymphoma, DWI-MRI may be a feasible alternative to 18F-FDG-PET/CT for follow-up and treatment response assessment. Clin Cancer Res; 21(11); 2506–13. ©2015 AACR.
Collapse
Affiliation(s)
- Marius E. Mayerhoefer
- 1Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Georgios Karanikas
- 1Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Kurt Kletter
- 1Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Helmut Prosch
- 1Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Barbara Kiesewetter
- 2Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
| | - Cathrin Skrabs
- 2Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
| | - Edit Porpaczy
- 2Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
| | - Michael Weber
- 1Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Thomas Knogler
- 1Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Christian Sillaber
- 2Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
| | - Ulrich Jaeger
- 2Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
| | | | - Philipp Ubl
- 1Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | | | - Werner Dolak
- 4Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Julius Lukas
- 5Department of Ophthalmology and Optometry, Medical University of Vienna, Vienna, Austria
| | - Markus Raderer
- 2Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
28
|
Mayerhoefer ME, Karanikas G, Kletter K, Prosch H, Kiesewetter B, Skrabs C, Porpaczy E, Weber M, Knogler T, Sillaber C, Jaeger U, Simonitsch-Klupp I, Ubl P, Müllauer L, Dolak W, Lukas J, Raderer M. Evaluation of Diffusion-Weighted Magnetic Resonance Imaging for Follow-up and Treatment Response Assessment of Lymphoma: Results of an 18F-FDG-PET/CT–Controlled Prospective Study in 64 Patients. Clin Cancer Res 2015. [DOI: 10.1158/1078-0432.ccr-14-2454 order by 1-- gadu] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Abstract
Purpose: To determine the value of diffusion-weighted MRI (DWI-MRI) for treatment response assessment in 2-[18F]fluoro-2-deoxy-D-glucose (FDG)–avid lymphoma.
Experimental Design: Patients with FDG-avid Hodgkin (HL) or non-Hodgkin lymphoma (NHL) at pretherapeutic 18F-FDG-PET/CT, who had also undergone pretherapeutic whole-body DWI-MRI, were included in this prospective study. Depending on the histologic lymphoma subtype, patients received different systemic treatment regimens, and follow-up DWI-MRI and 18F-FDG-PET/CT were performed at one or more time points, depending on the clinical course. For each follow-up DWI-MRI, region-based rates of agreement, and rates of agreement in terms of treatment response (complete remission, partial remission, stable disease, or progressive disease), relative to the corresponding 18F-FDG-PET/CT, were calculated.
Results: Sixty-four patients were included: 10 with HL, 22 with aggressive NHL, and 32 with indolent NHL. The overall region-based agreement of DWI-MRI with 18F-FDG-PET/CT was 99.4%. For the 51 interim examinations (performed after 1–3 therapy cycles), region-based agreement of DWI-MRI with 18F-FDG-PET/CT was 99.2%, and for the 48 end-of-treatment examinations, agreement was 99.8%. No significant differences, in terms of region-based agreement between DWI-MRI and 18F-FDG-PET/CT, were observed between the three lymphoma groups (HL, aggressive NHL, indolent NHL; P = 0.25), or between interim and end-of-treatment examinations (P = 0.21). With regard to treatment response assessment, DWI-MRI agreed with 18F-FDG-PET/CT in 99 of 102 follow-up examinations (97.1%), with a κ value of 0.94 (P < 0.0001).
Conclusions: In patients with FDG-avid lymphoma, DWI-MRI may be a feasible alternative to 18F-FDG-PET/CT for follow-up and treatment response assessment. Clin Cancer Res; 21(11); 2506–13. ©2015 AACR.
Collapse
Affiliation(s)
- Marius E. Mayerhoefer
- 1Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Georgios Karanikas
- 1Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Kurt Kletter
- 1Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Helmut Prosch
- 1Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Barbara Kiesewetter
- 2Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
| | - Cathrin Skrabs
- 2Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
| | - Edit Porpaczy
- 2Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
| | - Michael Weber
- 1Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Thomas Knogler
- 1Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Christian Sillaber
- 2Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
| | - Ulrich Jaeger
- 2Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
| | | | - Philipp Ubl
- 1Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | | | - Werner Dolak
- 4Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Julius Lukas
- 5Department of Ophthalmology and Optometry, Medical University of Vienna, Vienna, Austria
| | - Markus Raderer
- 2Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
29
|
Mayerhoefer ME, Karanikas G, Kletter K, Prosch H, Kiesewetter B, Skrabs C, Porpaczy E, Weber M, Knogler T, Sillaber C, Jaeger U, Simonitsch-Klupp I, Ubl P, Müllauer L, Dolak W, Lukas J, Raderer M. Evaluation of Diffusion-Weighted Magnetic Resonance Imaging for Follow-up and Treatment Response Assessment of Lymphoma: Results of an 18F-FDG-PET/CT–Controlled Prospective Study in 64 Patients. Clin Cancer Res 2015. [DOI: 10.1158/1078-0432.ccr-14-2454 order by 8029-- -] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Abstract
Purpose: To determine the value of diffusion-weighted MRI (DWI-MRI) for treatment response assessment in 2-[18F]fluoro-2-deoxy-D-glucose (FDG)–avid lymphoma.
Experimental Design: Patients with FDG-avid Hodgkin (HL) or non-Hodgkin lymphoma (NHL) at pretherapeutic 18F-FDG-PET/CT, who had also undergone pretherapeutic whole-body DWI-MRI, were included in this prospective study. Depending on the histologic lymphoma subtype, patients received different systemic treatment regimens, and follow-up DWI-MRI and 18F-FDG-PET/CT were performed at one or more time points, depending on the clinical course. For each follow-up DWI-MRI, region-based rates of agreement, and rates of agreement in terms of treatment response (complete remission, partial remission, stable disease, or progressive disease), relative to the corresponding 18F-FDG-PET/CT, were calculated.
Results: Sixty-four patients were included: 10 with HL, 22 with aggressive NHL, and 32 with indolent NHL. The overall region-based agreement of DWI-MRI with 18F-FDG-PET/CT was 99.4%. For the 51 interim examinations (performed after 1–3 therapy cycles), region-based agreement of DWI-MRI with 18F-FDG-PET/CT was 99.2%, and for the 48 end-of-treatment examinations, agreement was 99.8%. No significant differences, in terms of region-based agreement between DWI-MRI and 18F-FDG-PET/CT, were observed between the three lymphoma groups (HL, aggressive NHL, indolent NHL; P = 0.25), or between interim and end-of-treatment examinations (P = 0.21). With regard to treatment response assessment, DWI-MRI agreed with 18F-FDG-PET/CT in 99 of 102 follow-up examinations (97.1%), with a κ value of 0.94 (P < 0.0001).
Conclusions: In patients with FDG-avid lymphoma, DWI-MRI may be a feasible alternative to 18F-FDG-PET/CT for follow-up and treatment response assessment. Clin Cancer Res; 21(11); 2506–13. ©2015 AACR.
Collapse
Affiliation(s)
- Marius E. Mayerhoefer
- 1Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Georgios Karanikas
- 1Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Kurt Kletter
- 1Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Helmut Prosch
- 1Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Barbara Kiesewetter
- 2Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
| | - Cathrin Skrabs
- 2Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
| | - Edit Porpaczy
- 2Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
| | - Michael Weber
- 1Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Thomas Knogler
- 1Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Christian Sillaber
- 2Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
| | - Ulrich Jaeger
- 2Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
| | | | - Philipp Ubl
- 1Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | | | - Werner Dolak
- 4Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Julius Lukas
- 5Department of Ophthalmology and Optometry, Medical University of Vienna, Vienna, Austria
| | - Markus Raderer
- 2Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
30
|
Mayerhoefer ME, Karanikas G, Kletter K, Prosch H, Kiesewetter B, Skrabs C, Porpaczy E, Weber M, Knogler T, Sillaber C, Jaeger U, Simonitsch-Klupp I, Ubl P, Müllauer L, Dolak W, Lukas J, Raderer M. Evaluation of Diffusion-Weighted Magnetic Resonance Imaging for Follow-up and Treatment Response Assessment of Lymphoma: Results of an 18F-FDG-PET/CT–Controlled Prospective Study in 64 Patients. Clin Cancer Res 2015. [DOI: 10.1158/1078-0432.ccr-14-2454 order by 1-- -] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Abstract
Purpose: To determine the value of diffusion-weighted MRI (DWI-MRI) for treatment response assessment in 2-[18F]fluoro-2-deoxy-D-glucose (FDG)–avid lymphoma.
Experimental Design: Patients with FDG-avid Hodgkin (HL) or non-Hodgkin lymphoma (NHL) at pretherapeutic 18F-FDG-PET/CT, who had also undergone pretherapeutic whole-body DWI-MRI, were included in this prospective study. Depending on the histologic lymphoma subtype, patients received different systemic treatment regimens, and follow-up DWI-MRI and 18F-FDG-PET/CT were performed at one or more time points, depending on the clinical course. For each follow-up DWI-MRI, region-based rates of agreement, and rates of agreement in terms of treatment response (complete remission, partial remission, stable disease, or progressive disease), relative to the corresponding 18F-FDG-PET/CT, were calculated.
Results: Sixty-four patients were included: 10 with HL, 22 with aggressive NHL, and 32 with indolent NHL. The overall region-based agreement of DWI-MRI with 18F-FDG-PET/CT was 99.4%. For the 51 interim examinations (performed after 1–3 therapy cycles), region-based agreement of DWI-MRI with 18F-FDG-PET/CT was 99.2%, and for the 48 end-of-treatment examinations, agreement was 99.8%. No significant differences, in terms of region-based agreement between DWI-MRI and 18F-FDG-PET/CT, were observed between the three lymphoma groups (HL, aggressive NHL, indolent NHL; P = 0.25), or between interim and end-of-treatment examinations (P = 0.21). With regard to treatment response assessment, DWI-MRI agreed with 18F-FDG-PET/CT in 99 of 102 follow-up examinations (97.1%), with a κ value of 0.94 (P < 0.0001).
Conclusions: In patients with FDG-avid lymphoma, DWI-MRI may be a feasible alternative to 18F-FDG-PET/CT for follow-up and treatment response assessment. Clin Cancer Res; 21(11); 2506–13. ©2015 AACR.
Collapse
Affiliation(s)
- Marius E. Mayerhoefer
- 1Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Georgios Karanikas
- 1Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Kurt Kletter
- 1Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Helmut Prosch
- 1Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Barbara Kiesewetter
- 2Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
| | - Cathrin Skrabs
- 2Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
| | - Edit Porpaczy
- 2Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
| | - Michael Weber
- 1Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Thomas Knogler
- 1Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Christian Sillaber
- 2Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
| | - Ulrich Jaeger
- 2Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
| | | | - Philipp Ubl
- 1Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | | | - Werner Dolak
- 4Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Julius Lukas
- 5Department of Ophthalmology and Optometry, Medical University of Vienna, Vienna, Austria
| | - Markus Raderer
- 2Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
31
|
Mayerhoefer ME, Karanikas G, Kletter K, Prosch H, Kiesewetter B, Skrabs C, Porpaczy E, Weber M, Knogler T, Sillaber C, Jaeger U, Simonitsch-Klupp I, Ubl P, Müllauer L, Dolak W, Lukas J, Raderer M. Evaluation of Diffusion-Weighted Magnetic Resonance Imaging for Follow-up and Treatment Response Assessment of Lymphoma: Results of an 18F-FDG-PET/CT–Controlled Prospective Study in 64 Patients. Clin Cancer Res 2015. [DOI: 10.1158/1078-0432.ccr-14-2454 order by 8029-- awyx] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Abstract
Purpose: To determine the value of diffusion-weighted MRI (DWI-MRI) for treatment response assessment in 2-[18F]fluoro-2-deoxy-D-glucose (FDG)–avid lymphoma.
Experimental Design: Patients with FDG-avid Hodgkin (HL) or non-Hodgkin lymphoma (NHL) at pretherapeutic 18F-FDG-PET/CT, who had also undergone pretherapeutic whole-body DWI-MRI, were included in this prospective study. Depending on the histologic lymphoma subtype, patients received different systemic treatment regimens, and follow-up DWI-MRI and 18F-FDG-PET/CT were performed at one or more time points, depending on the clinical course. For each follow-up DWI-MRI, region-based rates of agreement, and rates of agreement in terms of treatment response (complete remission, partial remission, stable disease, or progressive disease), relative to the corresponding 18F-FDG-PET/CT, were calculated.
Results: Sixty-four patients were included: 10 with HL, 22 with aggressive NHL, and 32 with indolent NHL. The overall region-based agreement of DWI-MRI with 18F-FDG-PET/CT was 99.4%. For the 51 interim examinations (performed after 1–3 therapy cycles), region-based agreement of DWI-MRI with 18F-FDG-PET/CT was 99.2%, and for the 48 end-of-treatment examinations, agreement was 99.8%. No significant differences, in terms of region-based agreement between DWI-MRI and 18F-FDG-PET/CT, were observed between the three lymphoma groups (HL, aggressive NHL, indolent NHL; P = 0.25), or between interim and end-of-treatment examinations (P = 0.21). With regard to treatment response assessment, DWI-MRI agreed with 18F-FDG-PET/CT in 99 of 102 follow-up examinations (97.1%), with a κ value of 0.94 (P < 0.0001).
Conclusions: In patients with FDG-avid lymphoma, DWI-MRI may be a feasible alternative to 18F-FDG-PET/CT for follow-up and treatment response assessment. Clin Cancer Res; 21(11); 2506–13. ©2015 AACR.
Collapse
Affiliation(s)
- Marius E. Mayerhoefer
- 1Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Georgios Karanikas
- 1Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Kurt Kletter
- 1Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Helmut Prosch
- 1Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Barbara Kiesewetter
- 2Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
| | - Cathrin Skrabs
- 2Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
| | - Edit Porpaczy
- 2Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
| | - Michael Weber
- 1Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Thomas Knogler
- 1Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Christian Sillaber
- 2Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
| | - Ulrich Jaeger
- 2Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
| | | | - Philipp Ubl
- 1Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | | | - Werner Dolak
- 4Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Julius Lukas
- 5Department of Ophthalmology and Optometry, Medical University of Vienna, Vienna, Austria
| | - Markus Raderer
- 2Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
32
|
Mayerhoefer ME, Karanikas G, Kletter K, Prosch H, Kiesewetter B, Skrabs C, Porpaczy E, Weber M, Knogler T, Sillaber C, Jaeger U, Simonitsch-Klupp I, Ubl P, Müllauer L, Dolak W, Lukas J, Raderer M. Evaluation of Diffusion-Weighted Magnetic Resonance Imaging for Follow-up and Treatment Response Assessment of Lymphoma: Results of an 18F-FDG-PET/CT–Controlled Prospective Study in 64 Patients. Clin Cancer Res 2015. [DOI: 10.1158/1078-0432.ccr-14-2454 and 1880=1880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Abstract
Purpose: To determine the value of diffusion-weighted MRI (DWI-MRI) for treatment response assessment in 2-[18F]fluoro-2-deoxy-D-glucose (FDG)–avid lymphoma.
Experimental Design: Patients with FDG-avid Hodgkin (HL) or non-Hodgkin lymphoma (NHL) at pretherapeutic 18F-FDG-PET/CT, who had also undergone pretherapeutic whole-body DWI-MRI, were included in this prospective study. Depending on the histologic lymphoma subtype, patients received different systemic treatment regimens, and follow-up DWI-MRI and 18F-FDG-PET/CT were performed at one or more time points, depending on the clinical course. For each follow-up DWI-MRI, region-based rates of agreement, and rates of agreement in terms of treatment response (complete remission, partial remission, stable disease, or progressive disease), relative to the corresponding 18F-FDG-PET/CT, were calculated.
Results: Sixty-four patients were included: 10 with HL, 22 with aggressive NHL, and 32 with indolent NHL. The overall region-based agreement of DWI-MRI with 18F-FDG-PET/CT was 99.4%. For the 51 interim examinations (performed after 1–3 therapy cycles), region-based agreement of DWI-MRI with 18F-FDG-PET/CT was 99.2%, and for the 48 end-of-treatment examinations, agreement was 99.8%. No significant differences, in terms of region-based agreement between DWI-MRI and 18F-FDG-PET/CT, were observed between the three lymphoma groups (HL, aggressive NHL, indolent NHL; P = 0.25), or between interim and end-of-treatment examinations (P = 0.21). With regard to treatment response assessment, DWI-MRI agreed with 18F-FDG-PET/CT in 99 of 102 follow-up examinations (97.1%), with a κ value of 0.94 (P < 0.0001).
Conclusions: In patients with FDG-avid lymphoma, DWI-MRI may be a feasible alternative to 18F-FDG-PET/CT for follow-up and treatment response assessment. Clin Cancer Res; 21(11); 2506–13. ©2015 AACR.
Collapse
Affiliation(s)
- Marius E. Mayerhoefer
- 1Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Georgios Karanikas
- 1Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Kurt Kletter
- 1Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Helmut Prosch
- 1Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Barbara Kiesewetter
- 2Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
| | - Cathrin Skrabs
- 2Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
| | - Edit Porpaczy
- 2Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
| | - Michael Weber
- 1Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Thomas Knogler
- 1Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Christian Sillaber
- 2Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
| | - Ulrich Jaeger
- 2Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
| | | | - Philipp Ubl
- 1Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | | | - Werner Dolak
- 4Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Julius Lukas
- 5Department of Ophthalmology and Optometry, Medical University of Vienna, Vienna, Austria
| | - Markus Raderer
- 2Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
33
|
Mayerhoefer ME, Karanikas G, Kletter K, Prosch H, Kiesewetter B, Skrabs C, Porpaczy E, Weber M, Knogler T, Sillaber C, Jaeger U, Simonitsch-Klupp I, Ubl P, Müllauer L, Dolak W, Lukas J, Raderer M. Evaluation of Diffusion-Weighted Magnetic Resonance Imaging for Follow-up and Treatment Response Assessment of Lymphoma: Results of an 18F-FDG-PET/CT–Controlled Prospective Study in 64 Patients. Clin Cancer Res 2015. [DOI: 10.1158/1078-0432.ccr-14-2454 order by 8029-- #] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Abstract
Purpose: To determine the value of diffusion-weighted MRI (DWI-MRI) for treatment response assessment in 2-[18F]fluoro-2-deoxy-D-glucose (FDG)–avid lymphoma.
Experimental Design: Patients with FDG-avid Hodgkin (HL) or non-Hodgkin lymphoma (NHL) at pretherapeutic 18F-FDG-PET/CT, who had also undergone pretherapeutic whole-body DWI-MRI, were included in this prospective study. Depending on the histologic lymphoma subtype, patients received different systemic treatment regimens, and follow-up DWI-MRI and 18F-FDG-PET/CT were performed at one or more time points, depending on the clinical course. For each follow-up DWI-MRI, region-based rates of agreement, and rates of agreement in terms of treatment response (complete remission, partial remission, stable disease, or progressive disease), relative to the corresponding 18F-FDG-PET/CT, were calculated.
Results: Sixty-four patients were included: 10 with HL, 22 with aggressive NHL, and 32 with indolent NHL. The overall region-based agreement of DWI-MRI with 18F-FDG-PET/CT was 99.4%. For the 51 interim examinations (performed after 1–3 therapy cycles), region-based agreement of DWI-MRI with 18F-FDG-PET/CT was 99.2%, and for the 48 end-of-treatment examinations, agreement was 99.8%. No significant differences, in terms of region-based agreement between DWI-MRI and 18F-FDG-PET/CT, were observed between the three lymphoma groups (HL, aggressive NHL, indolent NHL; P = 0.25), or between interim and end-of-treatment examinations (P = 0.21). With regard to treatment response assessment, DWI-MRI agreed with 18F-FDG-PET/CT in 99 of 102 follow-up examinations (97.1%), with a κ value of 0.94 (P < 0.0001).
Conclusions: In patients with FDG-avid lymphoma, DWI-MRI may be a feasible alternative to 18F-FDG-PET/CT for follow-up and treatment response assessment. Clin Cancer Res; 21(11); 2506–13. ©2015 AACR.
Collapse
Affiliation(s)
- Marius E. Mayerhoefer
- 1Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Georgios Karanikas
- 1Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Kurt Kletter
- 1Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Helmut Prosch
- 1Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Barbara Kiesewetter
- 2Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
| | - Cathrin Skrabs
- 2Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
| | - Edit Porpaczy
- 2Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
| | - Michael Weber
- 1Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Thomas Knogler
- 1Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Christian Sillaber
- 2Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
| | - Ulrich Jaeger
- 2Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
| | | | - Philipp Ubl
- 1Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | | | - Werner Dolak
- 4Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Julius Lukas
- 5Department of Ophthalmology and Optometry, Medical University of Vienna, Vienna, Austria
| | - Markus Raderer
- 2Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
34
|
Mayerhoefer ME, Karanikas G, Kletter K, Prosch H, Kiesewetter B, Skrabs C, Porpaczy E, Weber M, Knogler T, Sillaber C, Jaeger U, Simonitsch-Klupp I, Ubl P, Müllauer L, Dolak W, Lukas J, Raderer M. Evaluation of Diffusion-Weighted Magnetic Resonance Imaging for Follow-up and Treatment Response Assessment of Lymphoma: Results of an 18F-FDG-PET/CT–Controlled Prospective Study in 64 Patients. Clin Cancer Res 2015; 21:2506-13. [DOI: 10.1158/1078-0432.ccr-14-2454] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 02/09/2015] [Indexed: 01/12/2023]
|
35
|
PET-specific parameters and radiotracers in theoretical tumour modelling. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2015; 2015:415923. [PMID: 25788973 PMCID: PMC4350968 DOI: 10.1155/2015/415923] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 09/15/2014] [Indexed: 12/15/2022]
Abstract
The innovation of computational techniques serves as an important step toward optimized, patient-specific management of cancer. In particular, in silico simulation of tumour growth and treatment response may eventually yield accurate information on disease progression, enhance the quality of cancer treatment, and explain why certain therapies are effective where others are not. In silico modelling is demonstrated to considerably benefit from information obtainable with PET and PET/CT. In particular, models have successfully integrated tumour glucose metabolism, cell proliferation, and cell oxygenation from multiple tracers in order to simulate tumour behaviour. With the development of novel radiotracers to image additional tumour phenomena, such as pH and gene expression, the value of PET and PET/CT data for use in tumour models will continue to grow. In this work, the use of PET and PET/CT information in in silico tumour models is reviewed. The various parameters that can be obtained using PET and PET/CT are detailed, as well as the radiotracers that may be used for this purpose, their utility, and limitations. The biophysical measures used to quantify PET and PET/CT data are also described. Finally, a list of in silico models that incorporate PET and/or PET/CT data is provided and reviewed.
Collapse
|
36
|
Boellaard R, Delgado-Bolton R, Oyen WJG, Giammarile F, Tatsch K, Eschner W, Verzijlbergen FJ, Barrington SF, Pike LC, Weber WA, Stroobants S, Delbeke D, Donohoe KJ, Holbrook S, Graham MM, Testanera G, Hoekstra OS, Zijlstra J, Visser E, Hoekstra CJ, Pruim J, Willemsen A, Arends B, Kotzerke J, Bockisch A, Beyer T, Chiti A, Krause BJ. FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0. Eur J Nucl Med Mol Imaging 2015; 42:328-54. [PMID: 25452219 PMCID: PMC4315529 DOI: 10.1007/s00259-014-2961-x] [Citation(s) in RCA: 2240] [Impact Index Per Article: 224.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 11/12/2014] [Indexed: 12/11/2022]
Abstract
The purpose of these guidelines is to assist physicians in recommending, performing, interpreting and reporting the results of FDG PET/CT for oncological imaging of adult patients. PET is a quantitative imaging technique and therefore requires a common quality control (QC)/quality assurance (QA) procedure to maintain the accuracy and precision of quantitation. Repeatability and reproducibility are two essential requirements for any quantitative measurement and/or imaging biomarker. Repeatability relates to the uncertainty in obtaining the same result in the same patient when he or she is examined more than once on the same system. However, imaging biomarkers should also have adequate reproducibility, i.e. the ability to yield the same result in the same patient when that patient is examined on different systems and at different imaging sites. Adequate repeatability and reproducibility are essential for the clinical management of patients and the use of FDG PET/CT within multicentre trials. A common standardised imaging procedure will help promote the appropriate use of FDG PET/CT imaging and increase the value of publications and, therefore, their contribution to evidence-based medicine. Moreover, consistency in numerical values between platforms and institutes that acquire the data will potentially enhance the role of semiquantitative and quantitative image interpretation. Precision and accuracy are additionally important as FDG PET/CT is used to evaluate tumour response as well as for diagnosis, prognosis and staging. Therefore both the previous and these new guidelines specifically aim to achieve standardised uptake value harmonisation in multicentre settings.
Collapse
Affiliation(s)
- Ronald Boellaard
- Department of Radiology & Nuclear Medicine, VU University Medical Centre, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Mahmud MH, Nordin AJ, Saad FFA, Azman AZF. Estimation of patient radiation dose from whole body18F- FDG PET/CT examination in cancer imaging: a preliminary study. ACTA ACUST UNITED AC 2014. [DOI: 10.1088/1742-6596/546/1/012008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
38
|
Abstract
PET/CT is widely used in the staging and assessment of therapeutic response in patients with malignancies. Accurate interpretation of PET/CT requires knowledge of the normal physiologic distribution of [18F]-fluoro-2-deoxy-d-glucose, artifacts due to the use of CT for attenuation correction of the PET scan and potential pitfalls due to malignancies that are PET negative and benign conditions that are PET positive. Awareness of these artifacts and potential pitfalls is important in preventing misinterpretation that can alter patient management.
Collapse
Affiliation(s)
- Mylene T Truong
- Division of Diagnostic Imaging, Department of Diagnostic Radiology, University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 1478, Houston, TX 77030, USA.
| | | | | | | | | |
Collapse
|
39
|
Verburg FA, Apitzsch J, Lensing C, Kuhl CK, Pietsch H, Mottaghy FM, Behrendt FF. Body surface area adapted iopromide 300mg/ml versus 370mg/ml contrast medium injection protocol: Influence on quantitative and clinical assessment in combined PET/CT. Eur J Radiol 2013; 82:2348-52. [DOI: 10.1016/j.ejrad.2013.09.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 09/12/2013] [Accepted: 09/14/2013] [Indexed: 10/26/2022]
|
40
|
Verburg FA, Kuhl CK, Pietsch H, Palmowski M, Mottaghy FM, Behrendt FF. The influence of different contrast medium concentrations and injection protocols on quantitative and clinical assessment of FDG–PET/CT in lung cancer. Eur J Radiol 2013; 82:e617-22. [DOI: 10.1016/j.ejrad.2013.06.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 06/29/2013] [Indexed: 10/26/2022]
|
41
|
Vera P, Modzelewski R, Hapdey S, Gouel P, Tilly H, Jardin F, Ruan S, Gardin I. Does enhanced CT influence the biological GTV measurement on FDG-PET images? Radiother Oncol 2013; 108:86-90. [DOI: 10.1016/j.radonc.2013.03.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2012] [Revised: 03/10/2013] [Accepted: 03/17/2013] [Indexed: 10/26/2022]
|
42
|
Contrast medium injection protocol adjusted for body surface area in combined PET/CT. Eur Radiol 2013; 23:1970-7. [DOI: 10.1007/s00330-013-2781-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 12/21/2012] [Accepted: 01/06/2013] [Indexed: 10/27/2022]
|
43
|
|
44
|
Lasnon C, Quak E, Briand M, Gu Z, Louis MH, Aide N. Contrast-enhanced small-animal PET/CT in cancer research: strong improvement of diagnostic accuracy without significant alteration of quantitative accuracy and NEMA NU 4-2008 image quality parameters. EJNMMI Res 2013; 3:5. [PMID: 23327687 PMCID: PMC3563455 DOI: 10.1186/2191-219x-3-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2012] [Accepted: 01/09/2013] [Indexed: 02/05/2023] Open
Abstract
Background The use of iodinated contrast media in small-animal positron emission tomography (PET)/computed tomography (CT) could improve anatomic referencing and tumor delineation but may introduce inaccuracies in the attenuation correction of the PET images. This study evaluated the diagnostic performance and accuracy of quantitative values in contrast-enhanced small-animal PET/CT (CEPET/CT) as compared to unenhanced small animal PET/CT (UEPET/CT). Methods Firstly, a NEMA NU 4–2008 phantom (filled with 18F-FDG or 18F-FDG plus contrast media) and a homemade phantom, mimicking an abdominal tumor surrounded by water or contrast media, were used to evaluate the impact of iodinated contrast media on the image quality parameters and accuracy of quantitative values for a pertinent-sized target. Secondly, two studies in 22 abdominal tumor-bearing mice and rats were performed. The first animal experiment studied the impact of a dual-contrast media protocol, comprising the intravenous injection of a long-lasting contrast agent mixed with 18F-FDG and the intraperitoneal injection of contrast media, on tumor delineation and the accuracy of quantitative values. The second animal experiment compared the diagnostic performance and quantitative values of CEPET/CT versus UEPET/CT by sacrificing the animals after the tracer uptake period and imaging them before and after intraperitoneal injection of contrast media. Results There was minimal impact on IQ parameters (%SDunif and spillover ratios in air and water) when the NEMA NU 4–2008 phantom was filled with 18F-FDG plus contrast media. In the homemade phantom, measured activity was similar to true activity (−0.02%) and overestimated by 10.30% when vials were surrounded by water or by an iodine solution, respectively. The first animal experiment showed excellent tumor delineation and a good correlation between small-animal (SA)-PET and ex vivo quantification (r2 = 0.87, P < 0.0001). The second animal experiment showed a good correlation between CEPET/CT and UEPET/CT quantitative values (r2 = 0.99, P < 0.0001). Receiver operating characteristic analysis demonstrated better diagnostic accuracy of CEPET/CT versus UEPET/CT (senior researcher, area under the curve (AUC) 0.96 versus 0.77, P = 0.004; junior researcher, AUC 0.78 versus 0.58, P = 0.004). Conclusions The use of iodinated contrast media for small-animal PET imaging significantly improves tumor delineation and diagnostic performance, without significant alteration of SA-PET quantitative accuracy and NEMA NU 4–2008 IQ parameters.
Collapse
|
45
|
Different intravenous contrast media concentrations do not affect clinical assessment of 18F-fluorodeoxyglucose positron emission tomography/computed tomography scans in an intraindividual comparison. Invest Radiol 2012; 47:497-502. [PMID: 22820678 DOI: 10.1097/rli.0b013e31825d676e] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
OBJECTIVE The purpose of this study was to perform an intraindividual comparison of the influences of different iodine contrast media on tracer uptake, contrast enhancement, and image quality in combined positron emission tomography (PET)/computed tomography (CT). MATERIALS AND METHODS Fifty-one patients underwent baseline and follow-up combined PET/CT consisting of low-dose unenhanced and venous contrast-enhanced CT with contrast media containing a high concentration of iodine (iopromide, 370 mg/mL) and a standard iodine concentration (iopromide, 300 mg/mL). The total iodine load (44.4 g) and the iodine delivery rate (1.29 g/s) were identical for the 2 protocols. The mean and maximum standard uptake values, as measures of tracer uptake and contrast enhancement for unenhanced and contrast-enhanced PET/CT, were quantified at 10 different anatomical sites, and images were analyzed for clinically relevant differences. RESULTS The mean and maximum standard uptake values were significantly increased in contrast-enhanced PET/CT compared with unenhanced PET/CT at each anatomical site (P < 0.05). Comparison of tracer uptake between the 300- and 370-mg iodine contrast media showed no significant differences (all P > 0.05). Comparison of contrast enhancement between the 300- and 370-mg iodine contrast media showed no significant difference at any anatomical site (all P > 0.05). Analysis of image quality revealed no clinically relevant differences between the 2 different iodine contrast media (P = 0.739). CONCLUSION The use of contrast-enhanced CT scans for attenuation correction in PET/CT does not cause clinically relevant artifacts in PET scan reconstruction, regardless of the iodine concentration used. Standard- and high-iodine contrast media can be used equivalently.
Collapse
|
46
|
Sharma P, Singh H, Suman SKC, Sharma A, Reddy RM, Thulkar S, Bal C, Malhotra A, Kumar R. 18F-FDG PET-CT for detecting recurrent gastric adenocarcinoma: results from a Non-Oriental Asian population. Nucl Med Commun 2012; 33:960-966. [PMID: 22692579 DOI: 10.1097/mnm.0b013e328355b694] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To evaluate the utility of fluorine-18 fluorodeoxyglucose (18F-FDG) PET-CT in the diagnosis of recurrent gastric adenocarcinoma in a Non-Oriental Asian population. METHODS In this retrospective analysis, data from 72 Non-Oriental Asian patients, who underwent 93 18F-FDG PET-CT studies, were evaluated. All patients had histopathologically proven gastric adenocarcinoma, for which they had undergone primary treatment. PET-CT was performed for suspected recurrence or for post-therapy surveillance. PET-CT findings were analysed on a per-patient and per-region basis (local/lymph node/liver/lung/bone/others). A combination of clinical follow-up (minimum 6 months; range: 6-36 months), imaging follow-up and/or histopathology (when available) was taken as the reference standard. Sensitivity, specificity and predictive values were calculated for PET-CT on both a per-study and per-lesion basis. RESULTS The mean patient age was 52.8 ± 11.8 years (male/female: 52/20). Out of 93 PET-CT studies, 56 (60.2%) were positive and 37 (39.8%) were negative for recurrent disease. On per-study-based analysis, 18F-FDG PET-CT has a sensitivity, specificity and accuracy of 95.9, 79.5 and 88.1%, respectively. The accuracy of 18F-FDG PET-CT was 89.2% for local recurrence, 94.6% for lymph nodes, 96.7% for liver, 96.7% for lung, 98.9% for bone and 98.9% for other sites. The accuracy of 18F-FDG PET-CT was lower for local recurrence as compared with that for liver (P=0.012) and bone (P=0.012). No significant difference was found in the diagnostic accuracies for other regions. CONCLUSION 18F-FDG PET-CT is highly sensitive and specific for detecting recurrence in patients with gastric adenocarcinoma. It shows high accuracy both on a per-patient and per-lesion basis.
Collapse
Affiliation(s)
- Punit Sharma
- Department of Nuclear Medicine, All India Institute of Medical Sciences, New Delhi, India
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Lois C, Bezrukov I, Schmidt H, Schwenzer N, Werner MK, Kupferschläger J, Beyer T. Effect of MR contrast agents on quantitative accuracy of PET in combined whole-body PET/MR imaging. Eur J Nucl Med Mol Imaging 2012; 39:1756-66. [PMID: 22890801 DOI: 10.1007/s00259-012-2190-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Accepted: 07/02/2012] [Indexed: 11/28/2022]
Abstract
PURPOSE Clinical PET/MR acquisition protocols entail the use of MR contrast agents (MRCA) that could potentially affect PET quantification following MR-based attenuation correction (AC). We assessed the effect of oral and intravenous (IV) MRCA on PET quantification in PET/MR imaging. METHODS We employed two MRCA: Lumirem (oral) and Gadovist (IV). First, we determined their reference PET attenuation values using a PET transmission scan (ECAT-EXACT HR+, Siemens) and a CT scan (PET/CT Biograph 16 HI-REZ, Siemens). Second, we evaluated the attenuation of PET signals in the presence of MRCA. Phantoms were filled with clinically relevant concentrations of MRCA in a background of water and (18)F-fluoride, and imaged using a PET/CT scanner (Biograph 16 HI-REZ, Siemens) and a PET/MR scanner (Biograph mMR, Siemens). Third, we investigated the effect of clinically relevant volumes of MRCA on MR-based AC using human pilot data: a patient study employing Gadovist (IV) and a volunteer study employing two different oral MRCA (Lumirem and pineapple juice). MR-based attenuation maps were calculated following Dixon-based fat-water segmentation and an external atlas-based and pattern recognition (AT&PR) algorithm. RESULTS IV and oral MRCA in clinically relevant concentrations were found to have PET attenuation values similar to those of water. The phantom experiments showed that under clinical conditions IV and oral MRCA did not yield additional attenuation of PET emission signals. Patient scans showed that PET attenuation maps are not biased after the administration of IV MRCA but may be biased, however, after ingestion of iron oxide-based oral MRCA when segmentation-based AC algorithms are used. Alternative AC algorithms, such as AT&PR, or alternative oral contrast agents, such as pineapple juice, can yield unbiased attenuation maps. CONCLUSION In clinical PET/MR scenarios MRCA are not expected to lead to markedly increased attenuation of the PET emission signals. MR-based attenuation maps may be biased by oral iron oxide-based MRCA unless advanced AC algorithms are used.
Collapse
Affiliation(s)
- Cristina Lois
- Department of Particle Physics, University of Santiago de Compostela, Campus Vida S/N, 15782 Santiago de Compostela, Spain.
| | | | | | | | | | | | | |
Collapse
|
48
|
Rebière M, Verburg FA, Palmowski M, Krohn T, Pietsch H, Kuhl CK, Mottaghy FM, Behrendt FF. Multiphase CT scanning and different intravenous contrast media concentrations in combined F-18-FDG PET/CT: Effect on quantitative and clinical assessment. Eur J Radiol 2012; 81:e862-9. [DOI: 10.1016/j.ejrad.2012.04.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 04/12/2012] [Indexed: 10/28/2022]
|
49
|
Behrendt FF, Temur Y, Verburg FA, Palmowski M, Krohn T, Pietsch H, Kuhl CK, Mottaghy FM. PET/CT in lung cancer: Influence of contrast medium on quantitative and clinical assessment. Eur Radiol 2012; 22:2458-64. [DOI: 10.1007/s00330-012-2515-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 04/17/2012] [Accepted: 04/27/2012] [Indexed: 10/28/2022]
|
50
|
Wu LM, Hu JN, Hua J, Liu MJ, Chen J, Xu JR. Diagnostic value of diffusion-weighted magnetic resonance imaging compared with fluorodeoxyglucose positron emission tomography/computed tomography for pancreatic malignancy: a meta-analysis using a hierarchical regression model. J Gastroenterol Hepatol 2012; 27:1027-35. [PMID: 22414092 DOI: 10.1111/j.1440-1746.2012.07112.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIM To obtain diagnostic performance of diffusion-weighted magnetic resonance imaging (DWI) and fluorine 18 fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) in the detection of pancreatic malignancy. METHODS We performed a meta-analysis of all available studies of the diagnostic performance of DWI and PET/CT for pancreatic malignancy. MEDLINE, EMBASE, Cochrane library and some other databases were searched for initial studies. We determined sensitivities and specificities across studies, calculated positive and negative likelihood ratios (LR+ and LR-), and constructed summary receiver operating characteristic curves (SROC) using hierarchical regression models. RESULTS Across 16 studies with 804 patients, PET/CT sensitivity was 0.87 (95% confidence interval [CI], 0.82, 0.81) and specificity was 0.83 (95% CI, 0.71, 0.91). Overall, LR+ was 5.84 (95% CI, 4.59, 7.42) and LR- was 0.24 (95% CI, 0.17, 0.33). DWI sensitivity was 0.85 (95% CI, 0.74, 0.92) and specificity was 0.91 (95% CI, 0.71, 0.98). LR+ was 9.53 (95% CI, 2.41, 37.65) and LR- was 0.17 (95% CI, 0.09, 0.32). In subgroup analysis, the sensitivity of enhanced versus unenhanced PET/CT in the detection of pancreatic cancer was 0.91 (95% CI, 0.86, 0.96) versus 0.84 (95% CI, 0.78, 0.90) (P > 0.05), the specificity 0.88 (95% CI, 0.73, 1.00) versus 0.81 (95% CI, 0.69, 0.94) (P > 0.05). CONCLUSION Positron emission tomography/computed tomography (PET/CT) was highly sensitive and DWI was a highly specific modality in diagnosing patients with pancreatic malignancy. PET/CT and DWI could play different roles in diagnosing pancreatic carcinoma. Enhanced PET/CT seems to be superior to unenhanced PET/CT. Further larger prospective studies are needed to establish its value for diagnosis in pancreatic cancer.
Collapse
Affiliation(s)
- Lian-Ming Wu
- Department of Radiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | | | | | | | | |
Collapse
|