1
|
Salman R, Nguyen HN, Sher AC, Hallam K, Seghers VJ, Sammer MBK. Diagnostic performance of artificial intelligence for pediatric pulmonary nodule detection on chest computed tomography: comparison of simulated lower radiation doses. Eur J Pediatr 2023; 182:5159-5165. [PMID: 37698612 DOI: 10.1007/s00431-023-05194-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 09/13/2023]
Abstract
The combination of low dose CT and AI performance in the pediatric population has not been explored. Understanding this relationship is relevant for pediatric patients given the potential radiation risks. Here, the objective was to determine the diagnostic performance of commercially available Computer Aided Detection (CAD) for pulmonary nodules in pediatric patients at simulated lower radiation doses. Retrospective chart review of 30 sequential patients between 12-18 years old who underwent a chest CT on the Siemens SOMATOM Force from December 20, 2021, to April 12, 2022. Simulated lower doses at 75%, 50%, and 25% were reconstructed in lung kernel at 3 mm slice thickness using ReconCT and imported to Syngo CT Lung CAD software for analysis. Two pediatric radiologists reviewed the full dose CTs to determine the reference read. Two other pediatric radiologists compared the Lung CAD results at 100% dose and each simulated lower dose level to the reference on a nodule by nodule basis. The sensitivity (Sn), positive predictive value (PPV), and McNemar test were used for comparison of Lung CAD performance based on dose. As reference standard, 109 nodules were identified by the two radiologists. At 100%, and simulated 75%, 50%, and 25% doses, lung CAD detected 60, 62, 58, and 62 nodules, respectively; 28, 28, 29, and 26 were true positive (Sn = 26%, 26%, 27%, 24%), 30, 32, 27, and 34 were false positive (PPV = 48%, 47%, 52%, 43%). No statistically significance difference of Lung CAD performance at different doses was found, with p-values of 1.0, 1.0, and 0.7 at simulated 75%, 50%, and 25% doses compared to standard dose. CONCLUSION The Lung CAD shows low sensitivity at all simulated lower doses for the detection of pulmonary nodules in this pediatric population. However, radiation dose may be reduced from standard without further compromise to the Lung CAD performance. WHAT IS KNOWN • High diagnostic performance of Lung CAD for detection of pulmonary nodules in adults. • Several imaging techniques are applied to reduce pediatric radiation dose. WHAT IS NEW • Low sensitivity at all simulated lower doses for the detection of pulmonary nodules in our pediatric population. • Radiation dose may be reduced from standard without further compromise to the Lung CAD performance.
Collapse
Affiliation(s)
- Rida Salman
- Edward B. Singleton Department of Radiology, Division of Body Imaging, Texas Children's Hospital and Baylor College of Medicine, 6701 Fannin St. Suite 470, Houston, TX, 77030, USA
| | - HaiThuy N Nguyen
- Department of Radiology, Children's Hospital Los Angeles and Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Andrew C Sher
- Edward B. Singleton Department of Radiology, Division of Body Imaging, Texas Children's Hospital and Baylor College of Medicine, 6701 Fannin St. Suite 470, Houston, TX, 77030, USA
| | - Kristina Hallam
- CT R&D Collaborations, Siemens Healthineers, Malvern, PA, USA
| | - Victor J Seghers
- Edward B. Singleton Department of Radiology, Division of Body Imaging, Texas Children's Hospital and Baylor College of Medicine, 6701 Fannin St. Suite 470, Houston, TX, 77030, USA
| | - Marla B K Sammer
- Edward B. Singleton Department of Radiology, Division of Body Imaging, Texas Children's Hospital and Baylor College of Medicine, 6701 Fannin St. Suite 470, Houston, TX, 77030, USA.
| |
Collapse
|
2
|
Sartoretti T, Racine D, Mergen V, Jungblut L, Monnin P, Flohr TG, Martini K, Frauenfelder T, Alkadhi H, Euler A. Quantum Iterative Reconstruction for Low-Dose Ultra-High-Resolution Photon-Counting Detector CT of the Lung. Diagnostics (Basel) 2022; 12:522. [PMID: 35204611 PMCID: PMC8871296 DOI: 10.3390/diagnostics12020522] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 02/06/2023] Open
Abstract
The aim of this study was to characterize image quality and to determine the optimal strength levels of a novel iterative reconstruction algorithm (quantum iterative reconstruction, QIR) for low-dose, ultra-high-resolution (UHR) photon-counting detector CT (PCD-CT) of the lung. Images were acquired on a clinical dual-source PCD-CT in the UHR mode and reconstructed with a sharp lung reconstruction kernel at different strength levels of QIR (QIR-1 to QIR-4) and without QIR (QIR-off). Noise power spectrum (NPS) and target transfer function (TTF) were analyzed in a cylindrical phantom. 52 consecutive patients referred for low-dose UHR chest PCD-CT were included (CTDIvol: 1 ± 0.6 mGy). Quantitative image quality analysis was performed computationally which included the calculation of the global noise index (GNI) and the global signal-to-noise ratio index (GSNRI). The mean attenuation of the lung parenchyma was measured. Two readers graded images qualitatively in terms of overall image quality, image sharpness, and subjective image noise using 5-point Likert scales. In the phantom, an increase in the QIR level slightly decreased spatial resolution and considerably decreased noise amplitude without affecting the frequency content. In patients, GNI decreased from QIR-off (202 ± 34 HU) to QIR-4 (106 ± 18 HU) (p < 0.001) by 48%. GSNRI increased from QIR-off (4.4 ± 0.8) to QIR-4 (8.2 ± 1.6) (p < 0.001) by 87%. Attenuation of lung parenchyma was highly comparable among reconstructions (QIR-off: -849 ± 53 HU to QIR-4: -853 ± 52 HU, p < 0.001). Subjective noise was best in QIR-4 (p < 0.001), while QIR-3 was best for sharpness and overall image quality (p < 0.001). Thus, our phantom and patient study indicates that QIR-3 provides the optimal iterative reconstruction level for low-dose, UHR PCD-CT of the lungs.
Collapse
Affiliation(s)
- Thomas Sartoretti
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, CH-8091 Zurich, Switzerland; (T.S.); (V.M.); (L.J.); (K.M.); (T.F.); (H.A.)
| | - Damien Racine
- Institute of Radiation Physics (IRA), Lausanne University Hospital (CHUV), University of Lausanne (UNIL), CH-1010 Lausanne, Switzerland; (D.R.); (P.M.)
| | - Victor Mergen
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, CH-8091 Zurich, Switzerland; (T.S.); (V.M.); (L.J.); (K.M.); (T.F.); (H.A.)
| | - Lisa Jungblut
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, CH-8091 Zurich, Switzerland; (T.S.); (V.M.); (L.J.); (K.M.); (T.F.); (H.A.)
| | - Pascal Monnin
- Institute of Radiation Physics (IRA), Lausanne University Hospital (CHUV), University of Lausanne (UNIL), CH-1010 Lausanne, Switzerland; (D.R.); (P.M.)
| | | | - Katharina Martini
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, CH-8091 Zurich, Switzerland; (T.S.); (V.M.); (L.J.); (K.M.); (T.F.); (H.A.)
| | - Thomas Frauenfelder
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, CH-8091 Zurich, Switzerland; (T.S.); (V.M.); (L.J.); (K.M.); (T.F.); (H.A.)
| | - Hatem Alkadhi
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, CH-8091 Zurich, Switzerland; (T.S.); (V.M.); (L.J.); (K.M.); (T.F.); (H.A.)
| | - André Euler
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, CH-8091 Zurich, Switzerland; (T.S.); (V.M.); (L.J.); (K.M.); (T.F.); (H.A.)
| |
Collapse
|
3
|
Sartoretti T, Landsmann A, Nakhostin D, Eberhard M, Röeren C, Mergen V, Higashigaito K, Raupach R, Alkadhi H, Euler A. Quantum Iterative Reconstruction for Abdominal Photon-counting Detector CT Improves Image Quality. Radiology 2022; 303:339-348. [PMID: 35103540 DOI: 10.1148/radiol.211931] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Background An iterative reconstruction (IR) algorithm was introduced for clinical photon-counting detector (PCD) CT. Purpose To investigate the image quality and the optimal strength level of a quantum IR algorithm (QIR; Siemens Healthcare) for virtual monoenergetic images and polychromatic images (T3D) in a phantom and in patients undergoing portal venous abdominal PCD CT. Materials and Methods In this retrospective study, noise power spectrum (NPS) was measured in a water-filled phantom. Consecutive oncologic patients who underwent portal venous abdominal PCD CT between March and April 2021 were included. Virtual monoenergetic images at 60 keV and T3D were reconstructed without QIR (QIR-off; reference standard) and with QIR at four levels (QIR 1-4; index tests). Global noise index, contrast-to-noise ratio (CNR), and voxel-wise CT attenuation differences were measured. Noise and texture, artifacts, diagnostic confidence, and overall quality were assessed qualitatively. Conspicuity of hypodense liver lesions was rated by four readers. Parametric (analyses of variance, paired t tests) and nonparametric tests (Friedman, post hoc Wilcoxon signed-rank tests) were used to compare quantitative and qualitative image quality among reconstructions. Results In the phantom, NPS showed unchanged noise texture across reconstructions with maximum spatial frequency differences of 0.01 per millimeter. Fifty patients (mean age, 59 years ± 16 [standard deviation]; 31 women) were included. Global noise index was reduced from QIR-off to QIR-4 by 45% for 60 keV and by 44% for T3D (both, P < .001). CNR of the liver improved from QIR-off to QIR-4 by 74% for 60 keV and by 69% for T3D (both, P < .001). No evidence of difference was found in mean attenuation of fat and liver (P = .79-.84) and on a voxel-wise basis among reconstructions. Qualitatively, QIR-4 outperformed all reconstructions in every category for 60 keV and T3D (P value range, <.001 to .01). All four readers rated QIR-4 superior to other strengths for lesion conspicuity (P value range, <.001 to .04). Conclusion In portal venous abdominal photon-counting detector CT, an iterative reconstruction algorithm (QIR; Siemens Healthcare) at high strength levels improved image quality by reducing noise and improving contrast-to-noise ratio and lesion conspicuity without compromising image texture or CT attenuation values. © RSNA, 2022 Online supplemental material is available for this article. See also the editorial by Sinitsyn in this issue.
Collapse
Affiliation(s)
- Thomas Sartoretti
- From the Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Raemistrasse 100, CH-8091 Zurich, Switzerland (T.S., A.L., D.N., M.E., C.R., V.M., K.H., H.A., A.E.); Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht University, Maastricht, the Netherlands (T.S.); and Siemens Healthcare, Forchheim, Germany (R.R.)
| | - Anna Landsmann
- From the Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Raemistrasse 100, CH-8091 Zurich, Switzerland (T.S., A.L., D.N., M.E., C.R., V.M., K.H., H.A., A.E.); Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht University, Maastricht, the Netherlands (T.S.); and Siemens Healthcare, Forchheim, Germany (R.R.)
| | - Dominik Nakhostin
- From the Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Raemistrasse 100, CH-8091 Zurich, Switzerland (T.S., A.L., D.N., M.E., C.R., V.M., K.H., H.A., A.E.); Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht University, Maastricht, the Netherlands (T.S.); and Siemens Healthcare, Forchheim, Germany (R.R.)
| | - Matthias Eberhard
- From the Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Raemistrasse 100, CH-8091 Zurich, Switzerland (T.S., A.L., D.N., M.E., C.R., V.M., K.H., H.A., A.E.); Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht University, Maastricht, the Netherlands (T.S.); and Siemens Healthcare, Forchheim, Germany (R.R.)
| | - Christian Röeren
- From the Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Raemistrasse 100, CH-8091 Zurich, Switzerland (T.S., A.L., D.N., M.E., C.R., V.M., K.H., H.A., A.E.); Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht University, Maastricht, the Netherlands (T.S.); and Siemens Healthcare, Forchheim, Germany (R.R.)
| | - Victor Mergen
- From the Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Raemistrasse 100, CH-8091 Zurich, Switzerland (T.S., A.L., D.N., M.E., C.R., V.M., K.H., H.A., A.E.); Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht University, Maastricht, the Netherlands (T.S.); and Siemens Healthcare, Forchheim, Germany (R.R.)
| | - Kai Higashigaito
- From the Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Raemistrasse 100, CH-8091 Zurich, Switzerland (T.S., A.L., D.N., M.E., C.R., V.M., K.H., H.A., A.E.); Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht University, Maastricht, the Netherlands (T.S.); and Siemens Healthcare, Forchheim, Germany (R.R.)
| | - Rainer Raupach
- From the Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Raemistrasse 100, CH-8091 Zurich, Switzerland (T.S., A.L., D.N., M.E., C.R., V.M., K.H., H.A., A.E.); Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht University, Maastricht, the Netherlands (T.S.); and Siemens Healthcare, Forchheim, Germany (R.R.)
| | - Hatem Alkadhi
- From the Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Raemistrasse 100, CH-8091 Zurich, Switzerland (T.S., A.L., D.N., M.E., C.R., V.M., K.H., H.A., A.E.); Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht University, Maastricht, the Netherlands (T.S.); and Siemens Healthcare, Forchheim, Germany (R.R.)
| | - André Euler
- From the Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Raemistrasse 100, CH-8091 Zurich, Switzerland (T.S., A.L., D.N., M.E., C.R., V.M., K.H., H.A., A.E.); Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht University, Maastricht, the Netherlands (T.S.); and Siemens Healthcare, Forchheim, Germany (R.R.)
| |
Collapse
|
4
|
Tschauner S, Zellner M, Pistorius S, Gnannt R, Schraner T, Kellenberger CJ. Ultra-low-dose lung multidetector computed tomography in children - Approaching 0.2 millisievert. Eur J Radiol 2021; 139:109699. [PMID: 33932715 DOI: 10.1016/j.ejrad.2021.109699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 03/29/2021] [Accepted: 04/05/2021] [Indexed: 11/25/2022]
Abstract
PURPOSE To compare objective and subjective parameters in image quality and radiation dose of two MDCTs (helical 64 detector CT vs. axial 256 detector CT) in paediatric lung CT. METHODS Radiation dose and image quality were compared between non-enhanced lung CT from a helical 64-slice multidetector CT (MDCT 1) and a 256-slice scanner (MDCT 2) with axial wide-cone acquisition and using deep learning image reconstruction. In 23 size-matched paediatric studies (age 2-18 years) from each scanner, the radiation exposure, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), image sharpness and delineation of small airways were assessed. Subjective image quality was rated by 6 paediatric radiologists. RESULTS While MDCT 2 provided higher SNR and CNR, subjective image quality was not significantly different between studies from both scanners. Radiation exposure was lower in studies from MDCT 2 (CTDIvol 0.26 ± 0.14 mGy, effective dose 0.23 ± 0.11 mSv) than from MDCT 1 (CTDIvol 0.96 ± 0.52 mGy, effective dose 1.13 ± 0.58 mSv), p < 0.001. Despite lower radiation dose for the scout images, the relative scout-scan-ratio increased from 2.64 ± 1.42 % in MDCT 1 to 6.60 ± 5.03 % in MDCT 2 (p = 0.001). CONCLUSIONS By using latest scanner technology effective radiation dose can be reduced to 0.1-0.3 mSv for lung CT in children without compromising image quality. Scout image dose increasingly accounts for substantial portions of the total scan dose and needs to be optimized. In children CT should be performed on state-of-the-art MDCT scanners with size-adapted exposure protocols and iterative reconstruction.
Collapse
Affiliation(s)
- Sebastian Tschauner
- University Children's Hospital Zurich, Department of Imaging, Zurich, Switzerland; Medical University of Graz, Department of Radiology, Division of Pediatric Radiology, Graz, Austria.
| | - Michael Zellner
- University Children's Hospital Zurich, Department of Imaging, Zurich, Switzerland.
| | - Sarah Pistorius
- University Children's Hospital Zurich, Department of Imaging, Zurich, Switzerland.
| | - Ralph Gnannt
- University Children's Hospital Zurich, Department of Imaging, Zurich, Switzerland.
| | - Thomas Schraner
- University Children's Hospital Zurich, Department of Imaging, Zurich, Switzerland.
| | | |
Collapse
|
5
|
Abstract
OBJECTIVE. Pediatric CT angiography (CTA) presents unique challenges compared with adult CTA. Because of the ionizing radiation exposure, CTA should be used judiciously in children. The pearls offered here are observations gleaned from the authors' experience in the use of pediatric CTA. We also present some potential follies to be avoided. CONCLUSION. Understanding the underlying principles and paying meticulous attention to detail can substantially optimize dose and improve the diagnostic quality of pediatric CTA.
Collapse
|
6
|
Lim WH, Choi YH, Park JE, Cho YJ, Lee S, Cheon JE, Kim WS, Kim IO, Kim JH. Application of Vendor-Neutral Iterative Reconstruction Technique to Pediatric Abdominal Computed Tomography. Korean J Radiol 2020; 20:1358-1367. [PMID: 31464114 PMCID: PMC6715563 DOI: 10.3348/kjr.2018.0715] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 06/05/2019] [Indexed: 02/06/2023] Open
Abstract
Objective To compare image qualities between vendor-neutral and vendor-specific hybrid iterative reconstruction (IR) techniques for abdominopelvic computed tomography (CT) in young patients. Materials and Methods In phantom study, we used an anthropomorphic pediatric phantom, age-equivalent to 5-year-old, and reconstructed CT data using traditional filtered back projection (FBP), vendor-specific and vendor-neutral IR techniques (ClariCT; ClariPI) in various radiation doses. Noise, low-contrast detectability and subjective spatial resolution were compared between FBP, vendor-specific (i.e., iDose1 to 5; Philips Healthcare), and vendor-neutral (i.e., ClariCT1 to 5) IR techniques in phantom. In 43 patients (median, 14 years; age range 1–19 years), noise, contrast-to-noise ratio (CNR), and qualitative image quality scores of abdominopelvic CT were compared between FBP, iDose level 4 (iDose4), and ClariCT level 2 (ClariCT2), which showed most similar image quality to clinically used vendor-specific IR images (i.e., iDose4) in phantom study. Noise, CNR, and qualitative imaging scores were compared using one-way repeated measure analysis of variance. Results In phantom study, ClariCT2 showed noise level similar to iDose4 (14.68–7.66 Hounsfield unit [HU] vs. 14.78–6.99 HU at CT dose index volume range of 0.8–3.8 mGy). Subjective low-contrast detectability and spatial resolution were similar between ClariCT2 and iDose4. In clinical study, ClariCT2 was equivalent to iDose4 for noise (14.26–17.33 vs. 16.01–18.90) and CNR (3.55–5.24 vs. 3.20–4.60) (p > 0.05). For qualitative imaging scores, the overall image quality ([reader 1, reader 2]; 2.74 vs. 2.07, 3.02 vs. 2.28) and noise (2.88 vs. 2.23, 2.93 vs. 2.33) of ClariCT2 were superior to those of FBP (p < 0.05), and not different from those of iDose4 (2.74 vs. 2.72, 3.02 vs. 2.98; 2.88 vs. 2.77, 2.93 vs. 2.86) (p > 0.05). Conclusion Vendor-neutral IR technique shows image quality similar to that of clinically used vendor-specific hybrid IR technique for abdominopelvic CT in young patients.
Collapse
Affiliation(s)
- Woo Hyeon Lim
- Department of Radiology, Seoul National University Hospital, Seoul, Korea.,Department of Radiology, Seoul National University College of Medicine, Seoul, Korea
| | - Young Hun Choi
- Department of Radiology, Seoul National University Hospital, Seoul, Korea.,Department of Radiology, Seoul National University College of Medicine, Seoul, Korea.
| | - Ji Eun Park
- Department of Radiology, Seoul National University Hospital, Seoul, Korea
| | - Yeon Jin Cho
- Department of Radiology, Seoul National University Hospital, Seoul, Korea.,Department of Radiology, Seoul National University College of Medicine, Seoul, Korea
| | - Seunghyun Lee
- Department of Radiology, Seoul National University Hospital, Seoul, Korea.,Department of Radiology, Seoul National University College of Medicine, Seoul, Korea
| | - Jung Eun Cheon
- Department of Radiology, Seoul National University Hospital, Seoul, Korea.,Department of Radiology, Seoul National University College of Medicine, Seoul, Korea.,Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Korea
| | - Woo Sun Kim
- Department of Radiology, Seoul National University Hospital, Seoul, Korea.,Department of Radiology, Seoul National University College of Medicine, Seoul, Korea.,Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Korea
| | - In One Kim
- Department of Radiology, Seoul National University Hospital, Seoul, Korea.,Department of Radiology, Seoul National University College of Medicine, Seoul, Korea.,Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Korea
| | - Jong Hyo Kim
- Department of Radiology, Seoul National University College of Medicine, Seoul, Korea.,Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea.,Advanced Institute of Convergence Technology, Suwon, Korea
| |
Collapse
|
7
|
Extent of tube-current reduction using sinogram affirmed iterative reconstruction in pediatric computed tomography: phantom study. Pediatr Radiol 2019; 49:51-56. [PMID: 30259068 DOI: 10.1007/s00247-018-4260-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 08/12/2018] [Accepted: 09/05/2018] [Indexed: 10/28/2022]
Abstract
BACKGROUND Iterative image reconstruction techniques can produce diagnostic-quality computed tomography (CT) images with lower radiation dose. OBJECTIVE To quantify the reduction in x-ray tube-current setting and optimize pediatric CT scans using different strengths of an iterative reconstruction technique. MATERIALS AND METHODS The head, chest and abdomen regions of an anthropomorphic phantom representing a 5-year-old patient were scanned using standard CT protocols. Images were reconstructed using filtered back projection and different strengths of a sinogram affirmed iterative reconstruction technique. Repeated measurements of contrast-to-noise ratios in the lungs, bone and soft-tissue regions of the phantom were carried out. Maximum increase in contrast-to-noise ratio with iterative reconstruction strength was identified and a tube-current reduction factor was calculated. Head scans were repeated with reduced tube current and compared to filtered back projection images. RESULTS Iterative reconstruction strength of 3 for head and chest images and 4 for abdomen images were optimum, resulting in contrast-to-noise ratio increase of about 50%. A tube-current reduction factor of 1.2 for head images was calculated. Images of the head acquired using reduced tube-current showed similar contrast-to-noise ratio as images form filtered back projection with full tube current. CONCLUSION Optimum strength of iterative reconstruction technique has been identified for head, chest and abdomen images. Reductions in tube current of 20%, resulting in similar radiation dose reduction, have been established.
Collapse
|
8
|
Hedgire S, Ghoshhajra B, Kalra M. Dose optimization in cardiac CT. Phys Med 2017; 41:97-103. [DOI: 10.1016/j.ejmp.2017.04.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 03/22/2017] [Accepted: 04/19/2017] [Indexed: 10/19/2022] Open
|
9
|
CT image quality in sinogram affirmed iterative reconstruction phantom study - is there a point of diminishing returns? Pediatr Radiol 2017; 47:333-341. [PMID: 27891546 DOI: 10.1007/s00247-016-3745-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 08/25/2016] [Accepted: 10/31/2016] [Indexed: 01/01/2023]
Abstract
BACKGROUND In our pediatric practice, we have observed qualitatively limited improvement in the image quality of images generated with sinogram affirmed iterative reconstruction (SAFIRE) compared to series generated with filtered back projection (FBP), particularly in cases near or below a CT dose index volume (CTDIvol) of 1-mGy. OBJECTIVE To determine whether the image quality advantage of SAFIRE remains constant across clinically used CT dose levels in an American College of Radiology (ACR) CT accreditation phantom including the lower dose range used in pediatric imaging. MATERIALS AND METHODS An exemption from institutional review board approval was obtained for this phantom-based study. An ACR quality phantom was scanned in incremental kV steps and effective tube current intervals. Acquisitions were reconstructed with FBP and SAFIRE strengths of 1, 3 and 5. Image quality measures were calculated including signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), low-contrast resolution and high-contrast resolution. Peak SNR was also calculated. Descriptive and nonparametric statistics were used to compare these image quality metrics while normalizing to CT dose index (CTDI). RESULTS The percent improvement in SNR and peak SNR of SAFIRE reconstructions compared to FBP decreased from about 70% for image sets acquired above a 1.42 mGy CTDI to 25% at a 0.25 mGy CTDI. CNR improvement with SAFIRE did not vary with dose. No significant difference was seen in the low-contrast resolution or high-contrast resolution of SAFIRE images compared to FBP. CONCLUSION SNR did not improve equally after applying SAFIRE across a spectrum clinically used CTDIs. Below a threshold CTDI, the incremental improvement of SAFIRE compared to FBP decreased.
Collapse
|
10
|
Optimization of hybrid iterative reconstruction level and evaluation of image quality and radiation dose for pediatric cardiac computed tomography angiography. Pediatr Radiol 2017; 47:31-38. [PMID: 27637188 DOI: 10.1007/s00247-016-3698-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 07/09/2016] [Accepted: 08/26/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND Hybrid iterative reconstruction can reduce image noise and produce better image quality compared with filtered back-projection (FBP), but few reports describe optimization of the iteration level. OBJECTIVE We optimized the iteration level of iDose4 and evaluated image quality for pediatric cardiac CT angiography. MATERIALS AND METHODS Children (n = 160) with congenital heart disease were enrolled and divided into full-dose (n = 84) and half-dose (n = 76) groups. Four series were reconstructed using FBP, and iDose4 levels 2, 4 and 6; we evaluated subjective quality of the series using a 5-grade scale and compared the series using a Kruskal-Wallis H test. For FBP and iDose4-optimal images, we compared contrast-to-noise ratios (CNR) and size-specific dose estimates (SSDE) using a Student's t-test. We also compared diagnostic-accuracy of each group using a Kruskal-Wallis H test. RESULTS Mean scores for iDose4 level 4 were the best in both dose groups (all P < 0.05). CNR was improved in both groups with iDose4 level 4 as compared with FBP. Mean decrease in SSDE was 53% in the half-dose group. Diagnostic accuracy for the four datasets were in the range 92.6-96.2% (no statistical difference). CONCLUSION iDose4 level 4 was optimal for both the full- and half-dose groups. Protocols with iDose4 level 4 allowed 53% reduction in SSDE without significantly affecting image quality and diagnostic accuracy.
Collapse
|
11
|
Jensen K, Andersen HK, Tingberg A, Reisse C, Fosse E, Martinsen ACT. Improved Liver Lesion Conspicuity With Iterative Reconstruction in Computed Tomography Imaging. Curr Probl Diagn Radiol 2016; 45:291-6. [DOI: 10.1067/j.cpradiol.2015.11.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 11/27/2015] [Indexed: 11/22/2022]
|
12
|
Smarda M, Efstathopoulos E, Mazioti A, Kordolaimi S, Ploussi A, Priftis K, Kelekis N, Alexopoulou E. High-Resolution Computed Tomography Examinations for Chronic Suppurative Lung Disease in Early Childhood: Radiation Exposure and Image Quality Evaluations with Iterative Reconstruction Algorithm Use. Can Assoc Radiol J 2016; 67:218-24. [DOI: 10.1016/j.carj.2015.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 09/05/2015] [Accepted: 10/28/2015] [Indexed: 10/21/2022] Open
Abstract
Purpose High radiosensitivity of children undergoing repetitive computed tomography examinations necessitates the use of iterative reconstruction algorithms in order to achieve a significant radiation dose reduction. The goal of this study is to compare the iDose iterative reconstruction algorithm with filtered backprojection in terms of radiation exposure and image quality in 33 chest high-resolution computed tomography examinations performed in young children with chronic bronchitis. Methods Fourteen patients were scanned using the filtered backprojection protocol while 19 patients using the iDose protocol and reduced milliampere-seconds, both on a 64-detector row computed tomography scanner. The iDose group images were reconstructed with different iDose levels (2, 4, and 6). Radiation exposure quantities were estimated, while subjective and objective image qualities were evaluated. Unpaired t tests were used for data statistical analysis. Results The iDose application allowed significant effective dose reduction (about 80%). Subjective image quality evaluation showed satisfactory results even with iDose level 2, whereas it approached excellent image with iDose level 6. Subjective image noise was comparable between the 2 groups with the use of iDose level 4, while objective noise was comparable between filtered backprojection and iterative reconstruction level 6 images. Conclusions The iDose algorithm use in pediatric chest high-resolution computed tomography reduces radiation exposure without compromising image quality. Further evaluation with iterative reconstruction algorithms is needed in order to establish high-resolution computed tomography as the gold standard low-dose method for children suffering from chronic lung diseases.
Collapse
Affiliation(s)
- Magdalini Smarda
- Radiology Department, University General Hospital ATTIKON, Chaidari, Athens, Greece
| | | | - Argyro Mazioti
- Radiology Department, University General Hospital ATTIKON, Chaidari, Athens, Greece
| | - Sofia Kordolaimi
- Radiology Department, University General Hospital ATTIKON, Chaidari, Athens, Greece
| | - Agapi Ploussi
- Radiology Department, University General Hospital ATTIKON, Chaidari, Athens, Greece
| | - Konstantinos Priftis
- Department of Pediatrics, University General Hospital ATTIKON, Chaidari, Athens, Greece
| | - Nikolaos Kelekis
- Radiology Department, University General Hospital ATTIKON, Chaidari, Athens, Greece
| | - Efthymia Alexopoulou
- Radiology Department, University General Hospital ATTIKON, Chaidari, Athens, Greece
| |
Collapse
|
13
|
Goh YP, Lau KK, Low K, Buchan K, Oh LCW, Kuganesan A, Huynh M. Fine focal spot size improves image quality in computed tomography abdomen and pelvis. Eur Radiol 2016; 26:4545-4550. [DOI: 10.1007/s00330-016-4313-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 02/17/2016] [Accepted: 02/26/2016] [Indexed: 12/17/2022]
|
14
|
Successful Dose Reduction Using Reduced Tube Voltage With Hybrid Iterative Reconstruction in Pediatric Abdominal CT. AJR Am J Roentgenol 2015. [PMID: 26204293 DOI: 10.2214/ajr.14.12698] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
OBJECTIVE The purpose of this article is to assess radiation dose reduction, image quality, and diagnostic confidence using low tube voltage in combination with hybrid iterative reconstruction in contrast-enhanced pediatric abdominal CT. MATERIALS AND METHODS CT examinations of 133 patients (median age, 10 years) were performed at sequentially reduced doses. The first group (group 1) was scanned using dimension-based protocols at 120 kV for all patient sizes. The optimized group (group 5) was scanned at 80 kV for less than 18 cm in the lateral dimension and 100 kV in the 19-30 cm lateral dimension. CT examinations reconstructed with filtered back projection (FBP) and four levels of hybrid iterative reconstruction were reviewed by four blinded readers for subjective image quality and diagnostic confidence. Objective noise, volume CT dose index (CTDIvol), and size-specific dose estimate (SSDE) were recorded. Data were analyzed using t tests, one and two-way ANOVA, and the intraclass correlation coefficient. RESULTS Compared with group 1, the radiation dose was reduced for group 5 by 63% measured by SSDE (4.69 vs 10.00 mGy; p < 0.001). Subjective image noise was increased for FBP images (p < 0.001) but not was statistically significantly different for all levels of hybrid iterative reconstruction; artifacts were reduced and visibility of small structures was improved (both p < 0.001). Diagnostic confidence was improved for solid organ injury and metastatic disease (both p < 0.001) and was not statistically significantly different for appendicitis (p = 0.306). CONCLUSION Use of hybrid iterative reconstruction with low-tube-voltage protocols enables substantial radiation dose reduction for pediatric abdominal CT with equivalent to improved subjective image quality and diagnostic confidence.
Collapse
|
15
|
Khawaja RDA, Singh S, Otrakji A, Padole A, Lim R, Nimkin K, Westra S, Kalra MK, Gee MS. Dose reduction in pediatric abdominal CT: use of iterative reconstruction techniques across different CT platforms. Pediatr Radiol 2015; 45:1046-55. [PMID: 25427434 DOI: 10.1007/s00247-014-3235-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 09/17/2014] [Accepted: 11/10/2014] [Indexed: 10/24/2022]
Abstract
Dose reduction in children undergoing CT scanning is an important priority for the radiology community and public at large. Drawbacks of radiation reduction are increased image noise and artifacts, which can affect image interpretation. Iterative reconstruction techniques have been developed to reduce noise and artifacts from reduced-dose CT examinations, although reconstruction algorithm, magnitude of dose reduction and effects on image quality vary. We review the reconstruction principles, radiation dose potential and effects on image quality of several iterative reconstruction techniques commonly used in clinical settings, including 3-D adaptive iterative dose reduction (AIDR-3D), adaptive statistical iterative reconstruction (ASIR), iDose, sinogram-affirmed iterative reconstruction (SAFIRE) and model-based iterative reconstruction (MBIR). We also discuss clinical applications of iterative reconstruction techniques in pediatric abdominal CT.
Collapse
Affiliation(s)
- Ranish Deedar Ali Khawaja
- Harvard Medical School, MGH Imaging, Massachusetts General Hospital, 25 New Chardon St., 4th floor, Boston, MA, 02114, USA,
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Iterative Reconstruction Techniques in Abdominopelvic CT: Technical Concepts and Clinical Implementation. AJR Am J Roentgenol 2015; 205:W19-31. [PMID: 26102414 DOI: 10.2214/ajr.14.13402] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
17
|
Abstract
OBJECTIVE. Radiation exposure from CT examinations should be reduced to a minimum in children. Iterative reconstruction (IR) is a method to reduce image noise that can be used to improve CT image quality, thereby allowing radiation dose reduction. This article reviews the use of hybrid and model-based IRs in pediatric CT and discusses the possibilities, advantages, and disadvantages of IR in pediatric CT and the importance of radiation dose reduction for CT of children. CONCLUSION. IR is a promising and potentially highly valuable technique that can be used to substantially reduce the amount of radiation in pediatric imaging. Future research should determine the maximum achievable radiation dose reduction in pediatric CT that is possible without a loss of diagnostic image quality.
Collapse
|