1
|
Ramachandran A, Hussain HK, Gulani V, Kelsey L, Mendiratta-Lala M, Richardson J, Masotti M, Dudek N, Morehouse J, Panagis KR, Wright K, Seiberlich N. Abdominal MRI on a Commercial 0.55T System: Initial Evaluation and Comparison to Higher Field Strengths. Acad Radiol 2024; 31:3177-3190. [PMID: 38320946 DOI: 10.1016/j.acra.2024.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/09/2024] [Accepted: 01/09/2024] [Indexed: 02/08/2024]
Abstract
RATIONALE AND OBJECTIVES This study aims to assess the quality of abdominal MR images acquired on a commercial 0.55T scanner and compare these images with those acquired on conventional 1.5T/3T scanners in both healthy subjects and patients. MATERIALS AND METHODS Fifteen healthy subjects and 52 patients underwent abdominal Magnetic Resonance Imaging at 0.55T. Images were also collected in healthy subjects at 1.5T, and comparison 1.5/3T images identified for 28 of the 52 patients. Image quality was rated by two radiologists on a 4-point Likert scale. Readers were asked whether they could answer the clinical question for patient studies. Wilcoxon signed-rank test was used to test for significant differences in image ratings and acquisition times, and inter-reader reliability was computed. RESULTS The overall image quality of all sequences at 0.55T were rated as acceptable in healthy subjects. Sequences were modified to improve signal-to-noise ratio and reduce artifacts and deployed for clinical use; 52 patients were enrolled in this study. Radiologists were able to answer the clinical question in 52 (reader 1) and 46 (reader 2) of the patient cases. Average image quality was considered to be diagnostic (>3) for all sequences except arterial phase FS 3D T1w gradient echo (GRE) and 3D magnetic resonance cholangiopancreatography for one reader. In comparison to higher field images, significantly lower scores were given to 0.55T IP 2D GRE and arterial phase FS 3D T1w GRE, and significantly higher scores to diffusion-weighted echo planar imaging at 0.55T; other sequences were equivalent. The average scan time at 0.55T was 54 ± 10 minutes vs 36 ± 11 minutes at higher field strengths (P < .001). CONCLUSION Diagnostic-quality abdominal MR images can be obtained on a commercial 0.55T scanner at a longer overall acquisition time compared to higher field systems, although some sequences may benefit from additional optimization.
Collapse
Affiliation(s)
| | - Hero K Hussain
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109
| | - Vikas Gulani
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109
| | - Lauren Kelsey
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109
| | | | - Jacob Richardson
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109
| | - Maria Masotti
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan
| | - Nancy Dudek
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109
| | - Joel Morehouse
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109
| | | | - Katherine Wright
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109
| | - Nicole Seiberlich
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109.
| |
Collapse
|
2
|
Lv J, Yang M, Zhang J, Wang X. Respiratory motion correction for free-breathing 3D abdominal MRI using CNN-based image registration: a feasibility study. Br J Radiol 2018; 91:20170788. [PMID: 29261334 DOI: 10.1259/bjr.20170788] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE Free-breathing abdomen imaging requires non-rigid motion registration of unavoidable respiratory motion in three-dimensional undersampled data sets. In this work, we introduce an image registration method based on the convolutional neural network (CNN) to obtain motion-free abdominal images throughout the respiratory cycle. METHODS Abdominal data were acquired from 10 volunteers using a 1.5 T MRI system. The respiratory signal was extracted from the central-space spokes, and the acquired data were reordered in three bins according to the corresponding breathing signal. Retrospective image reconstruction of the three near-motion free respiratory phases was performed using non-Cartesian iterative SENSE reconstruction. Then, we trained a CNN to analyse the spatial transform among the different bins. This network could generate the displacement vector field and be applied to perform registration on unseen image pairs. To demonstrate the feasibility of this registration method, we compared the performance of three different registration approaches for accurate image fusion of three bins: non-motion corrected (NMC), local affine registration method (LREG) and CNN. RESULTS Visualization of coronal images indicated that LREG had caused broken blood vessels, while the vessels of the CNN were sharper and more consecutive. As shown in the sagittal view, compared to NMC and CNN, distorted and blurred liver contours were caused by LREG. At the same time, zoom-in axial images presented that the vessels were delineated more clearly by CNN than LREG. The statistical results of the signal-to-noise ratio, visual score, vessel sharpness and registration time over all volunteers were compared among the NMC, LREG and CNN approaches. The SNR indicated that the CNN acquired the best image quality (207.42 ± 96.73), which was better than NMC (116.67 ± 44.70) and LREG (187.93 ± 96.68). The image visual score agreed with SNR, marking CNN (3.85 ± 0.12) as the best, followed by LREG (3.43 ± 0.13) and NMC (2.55 ± 0.09). A vessel sharpness assessment yielded similar values between the CNN (0.81 ± 0.03) and LREG (0.80 ± 0.04), differentiating them from the NMC (0.78 ± 0.06). When compared with the LREG-based reconstruction, the CNN-based reconstruction reduces the registration time from 1 h to 1 min. CONCLUSION Our preliminary results demonstrate the feasibility of the CNN-based approach, and this scheme outperforms the NMC- and LREG-based methods. Advances in knowledge: This method reduces the registration time from ~1 h to ~1 min, which has promising prospects for clinical use. To the best of our knowledge, this study shows the first convolutional neural network-based registration method to be applied in abdominal images.
Collapse
Affiliation(s)
- Jun Lv
- 1 Academy for Advanced Interdisciplinary Studies, Peking University , Beijing , China
| | - Ming Yang
- 2 Vusion Tech Ltd. Co , Suzhou , China
| | - Jue Zhang
- 1 Academy for Advanced Interdisciplinary Studies, Peking University , Beijing , China.,3 College of Engineering, Peking University , Beijing , China
| | - Xiaoying Wang
- 1 Academy for Advanced Interdisciplinary Studies, Peking University , Beijing , China.,4 Department of Radiology, Peking University First Hospital , Beijing , China
| |
Collapse
|
3
|
Li Y, Wang H, Tkach J, Roach D, Woods J, Dumoulin C. Wavelet-space correlation imaging for high-speed MRI without motion monitoring or data segmentation. Magn Reson Med 2015; 74:1574-86. [PMID: 25470230 PMCID: PMC4452472 DOI: 10.1002/mrm.25546] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 10/12/2014] [Accepted: 11/03/2014] [Indexed: 11/11/2022]
Abstract
PURPOSE This study aims to (i) develop a new high-speed MRI approach by implementing correlation imaging in wavelet-space, and (ii) demonstrate the ability of wavelet-space correlation imaging to image human anatomy with involuntary or physiological motion. METHODS Correlation imaging is a high-speed MRI framework in which image reconstruction relies on quantification of data correlation. The presented work integrates correlation imaging with a wavelet transform technique developed originally in the field of signal and image processing. This provides a new high-speed MRI approach to motion-free data collection without motion monitoring or data segmentation. The new approach, called "wavelet-space correlation imaging", is investigated in brain imaging with involuntary motion and chest imaging with free-breathing. RESULTS Wavelet-space correlation imaging can exceed the speed limit of conventional parallel imaging methods. Using this approach with high acceleration factors (6 for brain MRI, 16 for cardiac MRI, and 8 for lung MRI), motion-free images can be generated in static brain MRI with involuntary motion and nonsegmented dynamic cardiac/lung MRI with free-breathing. CONCLUSION Wavelet-space correlation imaging enables high-speed MRI in the presence of involuntary motion or physiological dynamics without motion monitoring or data segmentation.
Collapse
Affiliation(s)
- Yu Li
- Imaging Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Hui Wang
- Imaging Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Jean Tkach
- Imaging Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - David Roach
- Imaging Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Jason Woods
- Imaging Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Charles Dumoulin
- Imaging Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
4
|
Herédia V, Dale B, Op de Campos R, Ramalho M, Burke L, Sams C, de Toni M, Semelka R. Comparación de una secuencia en 3D con eco de gradiente potenciada en T1 con 3 factores de reducción de imagen en paralelo diferentes, en apnea y respiración libre, utilizando una bobina de 32 canales a 1,5T. Estudio preliminar. RADIOLOGIA 2014; 56:533-40. [DOI: 10.1016/j.rx.2012.06.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Revised: 04/11/2012] [Accepted: 06/20/2012] [Indexed: 10/27/2022]
|
5
|
Herédia V, Dale B, Op de Campos R, Ramalho M, Burke L, Sams C, de Toni M, Semelka R. A comparison of a T1 weighted 3D gradient-echo sequence with three different parallel imaging reduction factors, breath hold and free breathing, using a 32 channel coil at 1.5T. A preliminary study. RADIOLOGIA 2014. [DOI: 10.1016/j.rxeng.2012.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
6
|
Abstract
Magnetic resonance imaging (MRI) has been used to image the in utero fetus for the past 3 decades. Although not as commonplace as other patient-oriented MRI, it is a growing field and demonstrating a role in the clinical care of the fetus. Indeed, the body of literature involving fetal MRI exceeds 3000 published articles. Indeed, there is interest in accessing even the healthy fetus with MRI to further understand the development of humans during the fetal stage. On the horizon is fetal imaging using 3.0-T clinical systems. Although a clear path is not necessarily determined, experiments, theoretical calculations, advances in pulse sequence design, new hardware, and experience from imaging at 1.5 T help define the path.
Collapse
Affiliation(s)
- Robert C Welsh
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109-5667, USA.
| | | | | |
Collapse
|
7
|
Raschzok N, Langer CM, Schmidt C, Lerche KH, Billecke N, Nehls K, Schlüter NB, Leder A, Rohn S, Mogl MT, Lüdemann L, Stelter L, Teichgräber UK, Neuhaus P, Sauer IM. Functionalizable silica-based micron-sized iron oxide particles for cellular magnetic resonance imaging. Cell Transplant 2013; 22:1959-70. [PMID: 23294541 DOI: 10.3727/096368912x661382] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Cellular therapies require methods for noninvasive visualization of transplanted cells. Micron-sized iron oxide particles (MPIOs) generate a strong contrast in magnetic resonance imaging (MRI) and are therefore ideally suited as an intracellular contrast agent to image cells under clinical conditions. However, MPIOs were previously not applicable for clinical use. Here, we present the development and evaluation of silica-based micron-sized iron oxide particles (sMPIOs) with a functionalizable particle surface. Particles with magnetite content of >40% were composed using the sol-gel process. The particle surfaces were covered with COOH groups. Fluorescein, poly-L-lysine (PLL), and streptavidin (SA) were covalently attached. Monodisperse sMPIOs had an average size of 1.18 µm and an iron content of about 1.0 pg Fe/particle. Particle uptake, toxicity, and imaging studies were performed using HuH7 cells and human and rat hepatocytes. sMPIOs enabled rapid cellular labeling within 4 h of incubation; PLL-modified particles had the highest uptake. In T2*-weighted 3.0 T MRI, the detection threshold in agarose was 1,000 labeled cells, whereas in T1-weighted LAVA sequences, at least 10,000 cells were necessary to induce sufficient contrast. Labeling was stable and had no adverse effects on labeled cells. Silica is a biocompatible material that has been approved for clinical use. sMPIOs could therefore be suitable for future clinical applications in cellular MRI, especially in settings that require strong cellular contrast. Moreover, the particle surface provides the opportunity to create multifunctional particles for targeted delivery and diagnostics.
Collapse
Affiliation(s)
- Nathanael Raschzok
- General, Visceral, and Transplantation Surgery, Experimental Surgery and Regenerative Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Gardener AG, Francis ST. Multislice perfusion of the kidneys using parallel imaging: Image acquisition and analysis strategies. Magn Reson Med 2010; 63:1627-36. [DOI: 10.1002/mrm.22387] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
9
|
Altun E, Semelka RC, Dale BM, Elias J. Water excitation MPRAGE: an alternative sequence for postcontrast imaging of the abdomen in noncooperative patients at 1.5 Tesla and 3.0 Tesla MRI. J Magn Reson Imaging 2008; 27:1146-54. [PMID: 18425826 DOI: 10.1002/jmri.21346] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
PURPOSE To evaluate the diagnostic image quality of postgadolinium water excitation-magnetization-prepared rapid gradient-echo (WE-MPRAGE) sequence in abdominal examinations of noncooperative patients at 1.5 Tesla (T) and 3.0T MRI. MATERIALS AND METHODS Eighty-nine consecutive patients (48 males and 41 females; mean age +/- standard deviation, 54.6 +/- 16.6 years) who had MRI examinations including postgadolinium WE-MPRAGE were included in the study. Of 89 patients, 33 underwent noncooperative protocol at 1.5T, 10 underwent noncooperative protocol at 3.0T, and 46 underwent cooperative protocol at 3.0T. Postgadolinium WE-MPRAGE, MPRAGE, and three-dimensional gradient-echo sequences of these three different groups were qualitatively evaluated for image quality, extent of artifacts, lesion conspicuity, and homogeneity of fat-attenuation by two reviewers retrospectively, independently, and blindly. The results were compared using Wilcoxon signed rank and Mann-Whitney U tests. Kappa statistics were used to measure the extent of agreement between the reviewers. RESULTS The average scores indicated that the images were diagnostic for WE-MPRAGE at 1.5T and 3.0T in noncooperative patients. WE-MPRAGE achieved homogenous fat-attenuation in 31/33 (94%) of noncooperative patients at 1.5T and 10/10 (100%) of noncooperative patients at 3.0T. WE-MPRAGE at 3.0T had better results for image quality, extent of artifacts, lesion conspicuity and homogeneity of fat-attenuation compared with WE-MPRAGE at 1.5T, in noncooperative patients (P = 0.0008, 0.0006, 0.0024, and 0.0042; respectively). Kappa statistics varied between 0.76 and 1.00, representing good to excellent agreement. CONCLUSION WE-MPRAGE may be used as a T1-weighted postgadolinium fat-attenuated sequence in noncooperative patients, particularly at 3.0T MRI.
Collapse
Affiliation(s)
- Ersan Altun
- Department of Radiology, University of North Carolina at Chapel Hill, North Carolina 27599-7510, USA
| | | | | | | |
Collapse
|
10
|
Unenhanced MR Angiography of the Renal Arteries with Balanced Steady-State Free Precession Dixon Method. AJR Am J Roentgenol 2008; 191:243-6. [DOI: 10.2214/ajr.07.3076] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|