1
|
Zhou Y, Chen Q, Gan W, Lin X, Wang B, Zhou M, Wu X, Hong D, Chen H. Comparison between MRI-negative and positive results and the predictors for a poor prognosis in patients with idiopathic acute transverse myelitis. BMC Neurol 2024; 24:226. [PMID: 38951761 PMCID: PMC11218061 DOI: 10.1186/s12883-024-03738-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 06/19/2024] [Indexed: 07/03/2024] Open
Abstract
BACKGROUND Idiopathic acute transverse myelitis (IATM) is a focal inflammatory disorder of the spinal cord that results in motor, sensory, and autonomic dysfunction. However, the comparative analysis of MRI-negative and MRI-positive in IATM patients were rarely reported. OBJECTIVES The purpose of this study was to compare MRI-negative with MRI-positive groups in IATM patients, analyze the predictors for a poor prognosis, thus explore the relationship between MRI-negative and prognosis. METHODS We selected 132 patients with first-attack IATM at the First Affiliated Hospital of Nanchang University from May 2018 to May 2022. Patients were divided into MRI-positive and MRI-negative group according to whether there were responsible spinal MRI lesions, and good prognosis and poor prognosis based on whether the EDSS score ≥ 4 at follow-up. The predictive factors of poor prognosis in IATM patients was analyzed by logistic regression models. RESULTS Of the 132 patients, 107 first-attack patients who fulfilled the criteria for IATM were included in the study. We showed that 43 (40%) patients had a negative spinal cord MRI, while 27 (25%) patients were identified as having a poor prognosis (EDSS score at follow-up ≥ 4). Compared with MRI-negative patients, the MRI-positive group was more likely to have back/neck pain, spinal cord shock and poor prognosis, and the EDSS score at follow-up was higher. We also identified three risk factors for a poor outcome: absence of second-line therapies, high EDSS score at nadir and a positive MRI result. CONCLUSIONS Compared with MRI-negative group, MRI-positive patients were more likely to have back/neck pain, spinal cord shock and poor prognosis, with a higher EDSS score at follow-up. The absence of second-line therapies, high EDSS score at nadir, and a positive MRI were risk factors for poor outcomes in patients with first-attack IATM. MRI-negative patients may have better prognosis, an active second-line immunotherapy for IATM patients may improve clinical outcome.
Collapse
Affiliation(s)
- Yu Zhou
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
| | - Qianxi Chen
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
| | - Weiming Gan
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
| | - Xiuwen Lin
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
| | - Bo Wang
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
| | - Meihong Zhou
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
| | - Xiaomu Wu
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
| | - Daojun Hong
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China.
| | - Hao Chen
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China.
| |
Collapse
|
2
|
Talbott JF, Shah V, Ye AQ. Diffusion Imaging of the Spinal Cord: Clinical Applications. Radiol Clin North Am 2024; 62:273-285. [PMID: 38272620 DOI: 10.1016/j.rcl.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Spinal cord pathologic condition often presents as a neurologic emergency where timely and accurate diagnosis is critical to expedite appropriate treatment and minimize severe morbidity and even mortality. MR imaging is the gold standard imaging technique for diagnosing patients with suspected spinal cord pathologic condition. This review will focus on the basic principles of diffusion imaging and how spinal anatomy presents technical challenges to its application. Both the promises and shortcomings of spinal diffusion imaging will then be explored in the context of several clinical spinal cord pathologies for which diffusion has been evaluated.
Collapse
Affiliation(s)
- Jason F Talbott
- Department of Radiology and Biomedical Imaging, Zuckerberg San Francisco General Hospital and Trauma Center, 1001 Potrero Avenue, Room 1X57, San Francisco, CA 94110, USA; Brain and Spinal Injury Center, Zuckerberg San Francisco General Hospital.
| | - Vinil Shah
- Department of Radiology and Biomedical Imaging, Neuroradiology Division, University of California San Francisco, 505 Parnassus Avenue, #M-391, San Francisco, CA 94143, USA
| | - Allen Q Ye
- Department of Radiology and Biomedical Imaging, Zuckerberg San Francisco General Hospital and Trauma Center, 1001 Potrero Avenue, Room 1X57, San Francisco, CA 94110, USA; Department of Radiology and Biomedical Imaging, Neuroradiology Division, University of California San Francisco, 505 Parnassus Avenue, #M-391, San Francisco, CA 94143, USA
| |
Collapse
|
3
|
Liberato de Matos SNF, Ladeia-Rocha G, Neto JAC, de Oliveira CJV, Neto CA, Passos L, Oliveira-Filho J, Carvalho EM. Diffusion tensor imaging metrics in diagnosis of
HTLV‐1‐associated
myelopathy. Ann Clin Transl Neurol 2022; 9:488-496. [PMID: 35263043 PMCID: PMC8994983 DOI: 10.1002/acn3.51521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/31/2022] [Accepted: 01/31/2022] [Indexed: 11/25/2022] Open
Affiliation(s)
- Sheila N F Liberato de Matos
- Immunology Service, Professor Edgard Santos University Hospital, Federal University of Bahia, Salvador.,UniFTC, Salvador, Bahia, Brazil
| | | | - José Abraão Carneiro Neto
- Immunology Service, Professor Edgard Santos University Hospital, Federal University of Bahia, Salvador
| | - Cassius J V de Oliveira
- Immunology Service, Professor Edgard Santos University Hospital, Federal University of Bahia, Salvador
| | | | - Lúcia Passos
- Immunology Service, Professor Edgard Santos University Hospital, Federal University of Bahia, Salvador
| | - Jamary Oliveira-Filho
- Neurology Service, Professor Edgard Santos University Hospital, Salvador, Bahia, Brazil.,Instituto de Ciências da Saúde, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Edgar M Carvalho
- Immunology Service, Professor Edgard Santos University Hospital, Federal University of Bahia, Salvador.,Laboratório de Pesquisas Clínicas (LAPEC), Instituto Gonçalo Moniz, FIOCRUZ, Salvador, Bahia, Brazil.,National Institute of Science and Technology in Tropical Diseases (INCT-DT), CNPq, Brazil
| |
Collapse
|
4
|
Irimia A, Van Horn JD. Mapping the rest of the human connectome: Atlasing the spinal cord and peripheral nervous system. Neuroimage 2021; 225:117478. [PMID: 33160086 PMCID: PMC8485987 DOI: 10.1016/j.neuroimage.2020.117478] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 09/15/2020] [Accepted: 10/13/2020] [Indexed: 12/13/2022] Open
Abstract
The emergence of diffusion, structural, and functional neuroimaging methods has enabled major multi-site efforts to map the human connectome, which has heretofore been defined as containing all neural connections in the central nervous system (CNS). However, these efforts are not structured to examine the richness and complexity of the peripheral nervous system (PNS), which arguably forms the (neglected) rest of the connectome. Despite increasing interest in an atlas of the spinal cord (SC) and PNS which is simultaneously stereotactic, interactive, electronically dissectible, scalable, population-based and deformable, little attention has thus far been devoted to this task of critical importance. Nevertheless, the atlasing of these complete neural structures is essential for neurosurgical planning, neurological localization, and for mapping those components of the human connectome located outside of the CNS. Here we recommend a modification to the definition of the human connectome to include the SC and PNS, and argue for the creation of an inclusive atlas to complement current efforts to map the brain's human connectome, to enhance clinical education, and to assist progress in neuroscience research. In addition to providing a critical overview of existing neuroimaging techniques, image processing methodologies and algorithmic advances which can be combined for the creation of a full connectome atlas, we outline a blueprint for ultimately mapping the entire human nervous system and, thereby, for filling a critical gap in our scientific knowledge of neural connectivity.
Collapse
Affiliation(s)
- Andrei Irimia
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, University of Southern California, 3715 McClintock Avenue, Los Angeles CA 90089, United States; Corwin D. Denney Research Center, Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, 1042 Downey Way, Los Angeles, CA 90089, United States.
| | - John Darrell Van Horn
- Department of Psychology, University of Virginia, 485 McCormick Road, Gilmer Hall, Room 102, Charlottesville, Virginia 22903, United States; School of Data Science, University of Virginia, Dell 1, Charlottesville, Virginia 22903, United States.
| |
Collapse
|
5
|
Smith SA. Invited Commentary on "Optimizing Diffusion-Tensor Imaging Acquisition for Spinal Cord Assessment," with Response from Dr Martín Noguerol et al. Radiographics 2020; 40:428-431. [PMID: 32125962 DOI: 10.1148/rg.2020190214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Seth A Smith
- Vanderbilt University Institute of Imaging Science and Department of Radiology and Radiological Sciences and Department of Biomedical Engineering, Vanderbilt University Medical Center Nashville, Tennessee
| |
Collapse
|
6
|
Efficacy of Diffusion Tensor Imaging Indices in Assessing Postoperative Neural Recovery in Cervical Spondylotic Myelopathy. Spine (Phila Pa 1976) 2017; 42:8-13. [PMID: 27128391 DOI: 10.1097/brs.0000000000001667] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Prospective observational cohort study. OBJECTIVE The aim of this study was to analyze the efficacy of diffusion tensor imaging (DTI) anisotropy indices in predicting the postoperative recovery in cervical spondylotic myelopathy (CSM) patients and to describe postoperative changes in the DTI indices based on neurological recovery after surgery. SUMMARY OF BACKGROUND DATA Surgical results of CSM are unpredictable and cannot be estimated based on preoperative MRI. DTI indices were found to have good sensitivity to detect changes in CSM, but their efficacy in predicting postoperative recovery and postoperative changes in DTI indices has not been studied before. METHODS Thirty-five patients who underwent surgical decompression for cervical spondylotic myelopathy underwent DTI evaluation preoperatively and postoperatively at 12 months. DTI indices-fractional anisotropy, apparent diffusion coefficient (ADC), relative anisotropy, volume ratio, and eigen vectors (E1, E2, and E3)-were obtained and clinical evaluations were made preoperatively and 12 months postoperatively. RESULTS Twenty-six patients were available for final follow-up at 12 months. Twenty patients showed improvement by at least 1 Nurick grade, five maintained the preoperative Nurick grade status and one patient was noted to have deterioration by 1 grade. The preoperative DTI values could not predict neurological recovery patterns postoperatively. Although conventional MRI showed adequate decompression in all patients irrespective of the clinical outcome, DTI indices showed variable results. There were significant improvements in postoperative DTI indices for ADC (P = 0.002), E1 (P < 0.001), and E2 (P = 0.012) values in patients who showed neurological recovery at 12 months. Postoperative DTI indices for coefficients ADC, E1, and E2 in neurologically static/worsened individuals remained unchanged or insignificant (P = 0.05) CONCLUSION.: The DTI indices were sensitive enough to indicate postoperative neurological recovery observed following surgery. Preoperative DTI evaluation could not predict postoperative recovery for patients with cervical spondylotic myelopathy. LEVEL OF EVIDENCE 4.
Collapse
|
7
|
Young V, Quaghebeur G. Transverse Myelitis and Neuromyelitis Optica Spectrum Disorders. Semin Ultrasound CT MR 2016; 37:384-95. [PMID: 27616312 DOI: 10.1053/j.sult.2016.05.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Transverse myelitis is defined as inflammation of the spinal cord, named because of its typical clinical presentation with bandlike symptoms of altered sensation or pain in a horizontal fashion-at a specific dermatome level. Radiographic patterns might vary but the idiopathic form is more frequent to present as involvement of 3-4 vertebral segments and both sides of the cord. It is now recognized that there are numerous other causes as well as the idiopathic type, with often atypical features and geographic variation. There is also increasing recognition of other forms of myelitis, particularly the longitudinally extensive manifestation with involvement of 3 or more vertebral segments. Neuromyelitis optica, one of these subtypes can be diagnosed by means of an antibody assessment. The picture is more complicated with the expansion of the description to involve neuromyelitis optica spectrum disorders, new antibodies such as myelin oligodendrocyte glycoprotein and the inclusion of an antibody-negative variant. This article describes the different entities of transverse myelitis, with a particular focus on neuromyelitis optica spectrum disorders.
Collapse
Affiliation(s)
- Victoria Young
- Department of Neuroradiology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Gerardine Quaghebeur
- Department of Neuroradiology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK.
| |
Collapse
|
8
|
Barakat N, Shah P, Faro SH, Gaughan JP, Middleton D, Mulcahey MJ, Mohamed FB. Inter- and intra-rater reliability of diffusion tensor imaging parameters in the normal pediatric spinal cord. World J Radiol 2015; 7:279-85. [PMID: 26435778 PMCID: PMC4585951 DOI: 10.4329/wjr.v7.i9.279] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 06/24/2015] [Accepted: 07/29/2015] [Indexed: 02/06/2023] Open
Abstract
AIM To assess inter- and intra-rater reliability (agreement) between two region of interest (ROI) methods in pediatric spinal cord diffusion tensor imaging (DTI). METHODS Inner-Field-of-View DTI data previously acquired from ten pediatric healthy subjects (mean age = 12.10 years) was used to assess for reliability. ROIs were drawn by two neuroradiologists on each subject data twice within a 3-mo interval. ROIs were placed on axial B0 maps along the cervical spine using free-hand and fixed-size ROIs. Agreement analyses for fractional anisotropy (FA), axial diffusivity, radial diffusivity and mean diffusivity were performed using intra-class-correlation (ICC) and Cronbach's alpha statistical methods. RESULTS Inter- and intra-rater agreement between the two ROI methods showed moderate (ICC = 0.5) to strong (ICC = 0.84). There were significant differences between raters in the number of pixels selected using free-hand ROIs (P < 0.05). However, no significant differences were observed in DTI parameter values. FA showed highest variability in ICC values (0.10-0.87). Cronbach's alpha showed moderate-high values for raters and ROI methods. CONCLUSION The study showed that high reproducibility in spinal cord DTI can be achieved, and demonstrated the importance of setting detailed methodology for post-processing DTI data, specifically the placement of ROIs.
Collapse
|
9
|
Barakat N, Gorman MP, Benson L, Becerra L, Borsook D. Pain and spinal cord imaging measures in children with demyelinating disease. NEUROIMAGE-CLINICAL 2015; 9:338-47. [PMID: 26509120 PMCID: PMC4588416 DOI: 10.1016/j.nicl.2015.08.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 08/19/2015] [Accepted: 08/28/2015] [Indexed: 12/15/2022]
Abstract
Pain is a significant problem in diseases affecting the spinal cord, including demyelinating disease. To date, studies have examined the reliability of clinical measures for assessing and classifying the severity of spinal cord injury (SCI) and also to evaluate SCI-related pain. Most of this research has focused on adult populations and patients with traumatic injuries. Little research exists regarding pediatric spinal cord demyelinating disease. One reason for this is the lack of reliable and useful approaches to measuring spinal cord changes since currently used diagnostic imaging has limited specificity for quantitative measures of demyelination. No single imaging technique demonstrates sufficiently high sensitivity or specificity to myelin, and strong correlation with clinical measures. However, recent advances in diffusion tensor imaging (DTI) and magnetization transfer imaging (MTI) measures are considered promising in providing increasingly useful and specific information on spinal cord damage. Findings from these quantitative imaging modalities correlate with the extent of demyelination and remyelination. These techniques may be of potential use for defining the evolution of the disease state, how it may affect specific spinal cord pathways, and contribute to the management of pediatric demyelination syndromes. Since pain is a major presenting symptom in patients with transverse myelitis, the disease is an ideal model to evaluate imaging methods to define these regional changes within the spinal cord. In this review we summarize (1) pediatric demyelinating conditions affecting the spinal cord; (2) their distinguishing features; and (3) current diagnostic and classification methods with particular focus on pain pathways. We also focus on concepts that are essential in developing strategies for the detection, monitoring, treatment and repair of pediatric myelitis. Pain is a major presenting symptom in children with myelitis. Currently used imaging has limited sensitivity to myelin content. We provide a summary on pediatric demyelinating conditions. We review pain involvement and pathways affected by demyelination. We review imaging modalities for the diagnosis and monitoring of myelitis.
Collapse
Affiliation(s)
- Nadia Barakat
- Center for Pain and the Brain, Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Mark P Gorman
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | - Leslie Benson
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | - Lino Becerra
- Center for Pain and the Brain, Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Boston, MA, USA ; Department of Radiology, Boston Children's Hospital, Boston, MA, USA
| | - David Borsook
- Center for Pain and the Brain, Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Boston, MA, USA ; Department of Radiology, Boston Children's Hospital, Boston, MA, USA
| |
Collapse
|
10
|
Keřkovský M, Zitterbartová J, Pour L, Šprláková-Puková A, Mechl M. Diffusion Tensor Imaging in Radiation-Induced Myelopathy. J Neuroimaging 2014; 25:836-40. [DOI: 10.1111/jon.12187] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 07/20/2014] [Accepted: 08/16/2014] [Indexed: 11/30/2022] Open
Affiliation(s)
- Miloš Keřkovský
- University Hospital Brno and Masaryk University; Department of Radiology, Central European Institute of Technology; Multimodal and Functional Imaging Laboratory
| | | | - Luděk Pour
- University Hospital Brno and Masaryk University; Department of Internal Medicine; Hematology and Oncology
| | | | - Marek Mechl
- University Hospital Brno and Masaryk University; Department of Radiology
| |
Collapse
|
11
|
El Maati AAA, Chalabi N. Diffusion tensor tractography as a supplementary tool to conventional MRI for evaluating patients with myelopathy. THE EGYPTIAN JOURNAL OF RADIOLOGY AND NUCLEAR MEDICINE 2014. [DOI: 10.1016/j.ejrnm.2014.08.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
12
|
Kelley BJ, Harel NY, Kim CY, Papademetris X, Coman D, Wang X, Hasan O, Kaufman A, Globinsky R, Staib LH, Cafferty WBJ, Hyder F, Strittmatter SM. Diffusion tensor imaging as a predictor of locomotor function after experimental spinal cord injury and recovery. J Neurotrauma 2014; 31:1362-73. [PMID: 24779685 DOI: 10.1089/neu.2013.3238] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Traumatic spinal cord injury (SCI) causes long-term disability with limited functional recovery linked to the extent of axonal connectivity. Quantitative diffusion tensor imaging (DTI) of axonal integrity has been suggested as a potential biomarker for prognostic and therapeutic evaluation after trauma, but its correlation with functional outcomes has not been clearly defined. To examine this application, female Sprague-Dawley rats underwent midthoracic laminectomy followed by traumatic spinal cord contusion of differing severities or laminectomy without contusion. Locomotor scores and hindlimb kinematic data were collected for 4 weeks post-injury. Ex vivo DTI was then performed to assess axonal integrity using tractography and fractional anisotropy (FA), a numerical measure of relative white matter integrity, at the injury epicenter and at specific intervals rostral and caudal to the injury site. Immunohistochemistry for tissue sparing was also performed. Statistical correlation between imaging data and functional performance was assessed as the primary outcome. All injured animals showed some recovery of locomotor function, while hindlimb kinematics revealed graded deficits consistent with injury severity. Standard T2 magnetic resonance sequences illustrated conventional spinal cord morphology adjacent to contusions while corresponding FA maps indicated graded white matter pathology within these adjacent regions. Positive correlations between locomotor (Basso, Beattie, and Bresnahan score and gait kinematics) and imaging (FA values) parameters were also observed within these adjacent regions, most strongly within caudal segments beyond the lesion. Evaluation of axonal injury by DTI provides a mechanism for functional recovery assessment in a rodent SCI model. These findings suggest that focused DTI analysis of caudal spinal cord should be studied in human cases in relationship to motor outcome to augment outcome biomarkers for clinical cases.
Collapse
Affiliation(s)
- Brian J Kelley
- 1 Department of Neurosurgery, Yale University School of Medicine , New Haven, Connecticut
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
The assessment of neuronal status in normal and cervical spondylotic myelopathy using diffusion tensor imaging. Spine (Phila Pa 1976) 2014; 39:1183-9. [PMID: 24827523 DOI: 10.1097/brs.0000000000000369] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN A prospective observational analysis of diffusion tensor imaging (DTI) datametrics collected from control and patients with cervical spondylotic myelopathy (CSM). OBJECTIVE The aims were to study the use of DTI in CSM and to probe whether DTI datametrics and tractography will correlate with magnetic resonance imaging and clinical findings. SUMMARY OF BACKGROUND DATA Magnetic resonance imaging is the current "gold standard" in the assessment of cord status in CSM; however, various parameters such as extent of compression and presence of signal intensity changes do not correlate well with clinical status. DTI is a novel investigation tool with proven applications in brain pathologies but is not routinely used in spinal cord evaluation. METHODS Patients with CSM (n = 35) who required surgical decompression (mean age = 48 yr) and 40 normal individuals (mean age = 38 yr) were included. Diffusion Tensor Imaging of the cervical spine was obtained using a 1.5T magnetic resonance image. Apparent diffusion coefficient, fractional anisotropy, and eigenvalues (E1, E2, and E3) were obtained at each cervical level. The DTI datametrics of CSM patients were compared with normal volunteers and correlated with individual and grouped Nurick grades, which indicate the neurological status of patients. RESULTS There was significant difference in DTI datametrics between patients with myelopathy and control (P < 0.05), with decrease in fractional anisotropy (0.49 ± 0.081 vs. 0.53 ± 0.07) and increase in apparent diffusion coefficient (1.8 ± 0.315 vs. 1.44 ± 0.145) and eigenvalues (E1: 2.82 ± 0.395 vs. 2.37 ± 0.221, E2: 1.64 ± 0.39 vs. 1.18 ± 0.198, E3: 0.956 ± 0.277 vs. 0.76 ± 0.142). There was also a significant difference between increasing grades of myelopathy when individuals were grouped as-control, self-ambulant (Nurick grades 1 and 2), and dependent (Nurick grades 3, 4, and 5). CONCLUSION The study shows that DTI is a promising and useful investigational tool in evaluation of CSM. There was a significant difference in all DTI values between control and patients with CSM, and there was a significant trend of change in values between control, self-ambulant, and dependent patients. Our results encourage further investigation of this important modality. LEVEL OF EVIDENCE 3.
Collapse
|
14
|
Goh C, Desmond PM, Phal PM. MRI in transverse myelitis. J Magn Reson Imaging 2014; 40:1267-79. [PMID: 24752988 DOI: 10.1002/jmri.24563] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Accepted: 12/19/2013] [Indexed: 12/22/2022] Open
Abstract
Transverse myelitis is an acute inflammatory disease of the spinal cord, characterized by rapid onset of bilateral neurological symptoms. Weakness, sensory disturbance, and autonomic dysfunction evolve over hours or days, most progressing to maximal clinical severity within 10 days of onset. At maximal clinical severity, half will have a paraparesis, and almost all patients have sensory disturbance and bladder dysfunction. Residual disability is divided equally between severe, moderate and minimal or none. The causes of transverse myelitis are diverse; etiologies implicated include demyelinating conditions, collagen vascular disease, and parainfectious causes, however, despite extensive diagnostic work-up many cases are considered idiopathic. Due to heterogeneity in pathogenesis, and the similarity of its clinical presentation with those of various noninflammatory myelopathies, transverse myelitis has frequently been viewed as a diagnostic dilemma. However, as targeted therapies to optimize patient outcome develop, timely identification of the underlying etiology is becoming increasingly important. In this review, we describe the imaging and clinical features of idiopathic and disease-associated transverse myelitis and its major differentials, with discussion of how MR imaging features assist in the identification of various sub-types of transverse myelitis. We will also discuss the potential for advanced MR techniques to contribute to diagnosis and prognostication.
Collapse
Affiliation(s)
- Christine Goh
- Department of Radiology, Royal Melbourne Hospital, Parkville, Melbourne, Australia
| | | | | |
Collapse
|
15
|
Wang D, Kong Y, Shi L, Ahuja AAT, Cheng JCY, Chu WCW. Fully automatic stitching of diffusion tensor images in spinal cord. J Neurosci Methods 2012; 209:371-8. [PMID: 22771288 DOI: 10.1016/j.jneumeth.2012.06.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 06/21/2012] [Accepted: 06/23/2012] [Indexed: 11/28/2022]
Abstract
Diffusion tensor imaging (DTI) has become an important tool for studying the spinal cord pathologies. To enable high resolution imaging for modern studies, the DTI technique utilizes a small field of view (FOV) to capture partial human spinal cords. However, normal aging and many other diseases which affect the entire spinal cord increase the desire of acquiring the continuous full-view of the spinal cord. To overcome this problem, this paper presents a novel pipeline for automatic stitching of three-dimensional (3D) DTI of different portions of the spinal cord. The proposed technique consists of two operations, e.g. feature-based registration and adaptive composition to stitch every source image together to create a panoramic image. In the feature-based registration process, feature points are detected from the apparent diffusion coefficient map, and then a novel feature descriptor is designed to characterize feature points directly from a tensor neighborhood. 3D affine transforms are achieved by determining the correspondence matching. In the adaptive composition process, an effective feathering approach is presented to compute the tensors in the overlap region by the Log-Euclidean metrics. We evaluate the algorithm on real datasets from one healthy subject and one adolescent idiopathic scoliosis (AIS) patient. The colored FA maps and fiber tracking results show the effectiveness and accuracy of the proposed stitching framework.
Collapse
Affiliation(s)
- Defeng Wang
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, China
| | | | | | | | | | | |
Collapse
|
16
|
Abstract
Transverse myelitis is an acute inflammatory condition. A relatively rare condition, the diversity of causes makes it an important diagnostic challenge. An approach to the classification and work-up standardizes diagnostic criteria and terminology to facilitate clinical research, and forms a useful tool in the clinical work-up for patients at presentation. Its pathogenesis can be grouped into four categories. Imaging appearances can be nonspecific; however, the morphology of cord involvement, enhancement pattern, and presence of coexistent abnormalities on MR imaging can provide clues as to the causes. Neuroimaging is important in identifying subgroups that may benefit from specific treatment.
Collapse
|
17
|
Characterization of DTI Indices in the Cervical, Thoracic, and Lumbar Spinal Cord in Healthy Humans. Radiol Res Pract 2012; 2012:143705. [PMID: 22295179 PMCID: PMC3261485 DOI: 10.1155/2012/143705] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Accepted: 09/25/2011] [Indexed: 11/25/2022] Open
Abstract
The aim of this study was to characterize in vivo measurements of diffusion along the length of the entire healthy spinal cord and to compare DTI indices, including fractional anisotropy (FA) and mean diffusivity (MD), between cord regions. The objective is to determine whether or not there are significant differences in DTI indices along the cord that must be considered for future applications of characterizing the effects of injury or disease. A cardiac gated, single-shot EPI sequence was used to acquire diffusion-weighted images of the cervical, thoracic, and lumbar regions of the spinal cord in nine neurologically intact subjects (19 to 22 years). For each cord section, FA versus MD values were plotted, and a k-means clustering method was applied to partition the data according to tissue properties. FA and MD values from both white matter (average FA = 0.69, average MD = 0.93 × 10−3 mm2/s) and grey matter (average FA = 0.44, average MD = 1.8 × 10−3 mm2/s) were relatively consistent along the length of the cord.
Collapse
|
18
|
Magnetic resonance diffusion tensor imaging in patients with cervical spondylotic spinal cord compression: correlations between clinical and electrophysiological findings. Spine (Phila Pa 1976) 2012; 37:48-56. [PMID: 21228747 DOI: 10.1097/brs.0b013e31820e6c35] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN A prospective study evaluating a cohort of patients with spondylotic cervical spine compression. OBJECTIVE To analyze the potential of diffusion tensor imaging (DTI) of the cervical spinal cord in the detection of changes associated with spondylotic myelopathy, with particular reference to clinical and electrophysiological findings. SUMMARY OF BACKGROUND DATA Conventional magnetic resonance imaging (MRI) may provide confusing findings because of a frequent disproportion between the degree of the spinal cord compression and clinical symptoms. The DTI is known to be more sensitive to subtle pathological changes of the spinal cord compared with conventional MRI. METHODS The DTI of the cervical spinal cord was performed within a group of 52 patients with spondylotic spinal cord compression and 13 healthy volunteers on a 1.5-T MRI scanner. All patients underwent clinical examination that differentiated between asymptomatic and symptomatic myelopathy subgroups, and 45 patients underwent electrophysiological examination. We measured the apparent diffusion coefficient and fractional anisotropy of the spinal cord at C2/C3 level without compression and at the maximal compression level (MCL). Sagittal spinal canal diameter, cross-sectional spinal cord area, and presence of T2 hyperintensity at the MCL were also recorded. Nonparametric statistical testing was used for comparison of controls with subgroups of patients. RESULTS Significant differences in both the DTI parameters measured at the MCL, between patients with compression and control group, were found, while no difference was observed at the noncompression level. Moreover, fractional anisotropy values were lower and apparent diffusion coefficient values were higher at the MCL in the symptomatic patients than in the asymptomatic patients. The DTI showed higher potential to discriminate between clinical subgroups in comparison with standard MRI parameters and electrophysiological findings. CONCLUSION The DTI appears to be a promising imaging modality in patients with spondylotic spinal cord compression. It reflects the presence of symptomatic myelopathy and shows considerable potential for discriminating between symptomatic and asymptomatic patients.
Collapse
|
19
|
Lee JW, Kim JH, Park JB, Park KW, Yeom JS, Lee GY, Kang HS. Diffusion tensor imaging and fiber tractography in cervical compressive myelopathy: preliminary results. Skeletal Radiol 2011; 40:1543-51. [PMID: 21494906 DOI: 10.1007/s00256-011-1161-z] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 03/18/2011] [Accepted: 03/20/2011] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To assess diffusion tensor imaging (DTI) parameters in cervical compressive myelopathy (CCM) patients compared to normal volunteers, to relate them with myelopathy severity, and to relate tractography patterns with postoperative neurologic improvement. SUBJECTS AND METHODS Twenty patients suffering from CCM were prospectively enrolled (M:F = 13:7, mean age, 49.6 years; range 22-67 years) from September 2009 to March 2010. Sensitivity encoding (SENSE) single-shot echo-planar imaging (EPI) was used for the sagittal DTI. Twenty sex- and age-matched normal volunteers underwent the same scanning procedure. Fractional anisotropy (FA) and apparent diffusion coefficient (ADC) values in the spinal cord were compared between the patients and normal volunteers and were related to myelopathy severity based on Japanese Orthopedic Association (JOA) scores. Tractography patterns were related to myelopathy severity and postoperative improvement. RESULTS There were significant differences between patients and normal volunteers in terms of FA (0.498 ± 0.114 vs. 0.604 ± 0.057; p = 0.001) and ADC (1.442 ± 0.389 vs. 1.169 ± 0.098; p = 0.001). DTI parameters and tractography patterns were not related to myelopathy severity. In ten patients in the neurologically worse group, postoperative neurologic improvement was seen in four of five patients with intact fiber tracts, but only one of five patients with interrupted fiber tracts exhibited neurologic improvement. CONCLUSION DTI parameters in CCM patients were significantly different from those in normal volunteers but were not significantly related to myelopathy severity. The patterns of tractography appear to correlate with postoperative neurologic improvement.
Collapse
Affiliation(s)
- Joon Woo Lee
- Department of Radiology, Seoul National University Bundang Hospital, 300 Gumidong, Bundag-Gu, Seong Nam, Gyeongi-do 463-707, Korea
| | | | | | | | | | | | | |
Collapse
|
20
|
Setzer M, Murtagh RD, Murtagh FR, Eleraky M, Jain S, Marquardt G, Seifert V, Vrionis FD. Diffusion tensor imaging tractography in patients with intramedullary tumors: comparison with intraoperative findings and value for prediction of tumor resectability. J Neurosurg Spine 2010; 13:371-80. [PMID: 20809733 DOI: 10.3171/2010.3.spine09399] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Object
The aim of this retrospective study was to evaluate the predictive value of diffusion tensor (DT) imaging with respect to resectability of intramedullary spinal cord tumors and to determine the concordance of this method with intraoperative surgical findings.
Methods
Diffusion tensor imaging was performed in 14 patients with intramedullary lesions of the spinal cord at different levels using a 3-T magnet. Routine MR imaging scans were also obtained, including unenhanced and enhanced T1-weighted images and T2-weighted images. Patients were classified according to the fiber course with respect to the lesion and their lesions were rated as resectable or nonresectable. These results were compared with the surgical findings (existence vs absence of cleavage plane). The interrater reliability was calculated using the κ coefficient of Cohen.
Results
Of the 14 patients (7 male, 7 female; mean age 49.2 ± 15.5 years), 13 had tumors (8 ependymomas, 2 lymphomas, and 3 astrocytoma). One lesion was proven to be a multiple sclerosis plaque during further diagnostic workup. The lesions could be classified into 3 types according to the fiber course. In Type 1 (5 cases) fibers did not pass through the solid lesion. In Type 2 (3 cases) some fibers crossed the lesion, but most of the lesion volume did not contain fibers. In Type 3 (6 cases) the fibers were completely encased by tumor. Based on these results, 6 tumors were considered resectable, 7 were not. During surgery, 7 tumors showed a good cleavage plane, 6 did not. The interrater reliability (Cohen κ) was calculated as 0.83 (p < 0.003), which is considered to represent substantial agreement. The mean duration of follow-up was 12.0 ± 2.9. The median McCormick grade at the end of follow-up was II.
Conclusions
These preliminary data suggest that DT imaging in patients with spinal cord tumors is capable of predicting the resectability of the lesion. A further prospective study is needed to confirm these results and any effect on patient outcome.
Collapse
Affiliation(s)
- Matthias Setzer
- 1H. Lee Moffitt Cancer Center and Research Institute, Neurooncology Program, and
- 3Clinic of Neurosurgery, J. W. Goethe University, Frankfurt am Main, Germany
| | | | - F. Reed Murtagh
- 1H. Lee Moffitt Cancer Center and Research Institute, Neurooncology Program, and
- 2Departments of Neuroradiology and
| | - Mohammed Eleraky
- 1H. Lee Moffitt Cancer Center and Research Institute, Neurooncology Program, and
| | - Surbhi Jain
- 1H. Lee Moffitt Cancer Center and Research Institute, Neurooncology Program, and
| | - Gerhard Marquardt
- 3Clinic of Neurosurgery, J. W. Goethe University, Frankfurt am Main, Germany
| | - Volker Seifert
- 3Clinic of Neurosurgery, J. W. Goethe University, Frankfurt am Main, Germany
| | - Frank D. Vrionis
- 1H. Lee Moffitt Cancer Center and Research Institute, Neurooncology Program, and
- 4Neurosurgery, University of South Florida College of Medicine, Tampa, Florida; and
| |
Collapse
|
21
|
Thurnher MM, Law M. Diffusion-weighted imaging, diffusion-tensor imaging, and fiber tractography of the spinal cord. Magn Reson Imaging Clin N Am 2009; 17:225-44. [PMID: 19406356 DOI: 10.1016/j.mric.2009.02.004] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
In the brain, diffusion-weighted imaging (DWI) is an established and reliable method for the characterization of neurologic lesions. Although the diagnostic value of DWI in the early detection of ischemia has not diminished with time, many new clinical applications of DWI have also emerged. Diffusion-tensor imaging and fiber tractography have more recently been developed and optimized, allowing quantification of the magnitude and direction of diffusion along three principal eigenvectors. Diffusion-tensor imaging and fiber tractography are proving to be useful in clinical neuroradiology practice, with application to several categories of disease, and to be a powerful research tool. This article describes some of the applications of DWI and diffusion-tensor imaging in the evaluation of the diseases of the spinal cord.
Collapse
Affiliation(s)
- Majda M Thurnher
- Department of Radiology, Medical University of Vienna, Vienna, Austria
| | | |
Collapse
|