1
|
Bekou E, Mulita A, Seimenis I, Kotini A, Courcoutsakis N, Koukourakis MI, Mulita F, Karavasilis E. Magnetic Resonance Imaging Techniques for Post-Treatment Evaluation After External Beam Radiation Therapy of Prostate Cancer: Narrative Review. Clin Pract 2024; 15:4. [PMID: 39851787 PMCID: PMC11763658 DOI: 10.3390/clinpract15010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 11/13/2024] [Accepted: 12/20/2024] [Indexed: 01/26/2025] Open
Abstract
Background/Objectives: This study aimed to investigate the prognostic value of advanced techniques of magnetic resonance imaging (MRI) biochemical recurrence (BCR) after radiotherapy in patients with prostate cancer (PCa). Methods: A comprehensive literature review was conducted to evaluate the role of MRI in detecting BCR of PCa patients after external beam radiation therapy. Results: National guidelines do not recommend imaging techniques in clinical follow-up PCa. However, in 2021, the European Association of Urogenital Radiology (ESUR), the European Association of Urological Imaging (ESUI), and the PI-RADS Steering Committee introduced the Prostate Imaging for Recurrence Reporting (PI-RR) system. PI-RR incorporates the MRI biomarkers in the post-treatment process. In the last decade, a growing number of clinical researchers have investigated the role of various MRI techniques in BCR. Conclusions: The integration of advanced MRI technologies into clinical routine marks the beginning of a new era of BCR with accuracy.
Collapse
Affiliation(s)
- Eleni Bekou
- Medical Physics Laboratory, School of Medicine, Democritus University of Thrace, 69100 Alexandroupolis, Greece; (E.B.); (A.K.); (E.K.)
| | - Admir Mulita
- Department of Radiotherapy/Oncology, School of Medicine, Democritus University of Thrace, 69100 Alexandroupolis, Greece; (A.M.); (M.I.K.)
| | - Ioannis Seimenis
- Medical Physics, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece;
| | - Athanasia Kotini
- Medical Physics Laboratory, School of Medicine, Democritus University of Thrace, 69100 Alexandroupolis, Greece; (E.B.); (A.K.); (E.K.)
| | - Nikolaos Courcoutsakis
- Radiology Department, School of Medicine, Democritus University of Thrace, 69100 Alexandroupolis, Greece;
| | - Michael I. Koukourakis
- Department of Radiotherapy/Oncology, School of Medicine, Democritus University of Thrace, 69100 Alexandroupolis, Greece; (A.M.); (M.I.K.)
| | - Francesk Mulita
- Department of Surgery, University Hospital of Patras, 26504 Patras, Greece
| | - Efstratios Karavasilis
- Medical Physics Laboratory, School of Medicine, Democritus University of Thrace, 69100 Alexandroupolis, Greece; (E.B.); (A.K.); (E.K.)
| |
Collapse
|
2
|
Moul JW, Shore ND, Pienta KJ, Czernin J, King MT, Freedland SJ. Application of next-generation imaging in biochemically recurrent prostate cancer. Prostate Cancer Prostatic Dis 2024; 27:202-211. [PMID: 37679601 PMCID: PMC11096127 DOI: 10.1038/s41391-023-00711-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 07/27/2023] [Accepted: 08/03/2023] [Indexed: 09/09/2023]
Abstract
BACKGROUND Biochemical recurrence (BCR) following primary interventional treatment occurs in approximately one-third of patients with prostate cancer (PCa). Next-generation imaging (NGI) can identify local and metastatic recurrence with greater sensitivity than conventional imaging, potentially allowing for more effective interventions. This narrative review examines the current clinical evidence on the utility of NGI for patients with BCR. METHODS A search of PubMed was conducted to identify relevant publications on NGI applied to BCR. Given other relevant recent reviews on the topic, this review focused on papers published between January 2018 to May 2023. RESULTS NGI technologies, including positron emission tomography (PET) radiotracers and multiparametric magnetic resonance imaging, have demonstrated increased sensitivity and selectivity for diagnosing BCR at prostate-specific antigen (PSA) concentrations <2.0 ng/ml. Detection rates range between 46% and 50%, with decreasing PSA levels for choline (1-3 ng/ml), fluciclovine (0.5-1 ng/ml), and prostate-specific membrane antigen (0.2-0.49 ng/ml) PET radiotracers. Expert working groups and European and US medical societies recommend NGI for patients with BCR. CONCLUSIONS Available data support the improved detection performance and selectivity of NGI modalities versus conventional imaging techniques; however, limited clinical evidence exists demonstrating the application of NGI to treatment decision-making and its impact on patient outcomes. The emergence of NGI and displacement of conventional imaging may require a reexamination of the current definitions of BCR, altering our understanding of early recurrence. Redefining the BCR disease state by formalizing the role of NGI in patient management decisions will facilitate greater alignment across research efforts and better reflect the published literature.
Collapse
Affiliation(s)
- Judd W Moul
- Duke Cancer Institute and Division of Urology, Duke University, Durham, NC, USA
| | - Neal D Shore
- Carolina Urologic Research Center, Myrtle Beach, SC, USA
| | | | - Johannes Czernin
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Martin T King
- Brigham and Women's Hospital and Dana-Farber Cancer Institute, Boston, MA, USA
| | - Stephen J Freedland
- Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Veterans Affairs Medical Center, Durham, NC, USA.
| |
Collapse
|
3
|
Awiwi MO, Gjoni M, Vikram R, Altinmakas E, Dogan H, Bathala TK, Naik S, Ravizzini G, Kandemirli SG, Elsayes KM, Salem UI. MRI and PSMA PET/CT of Biochemical Recurrence of Prostate Cancer. Radiographics 2023; 43:e230112. [PMID: 37999983 DOI: 10.1148/rg.230112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2023]
Abstract
Prostate cancer may recur several years after definitive treatment, such as prostatectomy or radiation therapy. A rise in serum prostate-specific antigen (PSA) level is the first sign of disease recurrence, and this is termed biochemical recurrence. Patients with biochemical recurrence have worse survival outcomes. Radiologic localization of recurrent disease helps in directing patient management, which may vary from active surveillance to salvage radiation therapy, androgen-deprivation therapy, or other forms of systemic and local therapy. The likelihood of detecting the site of recurrence increases with higher serum PSA level. MRI provides optimal diagnostic performance for evaluation of the prostatectomy bed. Prostate-specific membrane antigen (PSMA) PET radiotracers currently approved by the U.S. Food and Drug Administration demonstrate physiologic urinary excretion, which can obscure recurrence at the vesicourethral junction. However, MRI and PSMA PET/CT have comparable diagnostic performance for evaluation of local recurrence after external-beam radiation therapy or brachytherapy. PSMA PET/CT outperforms MRI in identifying recurrence involving the lymph nodes and bones. Caveats for use of both PSMA PET/CT and MRI do exist and may cause false-positive or false-negative results. Hence, these techniques have complementary roles and should be interpreted in conjunction with each other, taking the patient history and results of any additional prior imaging studies into account. Novel PSMA agents at various stages of investigation are being developed, and preliminary data show promising results; these agents may revolutionize the landscape of prostate cancer recurrence imaging in the future. ©RSNA, 2023 Quiz questions for this article are available through the Online Learning Center. See the invited commentary by Turkbey in this issue. The slide presentation from the RSNA Annual Meeting is available for this article.
Collapse
Affiliation(s)
- Muhammad O Awiwi
- From the Division of Diagnostic Imaging, University of Texas Health Science Center at Houston, 6431 Fannin St, MSB 2.132, Houston, TX 77030 (M.O.A.); Department of Medicine, Istanbul University-Cerrahpasa Hospital, Istanbul, Turkey (M.G.); Departments of Abdominal Imaging (R.V., T.K.B., S.N., K.M.E., U.I.S.) and Nuclear Medicine (G.R.), Division of Diagnostic Imaging, University of Texas MD Anderson Cancer Center, Houston, Tex; Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY (E.A.); Department of Radiology, Koç University School of Medicine, Istanbul, Turkey (E.A., H.D.); and Department of Nuclear Medicine, Division of Diagnostic Imaging, University of Iowa Hospitals and Clinics, Iowa City, Iowa (S.G.K.)
| | - Migena Gjoni
- From the Division of Diagnostic Imaging, University of Texas Health Science Center at Houston, 6431 Fannin St, MSB 2.132, Houston, TX 77030 (M.O.A.); Department of Medicine, Istanbul University-Cerrahpasa Hospital, Istanbul, Turkey (M.G.); Departments of Abdominal Imaging (R.V., T.K.B., S.N., K.M.E., U.I.S.) and Nuclear Medicine (G.R.), Division of Diagnostic Imaging, University of Texas MD Anderson Cancer Center, Houston, Tex; Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY (E.A.); Department of Radiology, Koç University School of Medicine, Istanbul, Turkey (E.A., H.D.); and Department of Nuclear Medicine, Division of Diagnostic Imaging, University of Iowa Hospitals and Clinics, Iowa City, Iowa (S.G.K.)
| | - Raghunandan Vikram
- From the Division of Diagnostic Imaging, University of Texas Health Science Center at Houston, 6431 Fannin St, MSB 2.132, Houston, TX 77030 (M.O.A.); Department of Medicine, Istanbul University-Cerrahpasa Hospital, Istanbul, Turkey (M.G.); Departments of Abdominal Imaging (R.V., T.K.B., S.N., K.M.E., U.I.S.) and Nuclear Medicine (G.R.), Division of Diagnostic Imaging, University of Texas MD Anderson Cancer Center, Houston, Tex; Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY (E.A.); Department of Radiology, Koç University School of Medicine, Istanbul, Turkey (E.A., H.D.); and Department of Nuclear Medicine, Division of Diagnostic Imaging, University of Iowa Hospitals and Clinics, Iowa City, Iowa (S.G.K.)
| | - Emre Altinmakas
- From the Division of Diagnostic Imaging, University of Texas Health Science Center at Houston, 6431 Fannin St, MSB 2.132, Houston, TX 77030 (M.O.A.); Department of Medicine, Istanbul University-Cerrahpasa Hospital, Istanbul, Turkey (M.G.); Departments of Abdominal Imaging (R.V., T.K.B., S.N., K.M.E., U.I.S.) and Nuclear Medicine (G.R.), Division of Diagnostic Imaging, University of Texas MD Anderson Cancer Center, Houston, Tex; Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY (E.A.); Department of Radiology, Koç University School of Medicine, Istanbul, Turkey (E.A., H.D.); and Department of Nuclear Medicine, Division of Diagnostic Imaging, University of Iowa Hospitals and Clinics, Iowa City, Iowa (S.G.K.)
| | - Hakan Dogan
- From the Division of Diagnostic Imaging, University of Texas Health Science Center at Houston, 6431 Fannin St, MSB 2.132, Houston, TX 77030 (M.O.A.); Department of Medicine, Istanbul University-Cerrahpasa Hospital, Istanbul, Turkey (M.G.); Departments of Abdominal Imaging (R.V., T.K.B., S.N., K.M.E., U.I.S.) and Nuclear Medicine (G.R.), Division of Diagnostic Imaging, University of Texas MD Anderson Cancer Center, Houston, Tex; Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY (E.A.); Department of Radiology, Koç University School of Medicine, Istanbul, Turkey (E.A., H.D.); and Department of Nuclear Medicine, Division of Diagnostic Imaging, University of Iowa Hospitals and Clinics, Iowa City, Iowa (S.G.K.)
| | - Tharakeswara K Bathala
- From the Division of Diagnostic Imaging, University of Texas Health Science Center at Houston, 6431 Fannin St, MSB 2.132, Houston, TX 77030 (M.O.A.); Department of Medicine, Istanbul University-Cerrahpasa Hospital, Istanbul, Turkey (M.G.); Departments of Abdominal Imaging (R.V., T.K.B., S.N., K.M.E., U.I.S.) and Nuclear Medicine (G.R.), Division of Diagnostic Imaging, University of Texas MD Anderson Cancer Center, Houston, Tex; Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY (E.A.); Department of Radiology, Koç University School of Medicine, Istanbul, Turkey (E.A., H.D.); and Department of Nuclear Medicine, Division of Diagnostic Imaging, University of Iowa Hospitals and Clinics, Iowa City, Iowa (S.G.K.)
| | - Sagar Naik
- From the Division of Diagnostic Imaging, University of Texas Health Science Center at Houston, 6431 Fannin St, MSB 2.132, Houston, TX 77030 (M.O.A.); Department of Medicine, Istanbul University-Cerrahpasa Hospital, Istanbul, Turkey (M.G.); Departments of Abdominal Imaging (R.V., T.K.B., S.N., K.M.E., U.I.S.) and Nuclear Medicine (G.R.), Division of Diagnostic Imaging, University of Texas MD Anderson Cancer Center, Houston, Tex; Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY (E.A.); Department of Radiology, Koç University School of Medicine, Istanbul, Turkey (E.A., H.D.); and Department of Nuclear Medicine, Division of Diagnostic Imaging, University of Iowa Hospitals and Clinics, Iowa City, Iowa (S.G.K.)
| | - Gregory Ravizzini
- From the Division of Diagnostic Imaging, University of Texas Health Science Center at Houston, 6431 Fannin St, MSB 2.132, Houston, TX 77030 (M.O.A.); Department of Medicine, Istanbul University-Cerrahpasa Hospital, Istanbul, Turkey (M.G.); Departments of Abdominal Imaging (R.V., T.K.B., S.N., K.M.E., U.I.S.) and Nuclear Medicine (G.R.), Division of Diagnostic Imaging, University of Texas MD Anderson Cancer Center, Houston, Tex; Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY (E.A.); Department of Radiology, Koç University School of Medicine, Istanbul, Turkey (E.A., H.D.); and Department of Nuclear Medicine, Division of Diagnostic Imaging, University of Iowa Hospitals and Clinics, Iowa City, Iowa (S.G.K.)
| | - Sedat Giray Kandemirli
- From the Division of Diagnostic Imaging, University of Texas Health Science Center at Houston, 6431 Fannin St, MSB 2.132, Houston, TX 77030 (M.O.A.); Department of Medicine, Istanbul University-Cerrahpasa Hospital, Istanbul, Turkey (M.G.); Departments of Abdominal Imaging (R.V., T.K.B., S.N., K.M.E., U.I.S.) and Nuclear Medicine (G.R.), Division of Diagnostic Imaging, University of Texas MD Anderson Cancer Center, Houston, Tex; Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY (E.A.); Department of Radiology, Koç University School of Medicine, Istanbul, Turkey (E.A., H.D.); and Department of Nuclear Medicine, Division of Diagnostic Imaging, University of Iowa Hospitals and Clinics, Iowa City, Iowa (S.G.K.)
| | - Khaled M Elsayes
- From the Division of Diagnostic Imaging, University of Texas Health Science Center at Houston, 6431 Fannin St, MSB 2.132, Houston, TX 77030 (M.O.A.); Department of Medicine, Istanbul University-Cerrahpasa Hospital, Istanbul, Turkey (M.G.); Departments of Abdominal Imaging (R.V., T.K.B., S.N., K.M.E., U.I.S.) and Nuclear Medicine (G.R.), Division of Diagnostic Imaging, University of Texas MD Anderson Cancer Center, Houston, Tex; Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY (E.A.); Department of Radiology, Koç University School of Medicine, Istanbul, Turkey (E.A., H.D.); and Department of Nuclear Medicine, Division of Diagnostic Imaging, University of Iowa Hospitals and Clinics, Iowa City, Iowa (S.G.K.)
| | - Usama I Salem
- From the Division of Diagnostic Imaging, University of Texas Health Science Center at Houston, 6431 Fannin St, MSB 2.132, Houston, TX 77030 (M.O.A.); Department of Medicine, Istanbul University-Cerrahpasa Hospital, Istanbul, Turkey (M.G.); Departments of Abdominal Imaging (R.V., T.K.B., S.N., K.M.E., U.I.S.) and Nuclear Medicine (G.R.), Division of Diagnostic Imaging, University of Texas MD Anderson Cancer Center, Houston, Tex; Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY (E.A.); Department of Radiology, Koç University School of Medicine, Istanbul, Turkey (E.A., H.D.); and Department of Nuclear Medicine, Division of Diagnostic Imaging, University of Iowa Hospitals and Clinics, Iowa City, Iowa (S.G.K.)
| |
Collapse
|
4
|
Guljaš S, Dupan Krivdić Z, Drežnjak Madunić M, Šambić Penc M, Pavlović O, Krajina V, Pavoković D, Šmit Takač P, Štefančić M, Salha T. Dynamic Contrast-Enhanced Study in the mpMRI of the Prostate-Unnecessary or Underutilised? A Narrative Review. Diagnostics (Basel) 2023; 13:3488. [PMID: 37998624 PMCID: PMC10670922 DOI: 10.3390/diagnostics13223488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/30/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023] Open
Abstract
The aim of this review is to summarise recent scientific literature regarding the clinical use of DCE-MRI as a component of multiparametric resonance imaging of the prostate. This review presents the principles of DCE-MRI acquisition and analysis, the current role of DCE-MRI in clinical practice with special regard to its role in presently available categorisation systems, and an overview of the advantages and disadvantages of DCE-MRI described in the current literature. DCE-MRI is an important functional sequence that requires intravenous administration of a gadolinium-based contrast agent and gives information regarding the vascularity and capillary permeability of the lesion. Although numerous studies have confirmed that DCE-MRI has great potential in the diagnosis and monitoring of prostate cancer, its role is still inadequate in the PI-RADS categorisation. Moreover, there have been numerous scientific discussions about abandoning the intravenous application of gadolinium-based contrast as a routine part of MRI examination of the prostate. In this review, we summarised the recent literature on the advantages and disadvantages of DCE-MRI, focusing on an overview of currently available data on bpMRI and mpMRI, as well as on studies providing information on the potential better usability of DCE-MRI in improving the sensitivity and specificity of mpMRI examinations of the prostate.
Collapse
Affiliation(s)
- Silva Guljaš
- Clinical Department of Radiology, University Hospital Centre, 31000 Osijek, Croatia; (S.G.); (Z.D.K.)
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (M.D.M.); (M.Š.P.); (O.P.); (V.K.); (D.P.)
| | - Zdravka Dupan Krivdić
- Clinical Department of Radiology, University Hospital Centre, 31000 Osijek, Croatia; (S.G.); (Z.D.K.)
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (M.D.M.); (M.Š.P.); (O.P.); (V.K.); (D.P.)
| | - Maja Drežnjak Madunić
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (M.D.M.); (M.Š.P.); (O.P.); (V.K.); (D.P.)
- Department of Oncology, University Hospital Centre, 31000 Osijek, Croatia
| | - Mirela Šambić Penc
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (M.D.M.); (M.Š.P.); (O.P.); (V.K.); (D.P.)
- Department of Oncology, University Hospital Centre, 31000 Osijek, Croatia
| | - Oliver Pavlović
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (M.D.M.); (M.Š.P.); (O.P.); (V.K.); (D.P.)
- Department of Urology, University Hospital Centre, 31000 Osijek, Croatia
| | - Vinko Krajina
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (M.D.M.); (M.Š.P.); (O.P.); (V.K.); (D.P.)
- Department of Urology, University Hospital Centre, 31000 Osijek, Croatia
| | - Deni Pavoković
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (M.D.M.); (M.Š.P.); (O.P.); (V.K.); (D.P.)
- Department of Urology, University Hospital Centre, 31000 Osijek, Croatia
| | - Petra Šmit Takač
- Clinical Department of Surgery, Osijek University Hospital Centre, 31000 Osijek, Croatia;
| | - Marin Štefančić
- Department of Radiology, National Memorial Hospital Vukovar, 32000 Vukovar, Croatia;
| | - Tamer Salha
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (M.D.M.); (M.Š.P.); (O.P.); (V.K.); (D.P.)
- Department of Teleradiology and Artificial Intelligence, Health Centre Osijek-Baranja County, 31000 Osijek, Croatia
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| |
Collapse
|
5
|
Turkbey B, Oto A, Allen BC, Akin O, Alexander LF, Ari M, Froemming AT, Fulgham PF, Gettle LM, Maranchie JK, Rosenthal SA, Schieda N, Schuster DM, Venkatesan AM, Lockhart ME. ACR Appropriateness Criteria® Post-Treatment Follow-up of Prostate Cancer: 2022 Update. J Am Coll Radiol 2023; 20:S164-S186. [PMID: 37236741 DOI: 10.1016/j.jacr.2023.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 02/27/2023] [Indexed: 05/28/2023]
Abstract
Prostate cancer has a wide spectrum ranging between low-grade localized disease and castrate-resistant metastatic disease. Although whole gland and systematic therapies result in cure in the majority of patients, recurrent and metastatic prostate cancer can still occur. Imaging approaches including anatomic, functional, and molecular modalities are continuously expanding. Currently, recurrent and metastatic prostate cancer is grouped in three major categories: 1) Clinical concern for residual or recurrent disease after radical prostatectomy, 2) Clinical concern for residual or recurrent disease after nonsurgical local and pelvic treatments, and 3) Metastatic prostate cancer treated by systemic therapy (androgen deprivation therapy, chemotherapy, immunotherapy). This document is a review of the current literature regarding imaging in these settings and the resulting recommendations for imaging. The American College of Radiology Appropriateness Criteria are evidence-based guidelines for specific clinical conditions that are reviewed annually by a multidisciplinary expert panel. The guideline development and revision include an extensive analysis of current medical literature from peer reviewed journals and the application of well-established methodologies (RAND/UCLA Appropriateness Method and Grading of Recommendations Assessment, Development, and Evaluation or GRADE) to rate the appropriateness of imaging and treatment procedures for specific clinical scenarios. In those instances where evidence is lacking or equivocal, expert opinion may supplement the available evidence to recommend imaging or treatment.
Collapse
Affiliation(s)
- Baris Turkbey
- National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| | - Aytekin Oto
- Panel Chair, University of Chicago, Chicago, Illinois
| | - Brian C Allen
- Panel Vice-Chair, Duke University Medical Center, Durham, North Carolina
| | - Oguz Akin
- Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Mim Ari
- The University of Chicago, Chicago, Illinois, Primary care physician
| | | | - Pat F Fulgham
- Urology Clinics of North Texas, Dallas, Texas; American Urological Association
| | | | | | - Seth A Rosenthal
- Sutter Medical Group, Sacramento, California; Commission on Radiation Oncology
| | - Nicola Schieda
- Ottawa Hospital Research Institute and the Department of Radiology, The University of Ottawa, Ottawa, Ontario, Canada
| | - David M Schuster
- Emory University, Atlanta, Georgia; Commission on Nuclear Medicine and Molecular Imaging
| | | | - Mark E Lockhart
- Specialty Chair, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
6
|
Horsley PJ, Koo CM, Eade T, Hsiao E, Emmett L, Brown C, Kneebone A, Hruby G. Mapping of Local Recurrences After Radical Prostatectomy Using 68-Gallium-Prostate-Specific Membrane Antigen Positron Emission Tomography/Computed Tomography: Implications for Postprostatectomy Radiation Therapy Clinical Target Volumes. Int J Radiat Oncol Biol Phys 2023; 115:106-117. [PMID: 35716849 DOI: 10.1016/j.ijrobp.2022.05.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/23/2022] [Accepted: 05/28/2022] [Indexed: 11/26/2022]
Abstract
PURPOSE Our objective is to describe the distribution of local recurrences after radical prostatectomy (RP) as delineated using 68-Gallium-prostate-specific membrane antigen positron emission tomography/computed tomography (68Ga-PSMA PET/CT) to identify areas where current consensus guideline clinical target volumes (CTVs) are insufficient or excessive and to identify predictors of recurrence location within the fossa. METHODS AND MATERIALS Retrospective review of databases from 2 tertiary referral centers was performed to identify patients who underwent 68Ga-PSMA PET/CT for biochemical recurrence after RP. Those with a component of local recurrence were included for further analysis. The epicenter of each recurrence was defined relative to reference points in 3 axes, categorized into 1 of 7 levels in the superior/inferior axis relative to the vesicourethral anastomosis, and recorded as within or outside the Faculty of Radiation Oncology Genito-urinary Group (FROGG) and Radiation Therapy Oncology Group consensus CTVs. Univariate and multivariate analysis was performed to identify predictors of recurrence location based on clinical and histopathologic variables. RESULTS One thousand forty-nine 68Ga-PSMA PET/CT scans were reviewed. One hundred forty sites of local recurrence were identified on 132 scans. Relative to the vesicourethral anastomosis, 13 (9%), 31 (22%), 17 (12%), 24 (17%), 27 (19%), 20 (14%), and 8 (6%) recurrences occurred >5 mm inferior; within 5 mm above or below; and 6 to 15 mm, 16 to 25 mm, 26 to 35 mm, 36 to 45 mm, and >45 mm superiorly, respectively. Thirteen (9%) and 2 (1.4%) recurrences occurred beyond the FROGG and Radiation Therapy Oncology Group consensus CTVs, respectively, with all below the inferior CTV margin. CONCLUSIONS In the largest study to date mapping local recurrences after RP in 3-dimensions, we provide several insights to inform future contouring guidelines; in particular, 9% of recurrences occurred inferior to the FROGG CTV.
Collapse
Affiliation(s)
- Patrick J Horsley
- Northern Sydney Cancer Centre, Royal North Shore Hospital, St Leonards, New South Wales, Australia.
| | - Chung Mo Koo
- Department of Nuclear Medicine, Royal North Shore Hospital, St Leonards, New South Wales, Australia
| | - Thomas Eade
- Northern Sydney Cancer Centre, Royal North Shore Hospital, St Leonards, New South Wales, Australia; GenesisCare, Sydney, New South Wales, Australia; University of Sydney, Camperdown, New South Wales, Australia
| | - Edward Hsiao
- Department of Nuclear Medicine, Royal North Shore Hospital, St Leonards, New South Wales, Australia
| | - Louise Emmett
- Department of Nuclear Medicine and Theranostics, St. Vincent's Hospital, Sydney, New South Wales, Australia; University of New South Wales, Sydney, New South Wales, Australia
| | - Chris Brown
- NHMRC Trials Centre, University of Sydney, Camperdown, New South Wales, Australia
| | - Andrew Kneebone
- Northern Sydney Cancer Centre, Royal North Shore Hospital, St Leonards, New South Wales, Australia; GenesisCare, Sydney, New South Wales, Australia; University of Sydney, Camperdown, New South Wales, Australia
| | - George Hruby
- Northern Sydney Cancer Centre, Royal North Shore Hospital, St Leonards, New South Wales, Australia; GenesisCare, Sydney, New South Wales, Australia; University of Sydney, Camperdown, New South Wales, Australia
| |
Collapse
|
7
|
Carpagnano FA, Eusebi L, Giannubilo W, Fenu F, Safi M, Bartelli F, Guglielmi G. Prostate Multiparametric MRI: Evaluation of Recurrence and Post-treatment Changes. CURRENT RADIOLOGY REPORTS 2022. [DOI: 10.1007/s40134-022-00404-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Abstract
Purpose of Review
This article reviews all the most common therapeutic strategies of prostate cancer, systemic or local, and all the following morpho-structural alterations, with the aim of helping the radiologist to recognize the signs of recurrence by using mp-MRI.
Recent Findings
According to the most recent evidences, prostate mp-MRI has now become a strong, non-invasive, and valid tool to evaluate all patient treated for prostatic carcinoma across the time, especially in the suspicion of biochemical recurrence.
Summary
The minimal signs of focal recurrence can put a strain on radiologists, especially if they are novice with multi-parametric prostate MRI. Familiarizing themselves with the outcomes of treatment, local or systemic, and its characteristics to MR imaging is indispensable to avoid diagnostic pitfalls and, subsequently, unnecessary reinterventions.
Collapse
|
8
|
Fernandes MC, Yildirim O, Woo S, Vargas HA, Hricak H. The role of MRI in prostate cancer: current and future directions. MAGMA (NEW YORK, N.Y.) 2022; 35:503-521. [PMID: 35294642 PMCID: PMC9378354 DOI: 10.1007/s10334-022-01006-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 01/16/2022] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
There has been an increasing role of magnetic resonance imaging (MRI) in the management of prostate cancer. MRI already plays an essential role in the detection and staging, with the introduction of functional MRI sequences. Recent advancements in radiomics and artificial intelligence are being tested to potentially improve detection, assessment of aggressiveness, and provide usefulness as a prognostic marker. MRI can improve pretreatment risk stratification and therefore selection of and follow-up of patients for active surveillance. MRI can also assist in guiding targeted biopsy, treatment planning and follow-up after treatment to assess local recurrence. MRI has gained importance in the evaluation of metastatic disease with emerging technology including whole-body MRI and integrated positron emission tomography/MRI, allowing for not only better detection but also quantification. The main goal of this article is to review the most recent advances on MRI in prostate cancer and provide insights into its potential clinical roles from the radiologist's perspective. In each of the sections, specific roles of MRI tailored to each clinical setting are discussed along with its strengths and weakness including already established material related to MRI and the introduction of recent advancements on MRI.
Collapse
Affiliation(s)
- Maria Clara Fernandes
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA
| | - Onur Yildirim
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA
| | - Sungmin Woo
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA.
| | - Hebert Alberto Vargas
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA
| | - Hedvig Hricak
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA
| |
Collapse
|
9
|
Dundee P, Furrer MA, Corcoran NM, Peters J, Pan H, Ballok Z, Ryan A, Guerrieri M, Costello AJ. Defining Prostatic Vascular Pedicle Recurrence and the Anatomy of Local Recurrence of Prostate Cancer on Prostate-specific Membrane Antigen Positron Emission Tomography/Computed Tomography. EUR UROL SUPPL 2022; 41:116-122. [PMID: 35813255 PMCID: PMC9257633 DOI: 10.1016/j.euros.2022.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2022] [Indexed: 11/30/2022] Open
Abstract
Background The term local recurrence in prostate cancer is considered to mean persistent local disease in the prostatic bed, most commonly at the site of the vesicourethral anastomosis (VUA). Since the introduction of prostate-specific membrane antigen (PSMA) positron emission tomography/computed tomography (PET/CT) and magnetic resonance imaging for assessment of early biochemical recurrence (BCR), we have found histologically confirmed prostate cancer in the prostatic vascular pedicle (PVP). If a significant proportion of local recurrences are distant to the VUA, it may be possible to alter adjuvant and salvage radiation fields in order to reduce the potential morbidity of radiation in selected patients. Objective To describe PVP local recurrence and to map the anatomic pattern of prostate bed recurrence on PSMA PET/CT. Design, setting, and participants This was a retrospective multicentre study of 185 patients imaged with PSMA PET/CT following radical prostatectomy (RP) between January 2016 and November 2018. All patient data and clinical outcomes were prospectively collected. Recurrences were documented according to anatomic location. For patients presenting with local recurrence, the precise location of the recurrence within the prostate bed was documented. Intervention PSMA PET/CT for BCR following RP. Results and limitations A total of 43 local recurrences in 41/185 patients (22%) were identified. Tumour recurrence at the PVP was found in 26 (63%), VUA in 15 (37%), and within a retained seminal vesicle and along the anterior rectal wall in the region of the neurovascular bundle in one (2.4%) each. Histological and surgical evidence of PVP recurrence was acquired in two patients. The study is limited by its retrospective nature with inherent selection bias. This is an observational study reporting on the anatomy of local recurrence and does not include follow-up for patient outcomes. Conclusions Our study showed that prostate cancer can recur in the PVP and is distant to the VUA more commonly than previously thought. This may have implications for RP technique and for the treatment of selected patients in the local recurrence setting. Patient summary We investigated more precise identification of the location of tumour recurrence after removal of the prostate for prostate cancer. We describe a new definition of local recurrence in an area called the prostatic vascular pedicle. This new concept may alter the treatment recommended for recurrent disease.
Collapse
Affiliation(s)
- Philip Dundee
- Department of Urology, The University of Melbourne, Royal Melbourne Hospital, Grattan Street Parkville, Australia 3052
- The Australian Medical Robotics Academy, North Melbourne, Australia
- Australian Prostate Cancer Centre, North Melbourne, Australia
- Epworth Healthcare, Melbourne, Australia
- Corresponding author. Department of Urology, Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia. Tel. +61 3 9342 7294.
| | - Marc A. Furrer
- Department of Urology, The University of Melbourne, Royal Melbourne Hospital, Grattan Street Parkville, Australia 3052
- The Australian Medical Robotics Academy, North Melbourne, Australia
- Epworth Healthcare, Melbourne, Australia
- Department of Urology, University Hospital of Bern, University of Bern, Bern, Switzerland
| | - Niall M. Corcoran
- Department of Urology, The University of Melbourne, Royal Melbourne Hospital, Grattan Street Parkville, Australia 3052
- Australian Prostate Cancer Centre, North Melbourne, Australia
| | - Justin Peters
- Department of Urology, The University of Melbourne, Royal Melbourne Hospital, Grattan Street Parkville, Australia 3052
- The Australian Medical Robotics Academy, North Melbourne, Australia
- Australian Prostate Cancer Centre, North Melbourne, Australia
- Epworth Healthcare, Melbourne, Australia
| | - Henry Pan
- Department of Urology, University Hospital of Bern, University of Bern, Bern, Switzerland
| | | | - Andrew Ryan
- Healthcare Imaging Services, Melbourne, Australia
| | | | - Anthony J. Costello
- Department of Urology, The University of Melbourne, Royal Melbourne Hospital, Grattan Street Parkville, Australia 3052
- The Australian Medical Robotics Academy, North Melbourne, Australia
- Australian Prostate Cancer Centre, North Melbourne, Australia
- Epworth Healthcare, Melbourne, Australia
| |
Collapse
|
10
|
Pecoraro M, Turkbey BI, Purysko AS, Girometti R, Giannarini G, Villeirs G, Roberto M, Catalano C, Padhani AR, Barentsz JO, Panebianco V. Diagnostic Accuracy and Observer Agreement of the MRI Prostate Imaging for Recurrence Reporting Assessment Score. Radiology 2022; 304:342-350. [PMID: 35536130 DOI: 10.1148/radiol.212252] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Background Prostate cancer local recurrence location and extent must be determined in an accurate and timely manner. Because of the lack of a standardized MRI approach after whole-gland treatment, a panel of international experts recently proposed the Prostate Imaging for Recurrence Reporting (PI-RR) assessment score. Purpose To determine the diagnostic accuracy of PI-RR for detecting local recurrence in patients with biochemical recurrence (BCR) after radiation therapy (RT) or radical prostatectomy (RP) and to evaluate the interreader variability of PI-RR scoring. Materials and Methods This retrospective observational study included patients who underwent multiparametric MRI between September 2016 and May 2021 for BCR after RT or RP. MRI scans were analyzed, and a PI-RR score was assigned independently by four radiologists. The reference standard was defined using histopathologic findings, follow-up imaging, or clinical response to treatment. Sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and accuracy were calculated to assess PI-RR performance for each reader. The intraclass correlation coefficient was used to determine interreader agreement. Results A total of 100 men were included: 48 patients after RT (median age, 76 years [IQR, 70-82 years]) and 52 patients after RP (median age, 70 years [IQR, 66-74 years]). After RT, with PI-RR of 3 or greater as a cutoff (assigned when recurrence is uncertain), diagnostic performance ranges were 71%-81% sensitivity, 74%-93% specificity, 71%-89% PPV, 79%-86% NPV, and 77%-88% accuracy across the four readers. After RP, with PI-RR of 3 or greater as a cutoff, performance ranges were 59%-83% sensitivity, 87%-100% specificity, 88%-100% PPV, 66%-80% NPV, and 75%-85% accuracy. The intraclass correlation coefficient was 0.87 across the four readers for both the RT and RP groups. Conclusion MRI scoring with the Prostate Imaging for Recurrence Reporting assessment provides structured, reproducible, and accurate evaluation of local recurrence after definitive therapy for prostate cancer. © RSNA, 2022 Online supplemental material is available for this article. See also the editorial by Haider in this issue.
Collapse
Affiliation(s)
- Martina Pecoraro
- From the Department of Radiological Sciences, Oncology and Pathology, Sapienza University/Policlinico Umberto I, Viale Regina Elena 324, 00161 Rome, Italy (M.P., M.R., C.C., V.P.); National Cancer Institute, Center for Cancer Research, Bethesda, Md (B.I.T.); Imaging Institute, Cleveland Clinic, Cleveland, Ohio (A.S.P.); Institute of Radiology (R.G.) and Unit of Urology (G.G.), Santa Maria della Misericordia Academic Medical Center, Udine, Italy; Department of Radiology and Nuclear Medicine, Ghent University Hospital, Ghent, Belgium (G.V.); Paul Strickland Scanner Centre, Mount Vernon Cancer Centre, Northwood, England (A.R.P.); and Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, the Netherlands (J.O.B.)
| | - Baris I Turkbey
- From the Department of Radiological Sciences, Oncology and Pathology, Sapienza University/Policlinico Umberto I, Viale Regina Elena 324, 00161 Rome, Italy (M.P., M.R., C.C., V.P.); National Cancer Institute, Center for Cancer Research, Bethesda, Md (B.I.T.); Imaging Institute, Cleveland Clinic, Cleveland, Ohio (A.S.P.); Institute of Radiology (R.G.) and Unit of Urology (G.G.), Santa Maria della Misericordia Academic Medical Center, Udine, Italy; Department of Radiology and Nuclear Medicine, Ghent University Hospital, Ghent, Belgium (G.V.); Paul Strickland Scanner Centre, Mount Vernon Cancer Centre, Northwood, England (A.R.P.); and Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, the Netherlands (J.O.B.)
| | - Andrei S Purysko
- From the Department of Radiological Sciences, Oncology and Pathology, Sapienza University/Policlinico Umberto I, Viale Regina Elena 324, 00161 Rome, Italy (M.P., M.R., C.C., V.P.); National Cancer Institute, Center for Cancer Research, Bethesda, Md (B.I.T.); Imaging Institute, Cleveland Clinic, Cleveland, Ohio (A.S.P.); Institute of Radiology (R.G.) and Unit of Urology (G.G.), Santa Maria della Misericordia Academic Medical Center, Udine, Italy; Department of Radiology and Nuclear Medicine, Ghent University Hospital, Ghent, Belgium (G.V.); Paul Strickland Scanner Centre, Mount Vernon Cancer Centre, Northwood, England (A.R.P.); and Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, the Netherlands (J.O.B.)
| | - Rossano Girometti
- From the Department of Radiological Sciences, Oncology and Pathology, Sapienza University/Policlinico Umberto I, Viale Regina Elena 324, 00161 Rome, Italy (M.P., M.R., C.C., V.P.); National Cancer Institute, Center for Cancer Research, Bethesda, Md (B.I.T.); Imaging Institute, Cleveland Clinic, Cleveland, Ohio (A.S.P.); Institute of Radiology (R.G.) and Unit of Urology (G.G.), Santa Maria della Misericordia Academic Medical Center, Udine, Italy; Department of Radiology and Nuclear Medicine, Ghent University Hospital, Ghent, Belgium (G.V.); Paul Strickland Scanner Centre, Mount Vernon Cancer Centre, Northwood, England (A.R.P.); and Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, the Netherlands (J.O.B.)
| | - Gianluca Giannarini
- From the Department of Radiological Sciences, Oncology and Pathology, Sapienza University/Policlinico Umberto I, Viale Regina Elena 324, 00161 Rome, Italy (M.P., M.R., C.C., V.P.); National Cancer Institute, Center for Cancer Research, Bethesda, Md (B.I.T.); Imaging Institute, Cleveland Clinic, Cleveland, Ohio (A.S.P.); Institute of Radiology (R.G.) and Unit of Urology (G.G.), Santa Maria della Misericordia Academic Medical Center, Udine, Italy; Department of Radiology and Nuclear Medicine, Ghent University Hospital, Ghent, Belgium (G.V.); Paul Strickland Scanner Centre, Mount Vernon Cancer Centre, Northwood, England (A.R.P.); and Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, the Netherlands (J.O.B.)
| | - Geert Villeirs
- From the Department of Radiological Sciences, Oncology and Pathology, Sapienza University/Policlinico Umberto I, Viale Regina Elena 324, 00161 Rome, Italy (M.P., M.R., C.C., V.P.); National Cancer Institute, Center for Cancer Research, Bethesda, Md (B.I.T.); Imaging Institute, Cleveland Clinic, Cleveland, Ohio (A.S.P.); Institute of Radiology (R.G.) and Unit of Urology (G.G.), Santa Maria della Misericordia Academic Medical Center, Udine, Italy; Department of Radiology and Nuclear Medicine, Ghent University Hospital, Ghent, Belgium (G.V.); Paul Strickland Scanner Centre, Mount Vernon Cancer Centre, Northwood, England (A.R.P.); and Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, the Netherlands (J.O.B.)
| | - Michela Roberto
- From the Department of Radiological Sciences, Oncology and Pathology, Sapienza University/Policlinico Umberto I, Viale Regina Elena 324, 00161 Rome, Italy (M.P., M.R., C.C., V.P.); National Cancer Institute, Center for Cancer Research, Bethesda, Md (B.I.T.); Imaging Institute, Cleveland Clinic, Cleveland, Ohio (A.S.P.); Institute of Radiology (R.G.) and Unit of Urology (G.G.), Santa Maria della Misericordia Academic Medical Center, Udine, Italy; Department of Radiology and Nuclear Medicine, Ghent University Hospital, Ghent, Belgium (G.V.); Paul Strickland Scanner Centre, Mount Vernon Cancer Centre, Northwood, England (A.R.P.); and Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, the Netherlands (J.O.B.)
| | - Carlo Catalano
- From the Department of Radiological Sciences, Oncology and Pathology, Sapienza University/Policlinico Umberto I, Viale Regina Elena 324, 00161 Rome, Italy (M.P., M.R., C.C., V.P.); National Cancer Institute, Center for Cancer Research, Bethesda, Md (B.I.T.); Imaging Institute, Cleveland Clinic, Cleveland, Ohio (A.S.P.); Institute of Radiology (R.G.) and Unit of Urology (G.G.), Santa Maria della Misericordia Academic Medical Center, Udine, Italy; Department of Radiology and Nuclear Medicine, Ghent University Hospital, Ghent, Belgium (G.V.); Paul Strickland Scanner Centre, Mount Vernon Cancer Centre, Northwood, England (A.R.P.); and Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, the Netherlands (J.O.B.)
| | - Anwar R Padhani
- From the Department of Radiological Sciences, Oncology and Pathology, Sapienza University/Policlinico Umberto I, Viale Regina Elena 324, 00161 Rome, Italy (M.P., M.R., C.C., V.P.); National Cancer Institute, Center for Cancer Research, Bethesda, Md (B.I.T.); Imaging Institute, Cleveland Clinic, Cleveland, Ohio (A.S.P.); Institute of Radiology (R.G.) and Unit of Urology (G.G.), Santa Maria della Misericordia Academic Medical Center, Udine, Italy; Department of Radiology and Nuclear Medicine, Ghent University Hospital, Ghent, Belgium (G.V.); Paul Strickland Scanner Centre, Mount Vernon Cancer Centre, Northwood, England (A.R.P.); and Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, the Netherlands (J.O.B.)
| | - Jelle O Barentsz
- From the Department of Radiological Sciences, Oncology and Pathology, Sapienza University/Policlinico Umberto I, Viale Regina Elena 324, 00161 Rome, Italy (M.P., M.R., C.C., V.P.); National Cancer Institute, Center for Cancer Research, Bethesda, Md (B.I.T.); Imaging Institute, Cleveland Clinic, Cleveland, Ohio (A.S.P.); Institute of Radiology (R.G.) and Unit of Urology (G.G.), Santa Maria della Misericordia Academic Medical Center, Udine, Italy; Department of Radiology and Nuclear Medicine, Ghent University Hospital, Ghent, Belgium (G.V.); Paul Strickland Scanner Centre, Mount Vernon Cancer Centre, Northwood, England (A.R.P.); and Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, the Netherlands (J.O.B.)
| | - Valeria Panebianco
- From the Department of Radiological Sciences, Oncology and Pathology, Sapienza University/Policlinico Umberto I, Viale Regina Elena 324, 00161 Rome, Italy (M.P., M.R., C.C., V.P.); National Cancer Institute, Center for Cancer Research, Bethesda, Md (B.I.T.); Imaging Institute, Cleveland Clinic, Cleveland, Ohio (A.S.P.); Institute of Radiology (R.G.) and Unit of Urology (G.G.), Santa Maria della Misericordia Academic Medical Center, Udine, Italy; Department of Radiology and Nuclear Medicine, Ghent University Hospital, Ghent, Belgium (G.V.); Paul Strickland Scanner Centre, Mount Vernon Cancer Centre, Northwood, England (A.R.P.); and Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, the Netherlands (J.O.B.)
| |
Collapse
|
11
|
MR Imaging in Real Time Guiding of Therapies in Prostate Cancer. Life (Basel) 2022; 12:life12020302. [PMID: 35207589 PMCID: PMC8878909 DOI: 10.3390/life12020302] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 01/31/2022] [Accepted: 02/11/2022] [Indexed: 11/22/2022] Open
Abstract
Magnetic resonance imaging (MRI)-guided therapy for prostate cancer (PCa) aims to reduce the treatment-associated comorbidity of existing radical treatment, including radical prostatectomy and radiotherapy. Although active surveillance has been used as a conservative method to reduce overtreatment, there is a growing demand for less morbidity and personalized (focal) treatment. The development of multiparametric MRI was of real importance in improving the detection, localization and staging of PCa. Moreover, MRI has been useful for lesion targeting within the prostate, as it is used in the guidance of prostate biopsies, by means of cognitive registration, MRI-ultrasound fusion guidance or direct in-bore MRI-guidance. With regard to PCa therapies, MRI is used for precise probe placement into the lesion and to accurately monitor the treatment in real-time. Moreover, advances in MR-compatible thermal ablation allow for noninvasive real-time temperature mapping during treatment. In this review, we present an overview of the current status of MRI-guided therapies in PCa, focusing on cryoablation, focal laser ablation, high intensity focused ultrasound and transurethral ultrasound ablation. We explain the important role of MRI in the evaluation of the completeness of the ablation and during follow-up. Finally, we will discuss the challenges and future development inherent to these new technologies.
Collapse
|
12
|
Chen C, Margolis DJ. Case of the Season: Prostate Specific Membrane Antigen (PSMA) Positron-Emission Tomography (PET)-MRI to Evaluate Neoadjuvant Radiation Therapy Response. Semin Roentgenol 2021; 56:363-365. [PMID: 34688338 DOI: 10.1053/j.ro.2021.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 08/08/2021] [Indexed: 11/11/2022]
Affiliation(s)
- Christine Chen
- Department of Radiology, Weill Cornell Medical College: Weill Cornell Medicine, New York, NY.
| | - Daniel J Margolis
- Department of Radiology, Weill Cornell Medical College: Weill Cornell Medicine, New York, NY
| |
Collapse
|
13
|
Moradi F, Farolfi A, Fanti S, Iagaru A. Prostate cancer: Molecular imaging and MRI. Eur J Radiol 2021; 143:109893. [PMID: 34391061 DOI: 10.1016/j.ejrad.2021.109893] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 07/26/2021] [Accepted: 08/01/2021] [Indexed: 10/20/2022]
Abstract
The role of molecular imaging in initial evaluation of men with presumed or established diagnosis of prostate cancer and work up of biochemical recurrence and metastatic disease is rapidly evolving due to superior diagnostic performance compared to anatomic imaging. However, variable tumor biology and expression of transmembrane proteins or metabolic alterations poses a challenge. We review the evidence and controversies with emphasis on emerging PET radiopharmaceuticals and experience on clinical utility of PET/CT and PET/MRI in diagnosis and management of prostate cancer.
Collapse
Affiliation(s)
- Farshad Moradi
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging, Stanford University, Stanford, CA, USA.
| | - Andrea Farolfi
- Nuclear Medicine Division, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Stefano Fanti
- Nuclear Medicine Division, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Andrei Iagaru
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging, Stanford University, Stanford, CA, USA
| |
Collapse
|
14
|
Lapa C, Nestle U, Albert NL, Baues C, Beer A, Buck A, Budach V, Bütof R, Combs SE, Derlin T, Eiber M, Fendler WP, Furth C, Gani C, Gkika E, Grosu AL, Henkenberens C, Ilhan H, Löck S, Marnitz-Schulze S, Miederer M, Mix M, Nicolay NH, Niyazi M, Pöttgen C, Rödel CM, Schatka I, Schwarzenboeck SM, Todica AS, Weber W, Wegen S, Wiegel T, Zamboglou C, Zips D, Zöphel K, Zschaeck S, Thorwarth D, Troost EGC. Value of PET imaging for radiation therapy. Strahlenther Onkol 2021; 197:1-23. [PMID: 34259912 DOI: 10.1007/s00066-021-01812-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 06/09/2021] [Indexed: 12/13/2022]
Abstract
This comprehensive review written by experts in their field gives an overview on the current status of incorporating positron emission tomography (PET) into radiation treatment planning. Moreover, it highlights ongoing studies for treatment individualisation and per-treatment tumour response monitoring for various primary tumours. Novel tracers and image analysis methods are discussed. The authors believe this contribution to be of crucial value for experts in the field as well as for policy makers deciding on the reimbursement of this powerful imaging modality.
Collapse
Affiliation(s)
- Constantin Lapa
- Nuclear Medicine, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Ursula Nestle
- Department of Radiation Oncology, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany
- Department of Radiation Oncology, Kliniken Maria Hilf, Mönchengladbach, Germany
| | - Nathalie L Albert
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Christian Baues
- Department of Radiation Oncology, Cyberknife and Radiotherapy, Medical Faculty, University Hospital Cologne, Cologne, Germany
| | - Ambros Beer
- Department of Nuclear Medicine, Ulm University Hospital, Ulm, Germany
| | - Andreas Buck
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Volker Budach
- Department of Radiation Oncology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany
| | - Rebecca Bütof
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Stephanie E Combs
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
- Department of Radiation Oncology, Technical University of Munich (TUM), Klinikum rechts der Isar, Munich, Germany
- Department of Radiation Sciences (DRS), Institute of Radiation Medicine (IRM), Neuherberg, Germany
| | - Thorsten Derlin
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany
| | - Matthias Eiber
- Department of Nuclear Medicine, Technical University of Munich (TUM), Klinikum rechts der Isar, Munich, Germany
| | - Wolfgang P Fendler
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany
| | - Christian Furth
- Department of Nuclear Medicine, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Cihan Gani
- German Cancer Consortium (DKTK), Partner Site Tübingen, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiation Oncology, University of Tübingen, Tübingen, Germany
| | - Eleni Gkika
- Department of Radiation Oncology, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany
| | - Anca-L Grosu
- Department of Radiation Oncology, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany
| | - Christoph Henkenberens
- Department of Radiotherapy and Special Oncology, Medical School Hannover, Hannover, Germany
| | - Harun Ilhan
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Steffen Löck
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Simone Marnitz-Schulze
- Department of Radiation Oncology, Cyberknife and Radiotherapy, Medical Faculty, University Hospital Cologne, Cologne, Germany
| | - Matthias Miederer
- Department of Nuclear Medicine, University Hospital Mainz, Mainz, Germany
| | - Michael Mix
- Department of Nuclear Medicine, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Nils H Nicolay
- Department of Radiation Oncology, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany
| | - Maximilian Niyazi
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Christoph Pöttgen
- Department of Radiation Oncology, West German Cancer Centre, University of Duisburg-Essen, Essen, Germany
| | - Claus M Rödel
- German Cancer Consortium (DKTK), Partner Site Frankfurt, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiotherapy and Oncology, Goethe-University Frankfurt, Frankfurt, Germany
| | - Imke Schatka
- Department of Nuclear Medicine, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | | | - Andrei S Todica
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Wolfgang Weber
- Department of Nuclear Medicine, Technical University of Munich (TUM), Klinikum rechts der Isar, Munich, Germany
| | - Simone Wegen
- Department of Radiation Oncology, Cyberknife and Radiotherapy, Medical Faculty, University Hospital Cologne, Cologne, Germany
| | - Thomas Wiegel
- Department of Radiation Oncology, Ulm University Hospital, Ulm, Germany
| | - Constantinos Zamboglou
- Department of Radiation Oncology, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany
| | - Daniel Zips
- German Cancer Consortium (DKTK), Partner Site Tübingen, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiation Oncology, University of Tübingen, Tübingen, Germany
| | - Klaus Zöphel
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany, Helmholtz Association/Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Department of Nuclear Medicine, Klinikum Chemnitz gGmbH, Chemnitz, Germany
| | - Sebastian Zschaeck
- Department of Radiation Oncology, Charité-Universitätsmedizin Berlin, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Daniela Thorwarth
- German Cancer Consortium (DKTK), Partner Site Tübingen, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Section for Biomedical Physics, Department of Radiation Oncology, University of Tübingen, Tübingen, Germany
| | - Esther G C Troost
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany, Helmholtz Association/Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany.
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, Dresden, Germany.
| |
Collapse
|
15
|
Moerland MA, van Schelven LJ, van Lier A, Boskovic E, Peters M, van Son MJ, van der Voort van Zyp JRN, Lagendijk JJW. MR compatibility, safety and accuracy of the redesigned UMC Utrecht single needle implant device. Phys Med Biol 2021; 66. [PMID: 34010820 DOI: 10.1088/1361-6560/ac02d5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 05/19/2021] [Indexed: 11/11/2022]
Abstract
Purpose. The Utrecht single needle implant device (SNID) was redesigned to increase needle insertion velocity. The purpose of this study is to evaluate the magnetic resonance compatibility, safety and accuracy of the implant device preparing its application in a patient study to investigate the feasibility of inserting a brachytherapy needle into the prostate to a defined tumor target point.Methods. Several experiments were performed to evaluate the mechanical and radiofrequency safety of the needle system, the magnetic field perturbation, the calibration of the implant device in the MR coordinate system, functioning of the implant device during imaging and accuracy of needle insertion.Results. Endurance experiments showed the mechanical safety of the needle system. Magnetic field perturbation was acceptable with induced image distortions smaller than 0.5 mm for clinical MR sequences. Calibration of the implant device in the MR coordinate system was reproducible with average error (mean±standard deviation) of 0.2 ± 0.4 mm, 0.1 ± 0.3 mm and 0.6 ± 0.6 mm in thex,y- andz- direction, respectively. The RF safety measurement showed for clinical MR imaging sequences maximum temperature rises of 0.2 °C at the entry and tip points of the needle. Simultaneous functioning of the implant device and imaging is possible albeit with some intensity band artifacts in the fast field echo images. Finally, phantom measurements showed deviations amounting 2.5-3.6 mm measured as target-to-needle distance at a depth of 12 cm.Conclusions. This preclinical evaluation showed that the MR compatibility, safety and accuracy of the redesigned UMC Utrecht SNID allow its application in a patient study on the feasibility of inserting a brachytherapy needle into the prostate to a defined tumor target point.
Collapse
Affiliation(s)
- M A Moerland
- Radiation Oncology Department, University Medical Center Utrecht, The Netherlands
| | - L J van Schelven
- Department of Medical Technology and Clinical Physics, University Medical Center Utrecht, The Netherlands
| | - A van Lier
- Radiation Oncology Department, University Medical Center Utrecht, The Netherlands
| | - E Boskovic
- Department of Medical Technology and Clinical Physics, University Medical Center Utrecht, The Netherlands
| | - M Peters
- Radiation Oncology Department, University Medical Center Utrecht, The Netherlands
| | - M J van Son
- Radiation Oncology Department, University Medical Center Utrecht, The Netherlands
| | | | - J J W Lagendijk
- Radiation Oncology Department, University Medical Center Utrecht, The Netherlands
| |
Collapse
|
16
|
Wang YF, Tadimalla S, Hayden AJ, Holloway L, Haworth A. Artificial intelligence and imaging biomarkers for prostate radiation therapy during and after treatment. J Med Imaging Radiat Oncol 2021; 65:612-626. [PMID: 34060219 DOI: 10.1111/1754-9485.13242] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/18/2021] [Accepted: 05/02/2021] [Indexed: 12/15/2022]
Abstract
Magnetic resonance imaging (MRI) is increasingly used in the management of prostate cancer (PCa). Quantitative MRI (qMRI) parameters, derived from multi-parametric MRI, provide indirect measures of tumour characteristics such as cellularity, angiogenesis and hypoxia. Using Artificial Intelligence (AI), relevant information and patterns can be efficiently identified in these complex data to develop quantitative imaging biomarkers (QIBs) of tumour function and biology. Such QIBs have already demonstrated potential in the diagnosis and staging of PCa. In this review, we explore the role of these QIBs in monitoring treatment response during and after PCa radiotherapy (RT). Recurrence of PCa after RT is not uncommon, and early detection prior to development of metastases provides an opportunity for salvage treatments with curative intent. However, the current method of monitoring treatment response using prostate-specific antigen levels lacks specificity. QIBs, derived from qMRI and developed using AI techniques, can be used to monitor biological changes post-RT providing the potential for accurate and early diagnosis of recurrent disease.
Collapse
Affiliation(s)
- Yu-Feng Wang
- Institute of Medical Physics, School of Physics, Faculty of Science, The University of Sydney, Sydney, New South Wales, Australia
- Ingham Institute for Applied Medical Research, Liverpool, New South Wales, Australia
| | - Sirisha Tadimalla
- Institute of Medical Physics, School of Physics, Faculty of Science, The University of Sydney, Sydney, New South Wales, Australia
| | - Amy J Hayden
- Sydney West Radiation Oncology, Westmead Hospital, Wentworthville, New South Wales, Australia
- Faculty of Medicine, Western Sydney University, Sydney, New South Wales, Australia
- Faculty of Medicine, Health & Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Lois Holloway
- Institute of Medical Physics, School of Physics, Faculty of Science, The University of Sydney, Sydney, New South Wales, Australia
- Ingham Institute for Applied Medical Research, Liverpool, New South Wales, Australia
- Liverpool and Macarthur Cancer Therapy Centre, Liverpool Hospital, Liverpool, New South Wales, Australia
| | - Annette Haworth
- Institute of Medical Physics, School of Physics, Faculty of Science, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
17
|
Kowa JY, Soneji N, Sohaib SA, Mayer E, Hazell S, Butterfield N, Shur J, Ap Dafydd D. Detection and staging of radio-recurrent prostate cancer using multiparametric MRI. Br J Radiol 2021; 94:20201423. [PMID: 33586998 DOI: 10.1259/bjr.20201423] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE We determined the sensitivity and specificity of multiparametric magnetic resonance imaging (MP-MRI) in detection of locally recurrent prostate cancer and extra prostatic extension in the post-radical radiotherapy setting. Histopathological reference standard was whole-mount prostatectomy specimens. We also assessed for any added value of the dynamic contrast enhancement (DCE) sequence in detection and staging of local recurrence. METHODS This was a single centre retrospective study. Participants were selected from a database of males treated with salvage prostatectomy for locally recurrent prostate cancer following radiotherapy. All underwent pre-operative prostate-specific antigen assay, positron emission tomography CT, MP-MRI and transperineal template prostate mapping biopsy prior to salvage prostatectomy. MP-MRI performance was assessed using both Prostate Imaging-Reporting and Data System v. 2 and a modified scoring system for the post-treatment setting. RESULTS 24 patients were enrolled. Using Prostate Imaging-Reporting and Data System v. 2, sensitivity, specificity, positive predictive value and negative predictive value was 64%, 94%, 98% and 36%. MP-MRI under staged recurrent cancer in 63%. A modified scoring system in which DCE was used as a co-dominant sequence resulted in improved diagnostic sensitivity (61%-76%) following subgroup analysis. CONCLUSION Our results show MP-MRI has moderate sensitivity (64%) and high specificity (94%) in detecting radio-recurrent intraprostatic disease, though disease tends to be under quantified and under staged. Greater emphasis on dynamic contrast images in overall scoring can improve diagnostic sensitivity. ADVANCES IN KNOWLEDGE MP-MRI tends to under quantify and under stage radio-recurrent prostate cancer. DCE has a potentially augmented role in detecting recurrent tumour compared with the de novo setting. This has relevance in the event of any future modified MP-MRI scoring system for the irradiated gland.
Collapse
Affiliation(s)
- Jie-Ying Kowa
- Department of Radiology, The Royal Marsden NHS Foundation Trust, Chelsea, London, UK
| | - Neil Soneji
- Department of Radiology, The Royal Marsden NHS Foundation Trust, Chelsea, London, UK
| | - S Aslam Sohaib
- Department of Radiology, The Royal Marsden NHS Foundation Trust, Chelsea, London, UK
| | - Erik Mayer
- Department of Surgery, The Royal Marsden NHS Foundation Trust, Chelsea, London, UK.,Department of Surgery & Cancer, St Mary's Hospital Campus, Imperial College London, Praed Street, London, UK
| | - Stephen Hazell
- Department of Histopathology, The Royal Marsden NHS Foundation Trust, Chelsea, London, UK
| | - Nicholas Butterfield
- Department of Radiology, The Royal Marsden NHS Foundation Trust, Chelsea, London, UK
| | - Joshua Shur
- Department of Radiology, The Royal Marsden NHS Foundation Trust, Chelsea, London, UK
| | - Derfel Ap Dafydd
- Department of Radiology, The Royal Marsden NHS Foundation Trust, Chelsea, London, UK
| |
Collapse
|
18
|
Panebianco V, Villeirs G, Weinreb JC, Turkbey BI, Margolis DJ, Richenberg J, Schoots IG, Moore CM, Futterer J, Macura KJ, Oto A, Bittencourt LK, Haider MA, Salomon G, Tempany CM, Padhani AR, Barentsz JO. Prostate Magnetic Resonance Imaging for Local Recurrence Reporting (PI-RR): International Consensus -based Guidelines on Multiparametric Magnetic Resonance Imaging for Prostate Cancer Recurrence after Radiation Therapy and Radical Prostatectomy. Eur Urol Oncol 2021; 4:868-876. [PMID: 33582104 DOI: 10.1016/j.euo.2021.01.003] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 01/16/2021] [Accepted: 01/22/2021] [Indexed: 01/24/2023]
Abstract
BACKGROUND Imaging techniques are used to identify local recurrence of prostate cancer (PCa) for salvage therapy and to exclude metastases that should be addressed with systemic therapy. For magnetic resonance imaging (MRI), a reduction in the variability of acquisition, interpretation, and reporting is required to detect local PCa recurrence in men with biochemical relapse after local treatment with curative intent. OBJECTIVE To propose a standardised method for image acquisition and assessment of PCa local recurrence using MRI after radiation therapy (RP) and radical prostatectomy (RT). EVIDENCE ACQUISITION Prostate Imaging for Recurrence Reporting (PI-RR) was formulated using the existing literature. An international panel of experts conducted a nonsystematic review of the literature. The PI-RR system was created via consensus through a combination of face-to-face and online discussions. EVIDENCE SYNTHESIS Similar to with PI-RADS, based on the best available evidence and expert opinion, the minimum acceptable MRI parameters for detection of recurrence after radiation therapy and radical prostatectomy are set. Also, a simplified and standardised terminology and content of the reports that use five assessment categories to summarise the suspicion of local recurrence (PI-RR) are designed. PI-RR scores of 1 and 2 are assigned to lesions with a very low and low likelihood of recurrence, respectively. PI-RR 3 is assigned if the presence of recurrence is uncertain. PI-RR 4 and 5 are assigned for a high and very high likelihood of recurrence, respectively. PI-RR is intended to be used in routine clinical practice and to facilitate data collection and outcome monitoring for research. CONCLUSIONS This paper provides a structured reporting system (PI-RR) for MRI evaluation of local recurrence of PCa after RT and RP. PATIENT SUMMARY A new method called PI-RR was developed to promote standardisation and reduce variations in the acquisition, interpretation, and reporting of magnetic resonance imaging for evaluating local recurrence of prostate cancer and guiding therapy.
Collapse
Affiliation(s)
- Valeria Panebianco
- Department of Radiological Sciences, Oncology and Pathology, Sapienza University/Policlinico Umberto I, Rome, Italy.
| | - Geert Villeirs
- Department of Radiology and Nuclear Medicine, Ghent University Hospital, Ghent, Belgium
| | - Jeffrey C Weinreb
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Baris I Turkbey
- National Cancer Institute, Center for Cancer Research, Bethesda, MD, USA
| | | | - Jonathan Richenberg
- Department of Imaging, Brighton and Sussex University Hospitals NHS Trust and Brighton and Sussex Medical School, Brighton, UK
| | - Ivo G Schoots
- Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands; Department of Radiology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | - Jurgen Futterer
- Department of Radiology and Nuclear Medicine, Radboudumc, Nijmegen, The Netherlands
| | - Katarzyna J Macura
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Aytekin Oto
- Department of Radiology, University of Chicago, Chicago, IL, USA
| | | | - Masoom A Haider
- Department of Medical Imaging, University of Toronto, Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Canada
| | - Georg Salomon
- Martini-Clinic Prostate Cancer Center, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Clare M Tempany
- Department of Radiology, Brigham &Women's Hospital, Boston, MA, USA
| | - Anwar R Padhani
- Paul Strickland Scanner Centre, Mount Vernon Cancer Centre, Northwood, UK
| | - Jelle O Barentsz
- Department of Radiology and Nuclear Medicine, Radboudumc, Nijmegen, The Netherlands
| |
Collapse
|
19
|
Abstract
Currently there is a lot of interest in the use of a "biparametric" or "abbreviated" prostate MR protocol, which usually refers to removal of the dynamic contrast-enhanced (DCE) MRI, in the detection of clinically significant prostate cancer. In this article we describe the benefits of DCE as part of the PI-RADS lexicon, with particular reference to its role in PI-RADS V2 category 3 peripheral zone lesions. We also discuss the benefits of triplanar T2-weighted images, and finally discuss how a mpMRI protocol is of benefit in prostate cancer staging, in evaluating for local disease recurrence, and as a biomarker for neoadjuvant therapy response.
Collapse
|
20
|
Kamsut S, Reid K, Tan N. Roundtable: arguments in support of using multi-parametric prostate MRI protocol. Abdom Radiol (NY) 2020; 45:3990-3996. [PMID: 32385623 DOI: 10.1007/s00261-020-02543-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
There is increasing evidence to suggest the value of bi-parametric prostate MRI to replace multi-parametric MRI, which includes the dynamic contrast enhancement (DCE) sequence. In this review, we discuss the value of DCE in select scenarios, specifically in resolving equivocal cases, improving the diagnostic accuracy in the inexperienced reader, rescuing exams in the settings of failed T2W and DWI, detecting biochemical recurrence, while imposing minimal to no risk to the patient with respect to IV gadolinium use, specifically group II agents.
Collapse
Affiliation(s)
- Sirisin Kamsut
- Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Kimberly Reid
- Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Nelly Tan
- Loma Linda University School of Medicine, Loma Linda, CA, USA.
- Department of Radiology, Mayo Clinic Arizona, 5777 E Mayo Blvd, Phoenix, AZ, 85054, USA.
| |
Collapse
|
21
|
Multiparametric MRI as a Biomarker of Response to Neoadjuvant Therapy for Localized Prostate Cancer-A Pilot Study. Acad Radiol 2020; 27:1432-1439. [PMID: 31862185 DOI: 10.1016/j.acra.2019.10.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/18/2019] [Accepted: 10/25/2019] [Indexed: 12/11/2022]
Abstract
RATIONALE AND OBJECTIVES To explore a role for multiparametric MRI (mpMRI) as a biomarker of response to neoadjuvant androgen deprivation therapy (ADT) for prostate cancer (PCa). MATERIALS AND METHODS This prospective study was approved by the institutional review board and was HIPAA compliant. Eight patients with localized PCa had a baseline mpMRI, repeated after 6-months of ADT, followed by prostatectomy. mpMRI indices were extracted from tumor and normal regions of interest (TROI/NROI). Residual cancer burden (RCB) was measured on mpMRI and on the prostatectomy specimen. Paired t-tests compared TROI/NROI mpMRI indices and pre/post-treatment TROI mpMRI indices. Spearman's rank tested for correlations between MRI/pathology-based RCB, and between pathological RCB and mpMRI indices. RESULTS At baseline, TROI apparent diffusion coefficient (ADC) was lower and dynamic contrast enhanced (DCE) metrics were higher, compared to NROI (ADC: 806 ± 137 × 10-6 vs. 1277 ± 213 × 10-6 mm2/sec, p = 0.0005; Ktrans: 0.346 ± 0.16 vs. 0.144 ± 0.06 min-1, p = 0.002; AUC90: 0.213 ± 0.08 vs. 0.11 ± 0.03, p = 0.002). Post-treatment, there was no change in TROI ADC, but a decrease in TROI Ktrans (0.346 ± 0.16 to 0.188 ± 0.08 min-1; p = 0.02) and AUC90 (0.213 ± 0.08 to 0.13 ± 0.06; p = 0.02). Tumor volume decreased with ADT. There was no difference between mpMRI-based and pathology-based RCB, which positively correlated (⍴ = 0.74-0.81, p < 0.05). Pathology-based RCB positively correlated with post-treatment DCE metrics (⍴ = 0.76-0.70, p < 0.05) and negatively with ADC (⍴ = -0.79, p = 0.03). CONCLUSION Given the heterogeneity of PCa, an individualized approach to ADT may maximize potential benefit. This pilot study suggests that mpMRI may serve as a biomarker of ADT response and as a surrogate for RCB at prostatectomy.
Collapse
|
22
|
18F-fluciclovine PET CT detection of biochemical recurrent prostate cancer at specific PSA thresholds after definitive treatment. Urol Oncol 2020; 38:636.e1-636.e6. [DOI: 10.1016/j.urolonc.2020.03.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 02/29/2020] [Accepted: 03/21/2020] [Indexed: 11/17/2022]
|
23
|
Abstract
Accurate early detection of recurrent prostate cancer after surgical or nonsurgical treatment is increasingly relevant in the era of evolving options for salvage therapy. The importance of differentiating between local tumor recurrence, distant metastatic disease, and a combination of both in a patient with biochemical recurrence of prostate cancer is essential for appropriate treatment selection. Magnetic resonance imaging (MRI) is the best test for localization and characterization of locally residual or recurrent prostate cancer. It is essential for the radiologist involved in prostate MRI interpretation to be familiar with key imaging findings and advantages of different sequences to reach a confident diagnosis in the post-treatment setting. In this pictorial review, we present imaging findings of post-treatment prostate MRI including expected post-treatment anatomy and imaging characteristics, and the typical appearances of local tumor recurrence after radical prostatectomy, radiation therapy, and focal therapy for prostate cancer. While a multi-parametric MRI approach remains key just as in the treatment-naïve gland, this review emphasizes the much greater importance of the dynamic contrast-enhanced MRI sequence for evaluation in the post-treatment setting.
Collapse
|
24
|
Abstract
Multiparametric MRI has a changing role in prostate cancer diagnosis. Internationally recognized consensus documents such as prostate imaging reporting and data system version have been developed and adapted to standardize the acquisition and reporting of prostate MRI. The improvement in scanning techniques and development of highly sensitive functional sequences have improved the detection of clinically significant prostate cancer as well as treatment planning and follow up. This has led to a recent NICE recommendation to use prostate MRI as the initial investigation in men with clinically suspected localized disease. The results of several recent international MRI prostate trials are influencing the way imaging is used to stratify which patients require a prostate biopsy as well as how MRI guidance is used to target biopsies.
Collapse
|
25
|
Abstract
OBJECTIVE. In this article, we discuss the evolving roles of imaging modalities in patients presenting with biochemical recurrence after prostatectomy. CONCLUSION. Multiple imaging modalities are currently available to evaluate patients with prostate cancer presenting with biochemical recurrence after prostatectomy. Multiparametric MRI (mpMRI) focuses on the postsurgical bed as well as regional lymph nodes and bones. PET/CT studies using 18F-fluciclovine, 11C-choline, and prostate-specific membrane antigen (PSMA) ligands are useful in detecting locoregional and distant metastasis. Multiparametric MRI is preferred for patients with low risk of metastasis for localizing recurrence in prostate bed as well as pelvic lymph node and bone recurrence. Moreover, mpMRI aids in guiding biopsy and additional salvage treatments. For patients with high risk of metastatic disease, both mpMRI and whole-body PET/CT may be performed. PET/MRI using 68Ga-PSMA has potential to enable a one-stop shop for local recurrence and metastatic disease evaluation, and clinical trials of PET/MRI are ongoing.
Collapse
|
26
|
Coppola A, Platania G, Ticca C, De Mattia C, Bortolato B, Palazzi MF, Vanzulli A. Sensitivity of CE-MRI in detecting local recurrence after radical prostatectomy. Radiol Med 2020; 125:683-690. [PMID: 32078119 DOI: 10.1007/s11547-020-01149-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 02/06/2020] [Indexed: 02/07/2023]
Abstract
AIM The aim of our study was to evaluate the sensitivity of contrast-enhanced magnetic resonance (CE-MR) with phased array coil in the diagnosis of local recurrence in patients with prostate cancer after radical prostatectomy and referred for salvage radiotherapy (SRT). MATERIALS AND METHODS This retrospective study included 73 patients treated with SRT after radical prostatectomy in the period between September 2006 and November 2017. All patients performed a CE-MRI with phased array coil before the start of SRT. A total of 213 patients treated at the ASST Grande Ospedale Metropolitano Niguarda in the period between September 2006 and November 2017 with SRT after radical prostatectomy were reviewed. Seventy-three patients with a CE-MRI with phased array coil of the pelvis before the start of SRT were included in the present study. RESULTS At imaging review, recurrence local recurrent disease was diagnosed in 48 of 73 patients. By considering as reference standard the decrease in prostate-specific antigen (PSA) value after radiotherapy, we defined: 41 true positive (patients with MRI evidence of local recurrence and PSA value decreasing after SRT), 7 false positive (patients with MRI evidence of local recurrence without biochemical response after SRT), 3 true negative (patients without MRI evidence of local recurrence and stable or increased PSA value after SRT) and 22 false negative (patients without MRI evidence of local recurrence and PSA value decreasing after SRT) cases. The sensitivity values were calculated in relation to the PSA value before the start of treatment, obtaining a value of 74% for PSA above 0.2 ng/mL. CONCLUSION The sensitivity of CE-MRI in local recurrence detection after radical prostatectomy increases with increasing PSA values. CE-MRI with phased array coil can detect local recurrences after radical prostatectomy with a good sensitivity in patients with pre-RT PSA value above 0.2 ng/mL.
Collapse
Affiliation(s)
| | | | - Cristiana Ticca
- Department of Radiology, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | | | - Barbara Bortolato
- Unit of Radiotherapy, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Mauro F Palazzi
- Unit of Radiotherapy, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Angelo Vanzulli
- Department of Oncology and Hemato-Oncology, Grande Ospedale Metropolitano Niguarda, University of Milan, Milan, Italy
| |
Collapse
|
27
|
Abstract
Prostate cancer is the fifth leading cause of death worldwide. A variety of treatment options is available for localized prostate cancer and may range from active surveillance to focal therapy or whole gland treatment, that is, surgery or radiotherapy. Serum prostate-specific antigen levels are an important tool to monitor treatment success after whole gland treatment, unfortunately prostate-specific antigen is unreliable after focal therapy. Multiparametric magnetic resonance imaging of the prostate is rapidly gaining field in the management of prostate cancer and may play a crucial role in the evaluation of recurrent prostate cancer. This article will focus on postprocedural magnetic resonance imaging after different forms of local therapy in patients with prostate cancer.
Collapse
|
28
|
Woodrum DA, Kawashima A, Gorny KR, Mynderse LA. Magnetic Resonance-Guided Prostate Ablation. Semin Intervent Radiol 2019; 36:351-366. [PMID: 31798208 PMCID: PMC6887527 DOI: 10.1055/s-0039-1697001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
In 2019, the American Cancer Society (ACS) estimates that 174,650 new cases of prostate cancer will be diagnosed and 31,620 will die due to the prostate cancer in the United States. Prostate cancer is often managed with aggressive curative intent standard therapies including radiotherapy or surgery. Regardless of how expertly done, these standard therapies often bring significant risk and morbidity to the patient's quality of life with potential impact on sexual, urinary, and bowel functions. Additionally, improved screening programs, using prostatic-specific antigen and transrectal ultrasound-guided systematic biopsy, have identified increasing numbers of low-risk, low-grade "localized" prostate cancer. The potential, localized, and indolent nature of many prostate cancers presents a difficult decision of when to intervene, especially within the context of the possible comorbidities of aggressive standard treatments. Active surveillance has been increasingly instituted to balance cancer control versus treatment side effects; however, many patients are not comfortable with this option. Although active debate continues on the suitability of either focal or regional therapy for the low- or intermediate-risk prostate cancer patients, no large consensus has been achieved on the adequate management approach. Some of the largest unresolved issues are prostate cancer multifocality, limitations of current biopsy strategies, suboptimal staging by accepted imaging modalities, less than robust prediction models for indolent prostate cancers, and safety and efficiency of the established curative therapies following focal therapy for prostate cancer. In spite of these restrictions, focal therapy continues to confront the current paradigm of therapy for low- and even intermediate-risk disease. It has been proposed that early detection and proper characterization may play a role in preventing the development of metastatic disease. There is level-1 evidence supporting detection and subsequent aggressive treatment of intermediate- and high-risk prostate cancer. Therefore, accurate assessment of cancer risk (i.e., grade and stage) using imaging and targeted biopsy is critical. Advances in prostate imaging with MRI and PET are changing the workup for these patients, and advances in MR-guided biopsy and therapy are propelling prostate treatment solutions forward faster than ever.
Collapse
|
29
|
Dikaios N, Giganti F, Sidhu HS, Johnston EW, Appayya MB, Simmons L, Freeman A, Ahmed HU, Atkinson D, Punwani S. Multi-parametric MRI zone-specific diagnostic model performance compared with experienced radiologists for detection of prostate cancer. Eur Radiol 2019; 29:4150-4159. [PMID: 30456585 PMCID: PMC6610264 DOI: 10.1007/s00330-018-5799-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 09/04/2018] [Accepted: 09/24/2018] [Indexed: 02/06/2023]
Abstract
OBJECTIVES Compare the performance of zone-specific multi-parametric-MRI (mp-MRI) diagnostic models in prostate cancer detection with experienced radiologists. METHODS A single-centre, IRB approved, prospective STARD compliant 3 T MRI test dataset of 203 patients was generated to test validity and generalisability of previously reported 1.5 T mp-MRI diagnostic models. All patients included within the test dataset underwent 3 T mp-MRI, comprising T2, diffusion-weighted and dynamic contrast-enhanced imaging followed by transperineal template ± targeted index lesion biopsy. Separate diagnostic models (transition zone (TZ) and peripheral zone (PZ)) were applied to respective zones. Sensitivity/specificity and the area under the receiver operating characteristic curve (ROC-AUC) were calculated for the two zone-specific models. Two radiologists (A and B) independently Likert scored test 3 T mp-MRI dataset, allowing ROC analysis for each radiologist for each prostate zone. RESULTS Diagnostic models applied to the test dataset demonstrated a ROC-AUC = 0.74 (95% CI 0.67-0.81) in the PZ and 0.68 (95% CI 0.61-0.75) in the TZ. Radiologist A/B had a ROC-AUC = 0.78/0.74 in the PZ and 0.69/0.69 in the TZ. Radiologists A and B each scored 51 patients in the PZ and 41 and 45 patients respectively in the TZ as Likert 3. The PZ model demonstrated a ROC-AUC = 0.65/0.67 for the patients Likert scored as indeterminate by radiologist A/B respectively, whereas the TZ model demonstrated a ROC-AUC = 0.74/0.69. CONCLUSION Zone-specific mp-MRI diagnostic models demonstrate generalisability between 1.5 and 3 T mp-MRI protocols and show similar classification performance to experienced radiologists for prostate cancer detection. Results also indicate the ability of diagnostic models to classify cases with an indeterminate radiologist score. KEY POINTS • MRI diagnostic models had similar performance to experienced radiologists for classification of prostate cancer. • MRI diagnostic models may help radiologists classify tumour in patients with indeterminate Likert 3 scores.
Collapse
Affiliation(s)
- Nikolaos Dikaios
- Centre for Medical Imaging, University College London, 2nd floor, Charles Bell House, 43-45 Foley Street, London, W1W 7TS, UK
- Centre for Vision, Speech and Signal Processing, University of Surrey, 388 Stag Hill, Guildford, GU2 7XH, UK
| | - Francesco Giganti
- Departments of Radiology, University College London Hospital, 235 Euston Road, London, NW1 2BU, UK
- Division of Surgery & Interventional Science, University College London, London, UK
| | - Harbir S Sidhu
- Centre for Medical Imaging, University College London, 2nd floor, Charles Bell House, 43-45 Foley Street, London, W1W 7TS, UK
| | - Edward W Johnston
- Centre for Medical Imaging, University College London, 2nd floor, Charles Bell House, 43-45 Foley Street, London, W1W 7TS, UK
| | - Mrishta B Appayya
- Centre for Medical Imaging, University College London, 2nd floor, Charles Bell House, 43-45 Foley Street, London, W1W 7TS, UK
| | - Lucy Simmons
- Research Department of Urology, Division of Surgery and Interventional Science, University College London, London, NW1 2PG, UK
| | - Alex Freeman
- Department of Histopathology, University College London Hospital, London, NW1 2PG, UK
| | - Hashim U Ahmed
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - David Atkinson
- Centre for Medical Imaging, University College London, 2nd floor, Charles Bell House, 43-45 Foley Street, London, W1W 7TS, UK
- Departments of Radiology, University College London Hospital, 235 Euston Road, London, NW1 2BU, UK
| | - Shonit Punwani
- Centre for Medical Imaging, University College London, 2nd floor, Charles Bell House, 43-45 Foley Street, London, W1W 7TS, UK.
- Departments of Radiology, University College London Hospital, 235 Euston Road, London, NW1 2BU, UK.
| |
Collapse
|
30
|
Özülker F. Efficacy of early imaging with 68Ga-PSMA I&T in the discrimination of pelvic lesions in prostate cancer patients. Rev Esp Med Nucl Imagen Mol 2019. [DOI: 10.1016/j.remnie.2018.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
31
|
Implementation of a 5-Minute Magnetic Resonance Imaging Screening Protocol for Prostate Cancer in Men With Elevated Prostate-Specific Antigen Before Biopsy. Invest Radiol 2019; 53:186-190. [PMID: 29077588 DOI: 10.1097/rli.0000000000000427] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
PURPOSE The aims of this study were to establish a 5-minute magnetic resonance (MR) screening protocol for prostate cancer in men before biopsy and to evaluate effects on Prostate Imaging Reporting and Data System (PI-RADS) V2 scoring in comparison to a conventional, fully diagnostic multiparametric MR imaging (mpMRI) approach. MATERIALS AND METHODS Fifty-two patients with elevated prostate-specific antigen levels and without prior biopsy were prospectively included in this institutional review board-approved study. In all patients, an mpMRI protocol according to the PI-RADS recommendations was acquired on a 3 T MRI system. In addition, an accelerated diffusion-weighted imaging sequence was acquired using simultaneous multislice technique (DW-EPISMS). Two readers independently evaluated the images for the presence/absence of prostate cancer according to the PI-RADS criteria and for additional findings. In a first reading session, only the screening protocol consisting of axial T2-weighted and DW-EPISMS images was made available. In a subsequent reading session, the mpMRI protocol was assessed blinded to the results of the first reading, serving as reference standard. RESULTS Both readers successfully established a final diagnosis according to the PI-RADS criteria in the screening and mpMRI protocol. Mean lesion size was 1.2 cm in the screening and 1.4 cm in the mpMRI protocol (P = 0.4) with 35% (18/52) of PI-RADS IV/V lesions. Diagnostic performance of the screening protocol was excellent with a sensitivity and specificity of 100% for both readers with no significant differences in comparison to the mpMRI standard (P = 1.0). In 3 patients, suspicious lymph nodes were reported as additional finding, which were equally detectable in the screening and mpMRI protocol. CONCLUSIONS A 5-minute MR screening protocol for prostate cancer in men with elevated prostate-specific antigen levels before biopsy is applicable for clinical routine with similar diagnostic performance as the full diagnostic mpMRI approach.
Collapse
|
32
|
Importance of dynamic contrast enhanced magnetic resonance imaging for targeting biopsy and salvage treatments after prostate cancer recurrence. J Contemp Brachytherapy 2018; 10:570-572. [PMID: 30662481 PMCID: PMC6335551 DOI: 10.5114/jcb.2018.79667] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 10/23/2018] [Indexed: 01/22/2023] Open
Abstract
Purpose Evaluate T2 weighted MRI (T2W), diffusion weighted imaging (DWI), and dynamic contrast enhanced MRI (DCE-MRI) for determining areas of prostate cancer recurrence to target biopsy or salvage treatment in patients previously treated with I-125 seed brachytherapy. Material and methods MRI data from 15 patients, whose primary treatment was I-125 seed brachytherapy and who were subsequently treated with partial gland salvage high-dose-rate brachytherapy were retrospectively analyzed. Two radiologists independently reviewed imaging on two occasions blinded to clinical and biopsy information. At first review, the T2W and DWI sequences were assessed for likely presence of tumor and at second review, the additional DCE-MRI sequence was assessed. Results were recorded and compared on a prostate diagram divided into 12 sectors (quadrants at each of base, mid-gland, and apex) plus seminal vesicles (SV). Results Number of patients for whom recurrence was visible was 7/15 for T2W, 6.5/15 for DWI, and 15/15 for DCE-MRI (average of results for the two radiologists). Approximately, half of the sectors identified as showing recurrence were at the anterior base of the prostate. Conclusions In prostate cancer patients previously treated with I-125 permanent seed implants, DCE-MRI is superior to T2W and DWI in defining areas of recurrence, and should be used to target biopsy and for treatment planning of focal salvage therapies.
Collapse
|
33
|
Efficacy of early imaging with 68Ga-PSMA-I&T in the discrimination of pelvic lesions in prostate cancer patients. Rev Esp Med Nucl Imagen Mol 2018; 38:100-105. [PMID: 30514659 DOI: 10.1016/j.remn.2018.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 06/22/2018] [Accepted: 06/27/2018] [Indexed: 11/22/2022]
Abstract
OBJECTIVE 68Ga-PSMA-uptake shows accumulation in the malignant lesions of prostate cancer patients as early as 5min p.i. Studies indicate the value of adding an early image of the pelvis to the imaging protocol of 68Ga-PSMA-11 PET/CT scan showed contradictory results. In this study we planned to assess the significance of an additional early imaging in 68Ga-PSMA-I&T PET/CT imaging in prostate cancer patients. MATERIALS AND METHODS A total of 35 prostate cancer patients referred to 68Ga-PSMA-I&T PET/CT imaging for restaging of the disease due to suspicion of relapse after definitive therapy were enrolled. First an early static pelvic image was obtained at a maximum of 300s following injection of the radiotracer. Sixty minutes postinjection a whole-body PET/CT scan was conducted with an emission time of 3min per bed position. The lesions which were categorized as local recurrence, bone lesion and lymph node metástasis in the early images, were compared with the late images in terms of number of lesions detected and SUVmax values. RESULTS 68Ga-PSMA-I&T PET/CT was positive in 23 of 35 patients (65.7%). A pathological uptake was observed in the prostatic bed site, in the pelvic lymph nodes, and in the bones in 17 patients (48.5%), 12 patients (34.2%), and 13 patients (37.1%), respectively. In one patient, focal pathological increased uptake in the prostatic bed with a SUVmax value of 5.8 was detected but this lesion disappeared in the late images. The average SUVmax values of the lesions in the prostatic bed were 13.7±12.1 versus 26.3±23.8 in the 5min and 60min studies respectively (p<0.001). In one patient, the pathological uptake in the lymph node in the early study cleared in the late study, whereas in another accumulation of activity was detected in a pelvic lymph node in the late study, while there was no lymph node detected in the early study. The average SUVmax values of the lymph nodes were 12.1±8.8 versus 26.3±22.6 in the 5min and 60min studies respectively (p<0.001). The average SUVmax values of the bone lesions were 11.4±6.9 versus 15±10.7 in the 5min and 60min studies respectively. CONCLUSION Our study is the first in the literature to evaluate the impact of adding an early static pelvic image to the 68Ga-PSMA-I&T scan, in the detection rate of the lesions. Although there was no marked discordance between the 2sets of images, the addition of an early image to the imaging protocol of 68Ga-PSMA-I&T scan would increase the efficacy of detection of malignant lesions in the pelvis, which might show rapid clearance and has the risk of being masked by the urinary system activity.
Collapse
|
34
|
Focal Salvage Treatment of Radiorecurrent Prostate Cancer: A Narrative Review of Current Strategies and Future Perspectives. Cancers (Basel) 2018; 10:cancers10120480. [PMID: 30513915 PMCID: PMC6316339 DOI: 10.3390/cancers10120480] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/25/2018] [Accepted: 11/28/2018] [Indexed: 11/16/2022] Open
Abstract
Over the last decades, primary prostate cancer radiotherapy saw improving developments, such as more conformal dose administration and hypofractionated treatment regimens. Still, prostate cancer recurrences after whole-gland radiotherapy remain common, especially in patients with intermediate- to high-risk disease. The vast majority of these patients are treated palliatively with androgen deprivation therapy (ADT), which exposes them to harmful side-effects and is only effective for a limited amount of time. For patients with a localized recurrent tumor and no signs of metastatic disease, local treatment with curative intent seems more rational. However, whole-gland salvage treatments such as salvage radiotherapy or salvage prostatectomy are associated with significant toxicity and are, therefore, uncommonly performed. Treatments that are solely aimed at the recurrent tumor itself, thereby better sparing the surrounding organs at risk, potentially provide a safer salvage treatment option in terms of toxicity. To achieve such tumor-targeted treatment, imaging developments have made it possible to better exclude metastatic disease and accurately discriminate the tumor. Currently, focal salvage treatment is being performed with different modalities, including brachytherapy, cryotherapy, high-intensity focused ultrasound (HIFU), and stereotactic body radiation therapy (SBRT). Oncologic outcomes seem comparable to whole-gland salvage series, but with much lower toxicity rates. In terms of oncologic control, these results will improve further with better understanding of patient selection. Other developments, such as high-field diagnostic MRI and live adaptive MRI-guided radiotherapy, will further improve precision of the treatment.
Collapse
|
35
|
Press RH, Shu HKG, Shim H, Mountz JM, Kurland BF, Wahl RL, Jones EF, Hylton NM, Gerstner ER, Nordstrom RJ, Henderson L, Kurdziel KA, Vikram B, Jacobs MA, Holdhoff M, Taylor E, Jaffray DA, Schwartz LH, Mankoff DA, Kinahan PE, Linden HM, Lambin P, Dilling TJ, Rubin DL, Hadjiiski L, Buatti JM. The Use of Quantitative Imaging in Radiation Oncology: A Quantitative Imaging Network (QIN) Perspective. Int J Radiat Oncol Biol Phys 2018; 102:1219-1235. [PMID: 29966725 PMCID: PMC6348006 DOI: 10.1016/j.ijrobp.2018.06.023] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 05/25/2018] [Accepted: 06/14/2018] [Indexed: 02/07/2023]
Abstract
Modern radiation therapy is delivered with great precision, in part by relying on high-resolution multidimensional anatomic imaging to define targets in space and time. The development of quantitative imaging (QI) modalities capable of monitoring biologic parameters could provide deeper insight into tumor biology and facilitate more personalized clinical decision-making. The Quantitative Imaging Network (QIN) was established by the National Cancer Institute to advance and validate these QI modalities in the context of oncology clinical trials. In particular, the QIN has significant interest in the application of QI to widen the therapeutic window of radiation therapy. QI modalities have great promise in radiation oncology and will help address significant clinical needs, including finer prognostication, more specific target delineation, reduction of normal tissue toxicity, identification of radioresistant disease, and clearer interpretation of treatment response. Patient-specific QI is being incorporated into radiation treatment design in ways such as dose escalation and adaptive replanning, with the intent of improving outcomes while lessening treatment morbidities. This review discusses the current vision of the QIN, current areas of investigation, and how the QIN hopes to enhance the integration of QI into the practice of radiation oncology.
Collapse
Affiliation(s)
- Robert H. Press
- Dept. of Radiation Oncology, Winship Cancer Institute of Emory University, Atlanta, GA
| | - Hui-Kuo G. Shu
- Dept. of Radiation Oncology, Winship Cancer Institute of Emory University, Atlanta, GA
| | - Hyunsuk Shim
- Dept. of Radiation Oncology, Winship Cancer Institute of Emory University, Atlanta, GA
| | - James M. Mountz
- Dept. of Radiology, University of Pittsburgh, Pittsburgh, PA
| | | | | | - Ella F. Jones
- Dept. of Radiology, University of California, San Francisco, San Francisco, CA
| | - Nola M. Hylton
- Dept. of Radiology, University of California, San Francisco, San Francisco, CA
| | - Elizabeth R. Gerstner
- Dept. of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | | | - Lori Henderson
- Cancer Imaging Program, National Cancer Institute, Bethesda, MD
| | | | - Bhadrasain Vikram
- Radiation Research Program/Division of Cancer Treatment & Diagnosis, National Cancer Institute, Bethesda, MD
| | - Michael A. Jacobs
- Dept. of Radiology and Radiological Science, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore MD
| | - Matthias Holdhoff
- Brain Cancer Program, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore MD
| | - Edward Taylor
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - David A. Jaffray
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | | | - David A. Mankoff
- Dept. of Radiology, University of Pennsylvania, Philadelphia, PA
| | | | | | - Philippe Lambin
- Dept. of Radiation Oncology (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Thomas J. Dilling
- Dept. of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | | | | | - John M. Buatti
- Dept. of Radiation Oncology, University of Iowa, Iowa City, IA
| |
Collapse
|
36
|
Molinelli V, Angeretti MG, Duka E, Tarallo N, Bracchi E, Novario R, Fugazzola C. Role of MRI and added value of diffusion-weighted and gadolinium-enhanced MRI for the diagnosis of local recurrence from rectal cancer. Abdom Radiol (NY) 2018. [PMID: 29541831 DOI: 10.1007/s00261-018-1518-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
PURPOSE To evaluate whether the addition of gadolinium-enhanced MRI and diffusion-weighted imaging (DWI) improves T2 sequence performance for the diagnosis of local recurrence (LR) from rectal cancer and to assess which approach is better at formulating this diagnosis among readers with different experience. METHODS Forty-three patients with suspected LR underwent pelvic MRI with T2 weighted (T2) sequences, gadolinium fat-suppressed T1 weighted sequences (post-contrast T1), and DWI sequences. Three readers (expert: G, intermediate: E, resident: V) scored the likelihood of LR on T2, T2 + post-contrast T1, T2 + DWI, and T2 + post-contrast T1 + DWI. RESULTS In total, 18/43 patients had LR; on T2 images, the expert reader achieved an area under the ROC curve (AUC) of 0.916, sensitivity of 88.9%, and specificity of 76%; the intermediate reader achieved values of 0.890, 88.9%, and 48%, respectively, and the resident achieved values of 0.852, 88.9%, and 48%, respectively. DWI significantly improved the AUC value for the expert radiologist by up to 0.999 (p = 0.04), while post-contrast T1 significantly improved the AUC for the resident by up to 0.950 (p = 0.04). For the intermediate reader, both the T2 + DWI AUC and T2 + post-contrast T1 AUC were better than the T2 AUC (0.976 and 0.980, respectively), but with no statistically significant difference. No statistically significant difference was achieved by any of the three readers by comparing either the T2 + DWI AUCs to the T2 + post-contrast T1 AUCs or the AUCs of the two pairs of sequences to those of the combined three sequences. Furthermore, using the T2 sequences alone, all of the readers achieved a fair number of "equivocal" cases: they decreased with the addition of either DWI or post-contrast T1 sequences and, for the two less experienced readers, they decreased even more with the three combined sequences. CONCLUSIONS Both DWI and T1 post-contrast MRI increased diagnostic performance for LR diagnosis compared to T2; however, no significant difference was observed by comparing the two different pairs of sequences with the three combined sequences.
Collapse
|
37
|
Cantiello F, Crocerossa F, Russo GI, Gangemi V, Ferro M, Vartolomei MD, Lucarelli G, Mirabelli M, Scafuro C, Ucciero G, De Cobelli O, Morgia G, Damiano R, Cascini GL. Comparison Between 64Cu-PSMA-617 PET/CT and 18F-Choline PET/CT Imaging in Early Diagnosis of Prostate Cancer Biochemical Recurrence. Clin Genitourin Cancer 2018; 16:385-391. [DOI: 10.1016/j.clgc.2018.05.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 05/29/2018] [Accepted: 05/29/2018] [Indexed: 01/26/2023]
|
38
|
Abstract
Prostate cancer is the most commonly diagnosed noncutaneous cancer and second leading cause of death in men. Many patients with clinically organ-confined prostate cancer undergo definitive treatment of the whole gland, including radical prostatectomy, radiation therapy, and cryosurgery. Active surveillance is a growing alternative option for patients with documented low-volume and low-grade prostate cancer. However, many patients are wanting a less morbid focal treatment alternative. With recent advances in software and hardware of magnetic resonance imaging (MRI), multiparametric MRI of the prostate has been shown to improve the accuracy in detecting and characterizing clinically significant prostate cancer. Targeted biopsy is increasingly utilized to improve the yield of MR detected, clinically significant prostate cancer and to decrease in detection of indolent prostate cancer. MR-guided targeted biopsy techniques include cognitive MR fusion transrectal ultrasound (TRUS) biopsy, in-bore transrectal targeted biopsy using robotic transrectal device, and in-bore direct MR-guided transperineal biopsy with a software based transperineal grid template. In addition, advances in MR-compatible thermal ablation technology allow accurate focal or regional delivery of thermal ablative energy to the biopsy-proved, MRI-detected tumor. MR-guided ablative treatment options include cryoablation, laser ablation, and high-intensity focused ultrasound with real-time or near simultaneous monitoring of the ablation zone. We present a contemporary review of MR-guided techniques for prostatic interventions.
Collapse
|
39
|
ACR Appropriateness Criteria ® Post-treatment Follow-up Prostate Cancer. J Am Coll Radiol 2018; 15:S132-S149. [DOI: 10.1016/j.jacr.2018.03.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 03/04/2018] [Indexed: 11/23/2022]
|
40
|
Luzurier A, Jouve De Guibert PH, Allera A, Feldman SF, Conort P, Simon JM, Mozer P, Compérat E, Boudghene F, Servois V, Lucidarme O, Granger B, Renard-Penna R. Dynamic contrast-enhanced imaging in localizing local recurrence of prostate cancer after radiotherapy: Limited added value for readers of varying level of experience. J Magn Reson Imaging 2018. [DOI: 10.1002/jmri.25991] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Affiliation(s)
- Anna Luzurier
- Academic Department of Radiology, Hopital Pitié-Salpétrière, AP-HP; Sorbonne University Paris; France
| | | | - Alexandre Allera
- Academic Department of Radiology, Hopital Pitié-Salpétrière, AP-HP; Sorbonne University Paris; France
| | - Sarah F. Feldman
- Academic Departement of Statistic, Hopital Pitié-Salpétrière, AP-HP; Sorbonne University; France
| | - Pierre Conort
- Academic Department of Urology, Hopital Pitié-Salpétrière; AP-HP Sorbonne University; France
| | - Jean Marc Simon
- Academic Department of Radiotherapy, Hopital Pitié-Salpétrière, AP-HP; Sorbonne University; France
| | - Pierre Mozer
- Academic Department of Urology, Hopital Pitié-Salpétrière; AP-HP Sorbonne University; France
| | - Eva Compérat
- Academic Department of Pathology, Hopital Pitié-Salpétrière, AP-HP; Sorbonne University; France
| | - Franck Boudghene
- Academic Department of Radiology, Hopital Tenon, AP-HP; Sorbonne University; France
| | - Vincent Servois
- Academic department of Radiology; Curie Institute, Descartes Univ Paris 05; Paris France
| | - Olivier Lucidarme
- Academic Department of Radiology, Hopital Pitié-Salpétrière, AP-HP; Sorbonne University Paris; France
| | - Benjamin Granger
- Academic Departement of Statistic, Hopital Pitié-Salpétrière, AP-HP; Sorbonne University; France
| | - Raphaele Renard-Penna
- Academic Department of Radiology, Hopital Pitié-Salpétrière, AP-HP; Sorbonne University Paris; France
- Academic Department of Radiology, Hopital Tenon, AP-HP; Sorbonne University; France
- GRC-UPMC Oncotype-URO; Sorbonne University; Paris France
| |
Collapse
|
41
|
Demirel HC, Davis JW. Multiparametric magnetic resonance imaging: Overview of the technique, clinical applications in prostate biopsy and future directions. Turk J Urol 2018; 44:93-102. [PMID: 29511576 PMCID: PMC5832385 DOI: 10.5152/tud.2018.56056] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 02/08/2018] [Indexed: 12/23/2022]
Abstract
Multiparametric magnetic resonance imaging (mpMRI) has managed to change the paradigms on prostate cancer detection and risk classification. The most clear-cut indication of mpMRI in guidelines is the patients with a history of negative biopsy/increasing prostate-specific antigen (PSA), and presence of additional findings supporting its use in non biopsied patients and active surveillance. mpMRI complements standard clinical exam, PSA measurements, and systematic biopsy, and will miss some tumors that lack enough size or change in tissue density. Use of mpMRI is likely to increase, and further developments in the technique will be important for safe adoption of focal therapy concepts. Here we present a brief summary about mpMRI and its use in detection, risk classification and follow-up of prostate cancer.
Collapse
|
42
|
Albisinni S, Aoun F, Marcelis Q, Jungels C, Al-Hajj Obeid W, Zanaty M, Tubaro A, Roumeguere T, De Nunzio C. Innovations in imaging modalities for recurrent and metastatic prostate cancer: a systematic review. MINERVA UROL NEFROL 2018; 70:347-360. [PMID: 29388415 DOI: 10.23736/s0393-2249.18.03059-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
INTRODUCTION The last decade has witnessed tremendous changes in the management of advanced and metastatic castration resistant prostate cancer. In the current systematic review, we analyze novel imaging techniques in the setting of recurrent and metastatic prostate cancer (PCa), exploring available data and highlighting future exams which could enter clinical practice in the upcoming years. EVIDENCE ACQUISITION The National Library of Medicine Database was searched for relevant articles published between January 2012 and August 2017. A wide search was performed including the combination of following words: "Prostate" AND "Cancer" AND ("Metastatic" OR "Recurrent") AND "imaging" AND ("MRI" OR "PET"). The selection procedure followed the Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) principles and is presented using a PRISMA flow chart. EVIDENCE SYNTHESIS Novel imaging techniques, as multiparametric magnetic resonance imaging (MRI), whole-body MRI and Choline and prostate-specific membrane antigen (PSMA) PET imaging techniques are currently revolutioning the treatment planning in patients with advanced and metastatic PCa, allowing a better characterization of the disease. Multiparametric MRI performs well in the detection of local recurrences, with sensitivity rates of 67-98% and overall diagnostic accuracy of 83-93%, depending on the type of magnetic field strength (1.5 vs. 3T). Whole body MRI instead shows a high specificity (>95%) for bone metastases. PET imaging, and in particular PSMA PET/CT, showed promising results in the detection of both local and distant recurrences, even for low PSA values (<0.5 ng/mL). Sensitivity varies from 77-98% depending on PSA value and PSA velocity. CONCLUSIONS Whole body-MRI, NaF PET, Choline-PET/CT and PSMA PET/CT are flourishing techniques which find great application in the field of recurrent and metastatic PCa, in the effort to reduce treatment of "PSA only" and rather focus our therapies on clinical tumor entities. Standardization is urgently needed to allow adequate comparison of results and diffusion on a large scale.
Collapse
Affiliation(s)
- Simone Albisinni
- Urology Department, University Clinics of Brussels, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium -
| | - Fouad Aoun
- Urology Department, University Clinics of Brussels, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium.,Urology Department, Hôtel Dieu de France, Université Saint Joseph, Beyrouth, Liban
| | - Quentin Marcelis
- Urology Department, University Clinics of Brussels, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Claude Jungels
- Urology Department, University Clinics of Brussels, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Walid Al-Hajj Obeid
- Urology Department, University Clinics of Brussels, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium.,Urology Department, Saint George Hospital University Medical Center, Beyrouth, Liban
| | - Marc Zanaty
- Urology Department, Hôtel Dieu de France, Université Saint Joseph, Beyrouth, Liban
| | - Andrea Tubaro
- Urology Department, Sant'Andrea Hospital, Università degli Studi di Roma La Sapienza, Rome, Italy
| | - Thierry Roumeguere
- Urology Department, University Clinics of Brussels, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Cosimo De Nunzio
- Urology Department, Sant'Andrea Hospital, Università degli Studi di Roma La Sapienza, Rome, Italy
| |
Collapse
|
43
|
Rathbun JT, Schroeder TM, Eberhardt SC. High postprostatectomy prostate-specific antigen level prior to salvage radiation therapy is not always a bad sign. Rev Urol 2018; 19:190-194. [PMID: 29302244 DOI: 10.3909/riu0754] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Although radical prostatectomy is a popular treatment modality for clinically localized prostate cancer, 10-year biochemical recurrence can reach 28%. Before salvage radiation therapy (SRT), prostate-specific antigen (PSA) values alone should be used cautiously in predicting SRT eligibility. A long, slow PSA rise may suggest locally confined disease still amenable to SRT; corresponding imaging to identify potential gross recurrence is useful. Patients with local disease may safely benefit from higher doses of radiation.
Collapse
Affiliation(s)
- John T Rathbun
- Department of Radiation Oncology, University of New MexicoAlbuquerque, NM
| | - Thomas M Schroeder
- Department of Radiation Oncology, University of New MexicoAlbuquerque, NM
| | - Steven C Eberhardt
- Departmant of Diagnostic Radiology, University of New MexicoAlbuquerque, NM
| |
Collapse
|
44
|
Buergy D, Sertdemir M, Weidner A, Shelan M, Lohr F, Wenz F, Schoenberg SO, Attenberger UI. Detection of Local Recurrence with 3-Tesla MRI After Radical Prostatectomy: A Useful Method for Radiation Treatment Planning? In Vivo 2018; 32:125-131. [PMID: 29275309 PMCID: PMC5892648 DOI: 10.21873/invivo.11214] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 11/07/2017] [Accepted: 11/10/2017] [Indexed: 12/22/2022]
Abstract
BACKGROUND/AIM Salvage radiotherapy improves biochemical control in patients with recurrence of prostate cancer after prostatectomy. Radiotherapy target volumes of the prostatic fossa are based on empirical data and differ between different guidelines. Localization of recurrence with multiparametric magnetic resonance imaging (MRI) might be a feasible approach to localize recurrent lesions. PATIENTS AND METHODS Twenty-one patients with biochemical recurrence after radical prostatectomy were included (median prostate-specific antigen (PSA) =0.17 ng/ml). Multi-parametric MRI was performed using a 3-T MR system. RESULTS Lesions were detected in seven patients with a median PSA of 0.86 ng/ml (minimum= 0.31 ng/ml). Patients without detectable recurrence had a median PSA of 0.12 ng/ml. All patients with detectable lesions responded to radiotherapy. Eleven out of 14 patients without detectable recurrence also responded. Plasma flow in suspicious lesions was correlated with PSA level. CONCLUSION Detection of recurrence at the prostatic fossa with our approach was possible in a minority of patients with a low PSA level. Clinical relevance of plasma flow in suspicious lesions should be further investigated.
Collapse
Affiliation(s)
- Daniel Buergy
- Department of Radiation Oncology, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Metin Sertdemir
- Medical Care Center Radiology Karlsruhe West, Karlsruhe, Germany
| | - Anja Weidner
- Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
| | - Mohamed Shelan
- Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Frank Lohr
- Department of Radiation Oncology, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Frederik Wenz
- Department of Radiation Oncology, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Stefan O Schoenberg
- Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
| | - Ulrike I Attenberger
- Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
45
|
Sandgren K, Westerlinck P, Jonsson JH, Blomqvist L, Thellenberg Karlsson C, Nyholm T, Dirix P. Imaging for the Detection of Locoregional Recurrences in Biochemical Progression After Radical Prostatectomy-A Systematic Review. Eur Urol Focus 2017; 5:550-560. [PMID: 29133278 DOI: 10.1016/j.euf.2017.11.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 10/13/2017] [Accepted: 11/02/2017] [Indexed: 01/23/2023]
Abstract
CONTEXT Local and regional recurrence after radical prostatectomy (RP) can be treated using salvage radiotherapy (SRT). If the recurrence can be delineated on diagnostic imaging, this could allow for increasingly individualized SRT. OBJECTIVE This systematic review aimed at evaluating the evidence regarding the usefulness of positron emission tomography (PET) and magnetic resonance imaging (MRI) in identifying local and regional recurrences, with the aim to further individualize the SRT treatment. EVIDENCE ACQUISITION A systematic PubMed/Medline search was conducted in December 2015. Studies included were imaging studies of post-RP patients focusing on local and/or regional recurrence where sensitivity and specificity of MRI or PET were the primary end points. Only studies using biopsy, other histological analysis, and/or treatment follow-up as reference standard were included. Quality Assessment of Diagnostic Accuracy Studies-2 was used to score the study quality. Twenty-five articles were deemed of sufficient quality and included in the review. EVIDENCE SYNTHESIS [11C]Acetate had the highest pooled sensitivity (92%), while [11C]choline and [18F]choline had pooled sensitivities of 71% and 84%, respectively. The PET tracer with highest pooled specificity was [11C]choline (86%). Regarding MRI, MR spectroscopy combined with dynamic contrast enhanced (DCE) MRI showed the highest pooled sensitivity (89%). High pooled sensitivities were also seen using multiparametric MRI (84%), diffusion-weighted MRI combined with T2-weigthed (T2w) imaging (82%), and DCE MRI combined with T2w imaging (82%). These also showed high pooled specificities (85%, 89%, and 92%, respectively). CONCLUSIONS Both MRI and PET have adequate sensitivity and specificity for the detection of prostate cancer recurrences post-RP. Multiparametric MRI, using diffusion-weighted and/or DCE imaging, and the choline-labeled tracers showed high pooled sensitivity and specificity, although their ranges were broad. PATIENT SUMMARY After reviewing imaging studies of recurrent prostate cancer after prostatectomy, we concluded that choline positron emission tomography and diffusion-weighted magnetic resonance imaging can be proposed as the current standard, with high sensitivity and specificity.
Collapse
Affiliation(s)
| | - Philippe Westerlinck
- Department of Radiation Oncology, Iridium Cancer Network, Wilrijk (Antwerp), Belgium
| | | | - Lennart Blomqvist
- Department of Radiation Sciences, Umeå University, Umeå, Sweden; Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | | | - Tufve Nyholm
- Department of Radiation Sciences, Umeå University, Umeå, Sweden; Department of Immunology, Genetics, and Pathology, Medical Radiation Science, Uppsala University, Uppsala, Sweden
| | - Piet Dirix
- Department of Radiation Oncology, Iridium Cancer Network, Wilrijk (Antwerp), Belgium; Department of Molecular Imaging, Pathology, Radiotherapy & Oncology (MIPRO), Center for Oncological Research (CORE), Edegem (Antwerp), Belgium
| |
Collapse
|
46
|
Eiber M, Rauscher I, Souvatzoglou M, Maurer T, Schwaiger M, Holzapfel K, Beer AJ. Prospective head-to-head comparison of 11C-choline-PET/MR and 11C-choline-PET/CT for restaging of biochemical recurrent prostate cancer. Eur J Nucl Med Mol Imaging 2017; 44:2179-2188. [PMID: 28803358 DOI: 10.1007/s00259-017-3797-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 07/27/2017] [Indexed: 01/09/2023]
Abstract
PURPOSE Whole-body integrated 11C-choline PET/MR might provide advantages compared to 11C-choline PET/CT for restaging of prostate cancer (PC) due to the high soft-tissue contrast and the use of multiparametric MRI, especially for detection of local recurrence and bone metastases. MATERIALS AND METHODS Ninety-four patients with recurrent PC underwent a single-injection/dual-imaging protocol with contrast-enhanced PET/CT followed by fully diagnostic PET/MR. Imaging datasets were read separately by two reader teams (team 1 and 2) assessing the presence of local recurrence, lymph node and bone metastases in predefined regions using a five-point scale. Detection rates were calculated. The diagnostic performance of PET/CT vs. PET/MR was compared using ROC analysis. Inter-observer and inter-modality variability, radiation exposure, and mean imaging time were evaluated. Clinical follow-up, imaging, and/or histopathology served as standard of reference (SOR). RESULTS Seventy-five patients qualified for the final image analysis. A total of 188 regions were regarded as positive: local recurrence in 37 patients, 87 regions with lymph node metastases, and 64 regions with bone metastases. Mean detection rate between both readers teams for PET/MR was 84.7% compared to 77.3% for PET/CT (p > 0.05). Local recurrence was identified significantly more often in PET/MR compared to PET/CT by team 1. Lymph node and bone metastases were identified significantly more often in PET/CT compared to PET/MR by both teams. However, this difference was not present in the subgroup of patients with PSA values ≤2 ng/ml. Inter-modality and inter-observer agreement (K > 0.6) was moderate to substantial for nearly all categories. Mean reduction of radiation exposure for PET/MR compared to PET/CT was 79.7% (range, 72.6-86.2%). Mean imaging time for PET/CT was substantially lower (18.4 ± 0.7 min) compared to PET/MR (50.4 ± 7.9 min). CONCLUSIONS 11C-choline PET/MR is a robust imaging modality for restaging biochemical recurrent PC and interpretations between different readers are consistent. It provides a higher diagnostic value for detecting local recurrence compared to PET/CT with the advantage of substantial dose reduction. Drawbacks of PET/MR are a substantially longer imaging time and a slight inferiority in detecting bone and lymph node metastases in patients with PSA values >2 ng/ml. Thus, we suggest the use of 11C-choline PET/MR especially for patients with low (≤2 ng/ml) PSA values, whereas PET/CT is preferable in the subgroup with higher PSA values.
Collapse
Affiliation(s)
- Matthias Eiber
- Department of Nuclear Medicine, Technische Universität München, Klinikum rechts der Isar, Ismaninger Str. 22, 81675, Munich, Germany.,Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, USA
| | - Isabel Rauscher
- Department of Nuclear Medicine, Technische Universität München, Klinikum rechts der Isar, Ismaninger Str. 22, 81675, Munich, Germany.
| | - Michael Souvatzoglou
- Department of Nuclear Medicine, Technische Universität München, Klinikum rechts der Isar, Ismaninger Str. 22, 81675, Munich, Germany
| | - Tobias Maurer
- Department of Urology, Technische Universität München, Klinikum rechts der Isar, Ismaninger Str. 22, 81675, Munich, Germany
| | - Markus Schwaiger
- Department of Nuclear Medicine, Technische Universität München, Klinikum rechts der Isar, Ismaninger Str. 22, 81675, Munich, Germany
| | - Konstantin Holzapfel
- Department of Radiology, Technische Universität München, Klinikum rechts der Isar, Ismaninger Str. 22, 81675, Munich, Germany
| | - Ambros J Beer
- Department of Nuclear Medicine, Technische Universität München, Klinikum rechts der Isar, Ismaninger Str. 22, 81675, Munich, Germany.,Department of Nuclear Medicine, Ulm University, Albert-Einstein-Allee 23, 89081, Ulm, Germany
| |
Collapse
|
47
|
Woodrum D, Kawashima A, Gorny K, Mynderse L. Prostate cancer: state of the art imaging and focal treatment. Clin Radiol 2017; 72:665-679. [DOI: 10.1016/j.crad.2017.02.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 01/26/2017] [Accepted: 02/07/2017] [Indexed: 10/19/2022]
|
48
|
Maurer MH, Heverhagen JT. Diffusion weighted imaging of the prostate-principles, application, and advances. Transl Androl Urol 2017; 6:490-498. [PMID: 28725591 PMCID: PMC5503962 DOI: 10.21037/tau.2017.05.06] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
This review article aims to provide an overview on the principles of diffusion-weighted magnetic resonance imaging (DW-MRI) and its applications in the imaging of the prostate. DW-MRI with regards to different applications for prostate cancer (PCa) detection and characterization, local staging as well as for active surveillance (AS) and tumor recurrence after radical prostatectomy (RP) will be discussed. Furthermore, advances in DW-MRI techniques like diffusion kurtosis imaging (DKI) will be presented.
Collapse
Affiliation(s)
- Martin H Maurer
- Department of Radiology, Inselspital, Bern University Hospital, University of Bern, Bern 3010, Switzerland
| | - Johannes T Heverhagen
- Department of Radiology, Inselspital, Bern University Hospital, University of Bern, Bern 3010, Switzerland
| |
Collapse
|
49
|
Habl G, Sauter K, Schiller K, Dewes S, Maurer T, Eiber M, Combs SE. 68 Ga-PSMA-PET for radiation treatment planning in prostate cancer recurrences after surgery: Individualized medicine or new standard in salvage treatment. Prostate 2017; 77:920-927. [PMID: 28317152 DOI: 10.1002/pros.23347] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 02/28/2017] [Indexed: 11/06/2022]
Abstract
BACKGROUND 68 Ga-PSMA-PET imaging is a novel promising diagnostic tool to locate early biochemical failure after radical prostatectomy (RP) in prostate cancer (PC) patients. Exact knowledge of the relapse location may result in changes of the therapy concept aside from changes to the TNM stage. To gain data for this approach, we evaluated PC patients receiving 68 Ga-PSMA-PET imaging before salvage radiotherapy (RT). METHODS AND MATERIALS In this study, 100 patients with biochemical failure after RP± prior RT who underwent 68 Ga-PSMA PET/CT or PET/MRI were evaluated undergoing salvage RT in our department. We analyzed TNM staging changes due to 68 Ga-PSMA-PET imaging and its influence on RT planning and treatment. RESULTS Uptake indicative for tumor recurrence in 68 Ga-PSMA-PET was found in 76% of the patients with biochemical recurrent PC. Median PSA level was 1.0 ng/mL (range 0.12-14.7 ng/mL). Of these, 80% showed no morphological correlate in the corresponding CT or MRI. A 43% of all patients experienced a change in TNM stage due to 68 Ga-PSMA-PET imaging. Patients had changes from Tx to rcT+ (28%), 12% from pN0 to rcN1, 1% from pN0/cM0 to rcM1a, and 8% from cM0 to rcM1b. Due to the additional knowledge of 68 Ga-PSMA-PET imaging, initial planned RT planning was adapted in 59% of all cases. An additional simultaneous integrated boost (SIB) to the prostate bed or lymph nodes was given to 32% and 63%, respectively. Ten patients received stereotactic body RT (SBRT) to single bone metastases. CONCLUSION 68 Ga-PSMA-PET imaging showed a high clinical impact on staging and RT management in patients with biochemically recurrent PC, even at low serum PSA levels. With 43% changes in staging and 59% in radiotherapy planning 68 Ga-PSMA-PET could lead to an indispensable tool in guiding radiation treatment in recurrent PC.
Collapse
Affiliation(s)
- Gregor Habl
- Department of Radiation Oncology, Technical University of Munich (TUM), Munich, Germany
- Zentrum für Stereotaxie und personalisierte Hochpräzisionsstrahlentherapie (StereotakTUM), Technische Universität München (TUM), Munich, Germany
| | - Katharina Sauter
- Department of Radiation Oncology, Technical University of Munich (TUM), Munich, Germany
| | - Kilian Schiller
- Department of Radiation Oncology, Technical University of Munich (TUM), Munich, Germany
| | - Sabrina Dewes
- Department of Radiation Oncology, Technical University of Munich (TUM), Munich, Germany
| | - Tobias Maurer
- Department of Urology, Technical University Munich (TUM), Munich, Germany
| | - Matthias Eiber
- Department of Nuclear Medicine, Technical University Munich (TUM), Munich, Germany
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Stephanie E Combs
- Department of Radiation Oncology, Technical University of Munich (TUM), Munich, Germany
- Zentrum für Stereotaxie und personalisierte Hochpräzisionsstrahlentherapie (StereotakTUM), Technische Universität München (TUM), Munich, Germany
| |
Collapse
|
50
|
Abstract
There is growing consensus that multiparametric magnetic resonance imaging (mpMRI) is an effective modality in the detection of locally recurrent prostate cancer after prostatectomy and radiation therapy. The emergence of magnetic resonance (MR)-guided focal therapies, such as cryoablation, high-intensity focused ultrasound, and laser ablation, have made the use of mpMRI even more important, as the normal anatomy is inevitably altered and the detection of recurrence is made more difficult. The aim of this article is to review the utility of mpMRI in detecting recurrent prostate cancer in patients following radical prostatectomy, radiation therapy, and focal therapy and to discuss expected post-treatment mpMRI findings, the varied appearance of recurrent tumors, and their mimics.
Collapse
|