1
|
Tsuchiya H, Matoba M, Nishino Y, Ota K, Doai M, Nagata H, Tuji H. Clinical utility of combined assessments of 4D volumetric perfusion CT, diffusion-weighted MRI and 18F-FDG PET-CT for the prediction of outcomes of head and neck squamous cell carcinoma treated with chemoradiotherapy. Radiat Oncol 2023; 18:24. [PMID: 36747228 PMCID: PMC9901150 DOI: 10.1186/s13014-023-02202-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 01/07/2023] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Multiparametric imaging has been seen as a route to improved prediction of chemoradiotherapy treatment outcomes. Four-dimensional volumetric perfusion CT (4D PCT) is useful for whole-organ perfusion measurement, as it reflects the heterogeneity of the tumor and its perfusion parameters. However, there has been no study using multiparametric imaging including 4D PCT for the prognostic prediction of chemoradiotherapy. The purpose of this study was to determine whether combining assessments of 4D PCT with diffusion-weighted MRI (DWI) and 18F-fluorodeoxyglucose PET-CT could enhance prognostic accuracy in head and neck squamous cell carcinoma (HNSCC) patients treated with chemoradiotherapy. METHODS We examined 53 patients with HNSCC who underwent 4D PCT, DWI and PET-CT before chemoradiotherapy. The imaging and clinical parameters were assessed the relations to locoregional control (LRC) and progression-free survival (PFS) by logistic regression analyses. A receiver operating characteristic (ROC) analysis was performed to assess the accuracy of the significant parameters identified by the multivariate analysis for the prediction of LRC and PFS. We additionally assessed using the scoring system whether these independent parameters could have a complementary role for the prognostic prediction. RESULTS The median follow-up was 30 months. In multivariate analysis, blood flow (BF; p = 0.02) and blood volume (BV; p = 0.04) were significant prognostic factors for LRC, and BF (p = 0.03) and skewness of the ADC histogram (p = 0.02) were significant prognostic factors for PFS. A significant positive correlation was found between BF and BV (ρ = 0.6, p < 0.001) and between BF and skewness (ρ = 0.46, p < 0.01). The ROC analysis showed that prognostic accuracy for LRC of BF, BV, and combination of BF and BV were 77.8%, 70%, and 92.9%, and that for PFS of BF, skewness, and combination of BF and skewness were 55.6%, 63.2%, and 77.5%, respectively. The scoring system demonstrated that the combination of higher BF and higher BV was significantly associated with better LRC (p = 0.04), and the combination of lower BF and lower skewness was significantly associated with worse PFS (p = 0.004). CONCLUSION A combination of parameters derived from 4DPCT and ADC histograms may enhance prognostic accuracy in HNSCC patients treated with chemoradiotherapy.
Collapse
Affiliation(s)
- Hirokazu Tsuchiya
- grid.411998.c0000 0001 0265 5359Department of Radiology, Kanazawa Medical University, Daigaku 1-1, Uchinada, Kahoku, Ishikawa 920-0293 Japan
| | - Munetaka Matoba
- Department of Radiology, Kanazawa Medical University, Daigaku 1-1, Uchinada, Kahoku, Ishikawa, 920-0293, Japan.
| | - Yuka Nishino
- grid.411998.c0000 0001 0265 5359Department of Radiology, Kanazawa Medical University, Daigaku 1-1, Uchinada, Kahoku, Ishikawa 920-0293 Japan
| | - Kiyotaka Ota
- grid.411998.c0000 0001 0265 5359Department of Radiology, Kanazawa Medical University, Daigaku 1-1, Uchinada, Kahoku, Ishikawa 920-0293 Japan
| | - Mariko Doai
- grid.411998.c0000 0001 0265 5359Department of Radiology, Kanazawa Medical University, Daigaku 1-1, Uchinada, Kahoku, Ishikawa 920-0293 Japan
| | - Hiroji Nagata
- grid.411998.c0000 0001 0265 5359Section of Radiological Technology, Department of Medical Technology, Kanazawa Medical University, Daigaku 1-1, Uchinada, Kahoku, Ishikawa 920-0293 Japan
| | - Hiroyuki Tuji
- grid.411998.c0000 0001 0265 5359Department of Head and Neck Surgery, Kanazawa Medical University, Daigaku 1-1, Uchinada, Kahoku, Ishikawa 920-0293 Japan
| |
Collapse
|
2
|
Spek A, Graser A, Casuscelli J, Szabados B, Rodler S, Marcon J, Stief C, Staehler M. Dynamic contrast-enhanced CT-derived blood flow measurements enable early prediction of long term outcome in metastatic renal cell cancer patients on antiangiogenic treatment. Urol Oncol 2021; 40:13.e1-13.e8. [PMID: 34535355 DOI: 10.1016/j.urolonc.2021.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/11/2021] [Accepted: 08/13/2021] [Indexed: 11/18/2022]
Abstract
PURPOSE To evaluate the role of dynamic contrast-enhanced CT (DCE-CT) as an independent non-invasive biomarker in predicting long term outcome in patients with metastatic renal cell carcinoma (mRCC) on antiangiogenic treatment. MATERIAL AND METHODS Eighty two mRCC patients were prospectively enrolled from 09/2011 to 04/2015, out of which 71 were included in the final data analysis; the population was observed until 12/2020 to obtain complete overall survival data. DCE-CT imaging was performed at baseline and 10 to 12 weeks after start of treatment with targeted therapy. DCE-CT included a dynamic acquisition after injection of 50 ml of nonionic contrast agent at 6 ml/s using a 4D spiral mode (10 cm z-axis coverage, acquisition time 43 sec, 100 kVp (abdomen), 80 kVp (chest), 80-100 mAs) on a dual source scanner (Definition FLASH, Siemens). Blood flow (BF) was calculated for target tumor volumes using a deconvolution model. Progression free survival (PFS) and overall survival (OS) were analyzed using Kaplan-Meier statistics (SPSS version 24). RESULTS Patients were treated with either sunitinib, pazopanib, sorafenib, tivozanib, axitinib, or cabozantinib. A cut-off value of 50% blood flow reduction at follow-up allowed for identification of patients with favorable long-term outcome: Median OS in n = 42 patients with an average blood flow reduction of >50% (mean, 79%) was 34 (range, 14-54) months, while n = 21 patients with an average reduction of less than 50% (mean, 28%) showed a median OS of 12 (range, 6-18) months, and n = 8 patients with an increase in blood flow survived for a median of 7 (range, 3-11) months. CONCLUSION Blood flow in metastases measured with DCE-CT at first follow-up is a strong predictor of overall survival in mRCC patients on antiangiogenic treatment.
Collapse
Affiliation(s)
- Annabel Spek
- Department of Urology, University Hospital, LMU Munich, Munich, Germany.
| | | | | | | | - Severin Rodler
- Department of Urology, University Hospital, LMU Munich, Munich, Germany
| | - Julian Marcon
- Department of Urology, University Hospital, LMU Munich, Munich, Germany
| | - Christian Stief
- Department of Urology, University Hospital, LMU Munich, Munich, Germany
| | - Michael Staehler
- Department of Urology, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
3
|
Real-time control of respiratory motion: Beyond radiation therapy. Phys Med 2019; 66:104-112. [PMID: 31586767 DOI: 10.1016/j.ejmp.2019.09.241] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 09/23/2019] [Accepted: 09/26/2019] [Indexed: 12/16/2022] Open
Abstract
Motion management in radiation oncology is an important aspect of modern treatment planning and delivery. Special attention has been paid to control respiratory motion in recent years. However, other medical procedures related to both diagnosis and treatment are likely to benefit from the explicit control of breathing motion. Quantitative imaging - including increasingly important tools in radiology and nuclear medicine - is among the fields where a rapid development of motion control is most likely, due to the need for quantification accuracy. Emerging treatment modalities like focussed-ultrasound tumor ablation are also likely to benefit from a significant evolution of motion control in the near future. In the present article an overview of available respiratory motion systems along with ongoing research in this area is provided. Furthermore, an attempt is made to envision some of the most expected developments in this field in the near future.
Collapse
|
4
|
Nakane J, Honda N, Tsuchiya K. Computed tomography pulmonary angiography and venography with a low dose of contrast medium. Radiol Phys Technol 2018; 12:61-68. [PMID: 30536083 DOI: 10.1007/s12194-018-00492-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 11/28/2018] [Accepted: 11/28/2018] [Indexed: 11/24/2022]
Abstract
The authors developed a method to ensure sufficient opacification of pulmonary vasculature for separate depiction of arteries and veins in three-dimensional form with a small dose of contrast medium utilizing a test injection to determine optimal timing of computed tomography (CT) scanning. The dose was determined by a simulation based on a pharmacokinetic model. The contrast medium was administered at a rate of 5.0 mL/s for 3 s, followed by helical scanning at the timing determined by a dynamic CT scanning following the test injection. Images of 20 consecutive patients acquired with a 64-row CT scanner were evaluated. Quality of vessel depiction was assessed on the basis of the following: HU values at the main pulmonary artery (MPA) and left atrium (LA), distance between the pleural surface and the distal end of the pulmonary vessels on three-dimensional CT pulmonary arteriography and venography (3D-CTPAV), and subjective visual assessment of quality of the 3D-CTPAV images. Time to generate the 3D-CTPAV images was recorded. The mean ± standard deviation (SD) of the HU values at MPA/LA and the distances to the pleural surface for pulmonary arteries/veins were 448.0 ± 123.1/277.3 ± 60.85 HU and 9.21 ± 3.60/10.7 ± 5.45 mm, respectively. The image quality was visually rated as excellent for all of the patients. The mean time ± SD to generate 3D-CTPAV images was 13.6 ± 6.7 min. In conclusion, three-dimensional images of the pulmonary vasculature can be created using 21 mL (including 6 mL for the test injection) of contrast medium.
Collapse
Affiliation(s)
- Jun Nakane
- Radiology Service, Saitama Medical Center, Saitama Medical University, 1981 Kamoda, Kawagoe, Saitama, 350-8550, Japan.
| | - Norinari Honda
- Radiology Service, Division of Nuclear Medicine, Saitama Sekishinkai Hospital, 2-37-20, Irumagawa, Sayama, Saitama, 350-1305, Japan
| | - Kazuhiro Tsuchiya
- Department of Radiology, Saitama Medical Center, Saitama Medical University, 1981 Kamoda, Kawagoe, Saitama, 350-8550, Japan
| |
Collapse
|
5
|
Diagnostic Performance of Adaptive 4D Volume Perfusion CT for Detecting Metastatic Cervical Lymph Nodes in Head and Neck Squamous Cell Carcinoma. AJR Am J Roentgenol 2018; 211:1106-1111. [PMID: 30240295 DOI: 10.2214/ajr.17.19241] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OBJECTIVE The purpose of this study was to investigate the diagnostic performance of adaptive 4D volume perfusion CT covering the entire neck for detecting metastatic nodes in patients with head and neck squamous cell carcinoma. SUBJECTS AND METHODS Thirty patients with histologically confirmed disease were enrolled. The relation between perfusion parameters and nodal size was analyzed, and perfusion parameters were compared between metastatic and benign nodes. The diagnostic capability for detecting metastatic nodes was evaluated. RESULTS Significant inverse correlations with nodal size were found for blood flow (r = -0.40, p = 0.002), blood volume (r = -0.32, p = 0.02), and permeability surface product (r = -0.27, p = 0.04) of the metastatic nodes. All three parameters had significantly higher values in association with nodal maximum diameter < 10 mm compared with diameter ≥ 10 mm (blood flow, p = 0.004; blood volume, p = 0.01; permeability surface product, p = 0.02). Among the nodes with maximum diameter < 10 mm, blood flow of the metastatic nodes was significantly higher than that of the benign nodes (p = 0.02), whereas among the nodes ≥ 10 mm in diameter, the mean transit time of the metastatic nodes was significantly lower than that of the benign nodes (p = 0.04). In multivariate analysis, blood flow in nodes with maximum diameter < 10 mm had a significant association with the detection of metastatic nodes. The sensitivity and specificity of blood flow for differentiating metastatic from benign nodes were 73.3% and 70.8%. CONCLUSION Findings from 4D volume perfusion CT covering the entire neck may be informative for characterization of cervical nodes. It is worthwhile to include the examination in nodal staging of head and neck squamous cell carcinoma.
Collapse
|
6
|
Trinidad López C, Souto Bayarri M, Oca Pernas R, Delgado Sánchez-Gracián C, González Vázquez M, Vaamonde Liste A, Tardáguila De La Fuente G, De La Fuente Aguado J. Characteristics of computed tomography perfusion parameters in non-small-cell-lung-cancer and its relationship to histology, size, stage an treatment response. Clin Imaging 2018; 50:5-12. [DOI: 10.1016/j.clinimag.2017.12.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 10/27/2017] [Accepted: 12/01/2017] [Indexed: 11/29/2022]
|
7
|
CT perfusion imaging of lung cancer: benefit of motion correction for blood flow estimates. Eur Radiol 2018; 28:5069-5075. [PMID: 29869174 DOI: 10.1007/s00330-018-5492-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 03/30/2018] [Accepted: 04/17/2018] [Indexed: 12/18/2022]
Abstract
PURPOSE CT perfusion (CTP) imaging assessment of treatment response in advanced lung cancer can be compromised by respiratory motion. Our purpose was to determine whether an original motion correction method could improve the reproducibility of such measurements. MATERIALS AND METHODS The institutional review board approved this prospective study. Twenty-one adult patients with non-resectable non-small-cell lung cancer provided written informed consent to undergo CTP imaging. A motion correction method that consisted of manually outlining the tumor margins and then applying a rigid manual landmark registration algorithm followed by the non-rigid diffeomorphic demons algorithm was applied. The non-motion-corrected and motion-corrected images were analyzed with dual blood supply perfusion analysis software. Two observers performed the analysis twice, and the intra- and inter-observer variability of each method was assessed with Bland-Altman statistics. RESULTS The 95% limits of agreement of intra-observer reproducibility for observer 1 improved from -84.4%, 65.3% before motion correction to -33.8%, 30.3% after motion correction (r = 0.86 and 0.97, before and after motion correction, p < 0.0001 for both) and for observer 2 from -151%, 96% to -49 %, 36 % (r = 0.87 and 0.95, p < 0.0001 for both). The 95% limits of agreement of inter-observer reproducibility improved from -168%, 154% to -17%, 25%. CONCLUSION The use of a motion correction method significantly improves the reproducibility of CTP estimates of tumor blood flow in lung cancer. KEY POINTS • Tumor blood flow estimates in advanced lung cancer show significant variability. • Motion correction improves the reproducibility of CT blood flow estimates in advanced lung cancer. • Reproducibility of blood flow measurements is critical to characterize lung tumor biology and the success of treatment in lung cancer.
Collapse
|
8
|
Mains JR, Donskov F, Pedersen EM, Madsen HHT, Thygesen J, Thorup K, Rasmussen F. Use of patient outcome endpoints to identify the best functional CT imaging parameters in metastatic renal cell carcinoma patients. Br J Radiol 2018; 91:20160795. [PMID: 29144161 DOI: 10.1259/bjr.20160795] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE To use the patient outcome endpoints overall survival and progression-free survival to evaluate functional parameters derived from dynamic contrast-enhanced CT. METHODS 69 patients with metastatic renal cell carcinoma had dynamic contrast-enhanced CT scans at baseline and after 5 and 10 weeks of treatment. Blood volume, blood flow and standardized perfusion values were calculated using deconvolution (BVdeconv, BFdeconv and SPVdeconv), blood flow and standardized perfusion values using maximum slope (BFmax and SPVmax) and blood volume and permeability surface area product using the Patlak model (BVpatlak and PS). Histogram data for each were extracted and associated to patient outcomes. Correlations and agreements were also assessed. RESULTS The strongest associations were observed between patient outcome and medians and modes for BVdeconv, BVpatlak and BFdeconv at baseline and during the early ontreatment period (p < 0.05 for all). For the relative changes in median and mode between baseline and weeks 5 and 10, PS seemed to have opposite associations dependent on treatment. Interobserver correlations were excellent (r ≥ 0.9, p < 0.001) with good agreement for BFdeconv, BFmax, SPVdeconv and SPVmax and moderate to good (0.5 < r < 0.7, p < 0.001) for BVdeconv and BVpatlak. Medians had a better reproducibility than modes. CONCLUSION Patient outcome was used to identify the best functional imaging parameters in patients with metastatic renal cell carcinoma. Taking patient outcome and reproducibility into account, BVdeconv, BVpatlak and BFdeconv provide the most clinically meaningful information, whereas PS seems to be treatment dependent. Standardization of acquisition protocols and post-processing software is necessary for future clinical utilization. Advances in knowledge: Taking patient outcome and reproducibility into account, BVdeconv, BVpatlak and BFdeconv provide the most clinically meaningful information. PS seems to be treatment dependent.
Collapse
Affiliation(s)
- Jill Rachel Mains
- 1 Department of Radiology, Aarhus University Hospital , Aarhus , Denmark
| | - Frede Donskov
- 2 Department of Oncology, Aarhus University Hospital , Aarhus , Denmark
| | | | | | - Jesper Thygesen
- 3 Department of Clinical Engineering, Aarhus University Hospital , Aarhus , Denmark
| | - Kennet Thorup
- 1 Department of Radiology, Aarhus University Hospital , Aarhus , Denmark
| | - Finn Rasmussen
- 1 Department of Radiology, Aarhus University Hospital , Aarhus , Denmark
| |
Collapse
|
9
|
Wang Q, Zhang Z, Shan F, Shi Y, Xing W, Shi L, Zhang X. Intra-observer and inter-observer agreements for the measurement of dual-input whole tumor computed tomography perfusion in patients with lung cancer: Influences of the size and inner-air density of tumors. Thorac Cancer 2017; 8:427-435. [PMID: 28585375 PMCID: PMC5582470 DOI: 10.1111/1759-7714.12458] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 04/19/2017] [Accepted: 04/24/2017] [Indexed: 02/06/2023] Open
Abstract
Background This study was conducted to assess intra‐observer and inter‐observer agreements for the measurement of dual‐input whole tumor computed tomography perfusion (DCTP) in patients with lung cancer. Methods A total of 88 patients who had undergone DCTP, which had proved a diagnosis of primary lung cancer, were divided into two groups: (i) nodules (diameter ≤3 cm) and masses (diameter >3 cm) by size, and (ii) tumors with and without air density. Pulmonary flow, bronchial flow, and pulmonary index were measured in each group. Intra‐observer and inter‐observer agreements for measurement were assessed using intraclass correlation coefficient, within‐subject coefficient of variation, and Bland–Altman analysis. Results In all lung cancers, the reproducibility coefficient for intra‐observer agreement (range 26.1–38.3%) was superior to inter‐observer agreement (range 38.1–81.2%). Further analysis revealed lower agreements for nodules compared to masses. Additionally, inner‐air density reduced both agreements for lung cancer. Conclusion The intra‐observer agreement for measuring lung cancer DCTP was satisfied, while the inter‐observer agreement was limited. The effects of tumoral size and inner‐air density to agreements, especially between two observers, should be emphasized. In future, an automatic computer‐aided segment of perfusion value of the tumor should be developed.
Collapse
Affiliation(s)
- Qingle Wang
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Medical Imaging, Shanghai, China.,Department of Medical Imaging, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhiyong Zhang
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Medical Imaging, Shanghai, China.,Department of Medical Imaging, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fei Shan
- Shanghai Institute of Medical Imaging, Shanghai, China.,Department of Medical Imaging, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Radiology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Yuxin Shi
- Shanghai Institute of Medical Imaging, Shanghai, China.,Department of Medical Imaging, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Radiology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Wei Xing
- Department of Radiology, Third Affiliated Hospital of Suzhou University, Suzhou, China
| | - Liangrong Shi
- Department of Oncology, Third Affiliated Hospital of Suzhou University, Suzhou, China
| | - Xingwei Zhang
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Medical Imaging, Shanghai, China.,Department of Medical Imaging, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
10
|
Multislice Analysis of Blood Flow Values in CT Perfusion Studies of Lung Cancer. BIOMED RESEARCH INTERNATIONAL 2017; 2017:3236893. [PMID: 28164118 PMCID: PMC5259676 DOI: 10.1155/2017/3236893] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 12/07/2016] [Accepted: 12/12/2016] [Indexed: 12/20/2022]
Abstract
Objectives. Tumour heterogeneity represents a key issue in CT perfusion (CTp), where all studies are usually based on global mean or median values of perfusion maps, often computed on whole tumour. We sought to determine whether, and to what extent, such global values can be representative of tumour heterogeneity, with respect to single slices, and could be used for therapy assessment. Materials and Methods. Twelve patients with one primary non-small cell lung cancer lesion were enrolled in this study, for a total amount of 26 CTp examinations and 118 slices. Mean and median blood flow (BF) values, calculated voxel-based, were computed on each slice and the whole tumour. To measure functional heterogeneity, entropy was calculated on BF values as well. Results. Most of the slices were not represented by the global BF values computed on the whole tumour. In addition, there are a number of lesions having equivalent global BF values, but they are composed of slices having very different heterogeneity distributions, that is, entropy values. Conclusions. Global mean/median BF values of the single slices separately should be considered for clinical assessment, only if interpreted through entropy computed on BF values. The numerical equivalence between global BF values of different lesions may correspond to different clinical status, thus inducing possible errors in choice of therapy when considering global values only.
Collapse
|
11
|
Strauch LS, Eriksen RØ, Sandgaard M, Kristensen TS, Nielsen MB, Lauridsen CA. Assessing Tumor Response to Treatment in Patients with Lung Cancer Using Dynamic Contrast-Enhanced CT. Diagnostics (Basel) 2016; 6:diagnostics6030028. [PMID: 27455330 PMCID: PMC5039562 DOI: 10.3390/diagnostics6030028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 07/12/2016] [Accepted: 07/15/2016] [Indexed: 12/23/2022] Open
Abstract
The aim of this study was to provide an overview of the literature available on dynamic contrast-enhanced computed tomography (DCE-CT) as a tool to evaluate treatment response in patients with lung cancer. This systematic review was compiled according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Only original research articles concerning treatment response in patients with lung cancer assessed with DCE-CT were included. To assess the validity of each study we implemented Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2). The initial search yielded 651 publications, and 16 articles were included in this study. The articles were divided into groups of treatment. In studies where patients were treated with systemic chemotherapy with or without anti-angiogenic drugs, four out of the seven studies found a significant decrease in permeability after treatment. Four out of five studies that measured blood flow post anti-angiogenic treatments found that blood flow was significantly decreased. DCE-CT may be a useful tool in assessing treatment response in patients with lung cancer. It seems that particularly permeability and blood flow are important perfusion values for predicting treatment outcome. However, the heterogeneity in scan protocols, scan parameters, and time between scans makes it difficult to compare the included studies.
Collapse
Affiliation(s)
- Louise S Strauch
- Department of Diagnostic Radiology, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark.
- Department of Technology, Faculty of Health and Technology, Metropolitan University College, 2200 Copenhagen, Denmark.
| | - Rie Ø Eriksen
- Department of Diagnostic Radiology, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark.
- Department of Technology, Faculty of Health and Technology, Metropolitan University College, 2200 Copenhagen, Denmark.
| | - Michael Sandgaard
- Department of Diagnostic Radiology, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark.
| | - Thomas S Kristensen
- Department of Diagnostic Radiology, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark.
| | - Michael B Nielsen
- Department of Diagnostic Radiology, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark.
| | - Carsten A Lauridsen
- Department of Diagnostic Radiology, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark.
- Department of Technology, Faculty of Health and Technology, Metropolitan University College, 2200 Copenhagen, Denmark.
| |
Collapse
|
12
|
Dynamic volume perfusion computed tomography parameters versus RECIST for the prediction of outcome in lung cancer patients treated with conventional chemotherapy. J Thorac Oncol 2015; 10:164-71. [PMID: 25247342 DOI: 10.1097/jto.0000000000000376] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION To compare dynamic volume perfusion computed tomography (dVPCT) parameters with Response Evaluation Criteria in Solid Tumors (RECIST 1.1) for prediction of therapy response and overall survival (OS) in non-small-cell lung cancer (NSCLC) and small-cell lung cancer (SCLC) patients treated with conventional chemotherapy. METHODS A total of 173 lung cancer patients (131 men; 61 ± 10 years) undergoing dVPCT before (T1) and after chemotherapy (T2) and follow-up were prospectively included. dVPCT-derived blood flow, blood volume, mean transit time, and permeability (PERM) were assessed, compared between NSCLC and SCLC and patients' response to therapy was determined according to RECIST 1.1. RESULTS One hundred of one hundred and seventy-three patients underwent dVPCT at T1 and T2 within a median of 44 (range, 31-108) days. dVPCT values were differing in NSCLC and SCLC, but were not significantly differing between patients with partial response, stable, or progressive disease. Eighty-five patients (NSCLC = 72 and SCLC = 13) with a follow-up for greater than or equal to 6 months were analyzed for OS. Fifty-six of eighty-five patients died during follow-up. Receiver operating characteristic analysis determined T1/T2 with highest predictive values regarding OS for blood flow, blood volume, mean transit time, and permeability (area under the curve: 0.53, 0.61, 0.54, and 0.53, respectively, all p > 0.05). Kaplan-Meier statistics revealed OS of patient groups assigned according to dVPCT T1/T2 cutoff values was not differing for neither dVPCT parameter, whereas RECIST groups significantly differed in OS (p = 0.02). Cox proportional hazards regression determined progressive disease status to independently predict OS (p = 0.004), while none of the dVPCT parameters did so. CONCLUSIONS dVPCT values, differ between NSCLC and SCLC, are not related to RECIST 1.1 classification and do not improve OS prediction in lung cancer patients treated with conventional chemotherapy.
Collapse
|
13
|
Assessment of bronchial and pulmonary blood supply in non-small cell lung cancer subtypes using computed tomography perfusion. Invest Radiol 2015; 50:179-86. [PMID: 25500892 DOI: 10.1097/rli.0000000000000124] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVES The aim of this study was to investigate the dual blood supply of non-small cell lung cancer (NSCLC) and its association with tumor subtype, size, and stage, using computed tomography perfusion (CTP). MATERIALS AND METHODS A total of 54 patients (median age, 65 years; range, 42-79 years; 15 women, 39 men) with suspected lung cancer underwent a CTP scan of the lung tumor. Pulmonary and bronchial vasculature regions of interest were used to calculate independently CTP parameters (blood flow [BF], blood volume [BV], and mean transit time [MTT]) of the tumor tissue. The mean and maximum pulmonary and bronchial perfusion indexes (PImean and PImax) were calculated. The tumoral volume and the largest tumoral diameter were assessed. Differences in CTP parameters and indexes among NSCLC subtypes, tumor stages and tumor dimensions were analyzed using non-parametric tests. RESULTS According to biopsy, 37 patients had NSCLC (22 adenocarcinomas [ACs], 8 squamous cell carcinomas [SCCs], 7 large-cell carcinomas [LCC]). The mean bronchial BF/pulmonary BF, bronchial BV/pulmonary BV, and bronchial MTT/pulmonary MTT was 41.2 ± 30.0/36.9 ± 24.2 mL/100 mL/min, 11.4 ± 9.7/10.4 ± 9.4 mL/100 mL, and 11.4 ± 4.3/14.9 ± 4.4 seconds, respectively. In general, higher bronchial BF than pulmonary BF was observed in NSCLC (P = 0.014). Using a tumoral volume cutoff of 3.5 cm, a significant difference in pulmonary PImax was found (P = 0.028). There was a significantly higher mean pulmonary BF in LCCs and SCCs compared with ACs (P = 0.018 and P = 0.044, respectively), whereas the mean bronchial BF was only significantly higher in LCCs compared with ACs (P = 0.024). Correspondingly, the PImax was significantly higher in LCCs and SCCs than in ACs (P = 0.001 for both). Differences between bronchial and pulmonary PImean and PImax among T stages and Union Internationale Contre le Cancer stages were not statistically significant (P values ranging from 0.691 to 0.753). CONCLUSIONS The known dual blood supply of NSCLC, which depends on tumor size and histological subtype, is reflected in CTP parameters, with parameters depending both on tumor size and histological subtype. This has to be accounted for when analyzing NSCLC with CTP.
Collapse
|
14
|
Reproducibility of VPCT parameters in the normal pancreas: comparison of two different kinetic calculation models. Acad Radiol 2015; 22:1099-105. [PMID: 26112056 DOI: 10.1016/j.acra.2015.04.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Revised: 04/17/2015] [Accepted: 04/29/2015] [Indexed: 01/21/2023]
Abstract
RATIONALE AND OBJECTIVES To assess the reproducibility of volume computed tomographic perfusion (VPCT) measurements in normal pancreatic tissue using two different kinetic perfusion calculation models at three different time points. MATERIALS AND METHODS Institutional ethical board approval was obtained for retrospective analysis of pancreas perfusion data sets generated by our prospective study for liver response monitoring to local therapy in patients experiencing unresectable hepatocellular carcinoma, which was approved by the institutional review board. VPCT of the entire pancreas was performed in 41 patients (mean age, 64.8 years) using 26 consecutive volume measurements and intravenous injection of 50 mL of iodinated contrast at a flow rate of 5 mL/s. Blood volume(BV) and blood flow (BF) were calculated using two mathematical methods: maximum slope + Patlak analysis versus deconvolution method. Pancreas perfusion was calculated using two volume of interests. Median interval between the first and the second VPCT was 2 days and between the second and the third VPCT 82 days. Variability was assessed with within-patient coefficients of variation (CVs) and Bland-Altman analyses. Interobserver agreement for all perfusion parameters was calculated using intraclass correlation coefficients (ICCs). RESULTS BF and BV values varied widely by method of analysis as did within-patient CVs for BF and BV at the second versus the first VPCT by 22.4%/50.4% (method 1) and 24.6%/24.0% (method 2) measured in the pancreatic head and 18.4%/62.6% (method 1) and 23.8%/28.1% (method 2) measured in the pancreatic corpus and at the third versus the first VPCT by 21.7%/61.8% (method 1) and 25.7%/34.5% (method 2) measured also in the pancreatic head and 19.1%/66.1% (method 1) and 22.0%/31.8% (method 2) measured in the pancreatic corpus, respectively. Interobserver agreement measured with ICC shows fair-to-good reproducibility. CONCLUSIONS VPCT performed with the presented examinational protocol is reproducible and can be used for monitoring purposes. Best reproducibility was obtained with both methods for BF and with method 2 also for BV data for both follow-up studies.
Collapse
|
15
|
Sawyer B, Pun E, Samuel M, Tay H, Kron T, Bressel M, Ball D, Siva S. CT perfusion imaging in response assessment of pulmonary metastases undergoing stereotactic ablative radiotherapy. J Med Imaging Radiat Oncol 2015; 59:207-15. [PMID: 25601133 DOI: 10.1111/1754-9485.12272] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 11/19/2014] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Stereotactic ablative body radiotherapy (SABR) is an emerging treatment technique for pulmonary metastases in which conventional Response Evaluation Criteria in Solid Tumours (RECIST) may be inadequate. This study aims to assess the utility of CT perfusion imaging in response assessment of pulmonary metastases after SABR. METHODS In this ethics board-approved prospective study, 11 patients underwent a 26-Gy single fraction of SABR to pulmonary metastases. CT perfusion imaging occurred prior to and at 14 and 70 days post-SABR. Blood flow (mL/100 mL/min), blood volume (mL/100 mL), time to peak (seconds) and surface permeability (mL/100 mL/min), perfusion parameters of pulmonary metastases undergoing SABR, were independently assessed by two radiologists. Inter-observer variability was analysed. CT perfusion results were analysed for early response assessment comparing day 14 with baseline scans and for late response by comparing day 70 with baseline scans. The largest diameter of the pulmonary metastases undergoing SABR was recorded. RESULTS Ten patients completed all three scans and one patient had baseline and early response assessment CT perfusion scans only. There was strong level of inter-observer agreement of CT perfusion interpretation with a median intraclass coefficient of 0.87 (range 0.20-0.98). Changes in all four perfusion parameters and tumour sizes were not statistically significant. CONCLUSION CT perfusion imaging of pulmonary metastases is a highly reproducible imaging technique that may provide additional response assessment information above that of conventional RECIST, and it warrants further study in a larger cohort of patients undergoing SABR.
Collapse
Affiliation(s)
- Brooke Sawyer
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | | | | | | | | | | | | | | |
Collapse
|
16
|
van Elmpt W, Zegers CML, Das M, De Ruysscher D. Imaging techniques for tumour delineation and heterogeneity quantification of lung cancer: overview of current possibilities. J Thorac Dis 2014; 6:319-27. [PMID: 24688776 DOI: 10.3978/j.issn.2072-1439.2013.08.62] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 08/21/2013] [Indexed: 01/05/2023]
Abstract
Imaging techniques for the characterization and delineation of primary lung tumours and lymph nodes are a prerequisite for adequate radiotherapy. Numerous imaging modalities have been proposed for this purpose, but only computed tomography (CT) and FDG-PET have been implemented in clinical routine. Hypoxia PET, dynamic contrast-enhanced CT (DCE-CT), dual energy CT (DECT) and (functional) magnetic resonance imaging (MRI) hold promise for the future. Besides information on the primary tumour, these techniques can be used for quantification of tissue heterogeneity and response. In the future, treatment strategies may be designed which are based on imaging techniques to optimize individual treatment.
Collapse
Affiliation(s)
- Wouter van Elmpt
- 1 Department of Radiation Oncology (MAASTRO), 2 Department of Radiology, GROW, School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands ; 3 Radiation Oncology, University Hospitals Leuven/KU Leuven, Leuven, Belgium
| | - Catharina M L Zegers
- 1 Department of Radiation Oncology (MAASTRO), 2 Department of Radiology, GROW, School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands ; 3 Radiation Oncology, University Hospitals Leuven/KU Leuven, Leuven, Belgium
| | - Marco Das
- 1 Department of Radiation Oncology (MAASTRO), 2 Department of Radiology, GROW, School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands ; 3 Radiation Oncology, University Hospitals Leuven/KU Leuven, Leuven, Belgium
| | - Dirk De Ruysscher
- 1 Department of Radiation Oncology (MAASTRO), 2 Department of Radiology, GROW, School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands ; 3 Radiation Oncology, University Hospitals Leuven/KU Leuven, Leuven, Belgium
| |
Collapse
|