1
|
O'Regan PW, Harold-Barry A, O'Mahony AT, Crowley C, Joyce S, Moore N, O'Connor OJ, Henry MT, Ryan DJ, Maher MM. Ultra-low-dose chest computed tomography with model-based iterative reconstruction in the analysis of solid pulmonary nodules: A prospective study. World J Radiol 2024; 16:668-677. [PMID: 39635307 PMCID: PMC11612801 DOI: 10.4329/wjr.v16.i11.668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/10/2024] [Accepted: 11/12/2024] [Indexed: 11/27/2024] Open
Abstract
BACKGROUND Incidental pulmonary nodules are an increasingly common finding on computed tomography (CT) scans of the thorax due to the exponential rise in CT examinations in everyday practice. The majority of incidental pulmonary nodules are benign and correctly identifying the small number of malignant nodules is challenging. Ultra-low-dose CT (ULDCT) has been shown to be effective in diagnosis of respiratory pathology in comparison with traditional standard dose techniques. Our hypothesis was that ULDCT chest combined with model-based iterative reconstruction (MBIR) is comparable to standard dose CT (SDCT) chest in the analysis of pulmonary nodules with significant reduction in radiation dose. AIM To prospectively compare ULDCT chest combined with MBIR with SDCT chest in the analysis of solid pulmonary nodules. METHODS A prospective cohort study was conducted on adult patients (n = 30) attending a respiratory medicine outpatient clinic in a tertiary referral university hospital for surveillance of previously detected indeterminate pulmonary nodules on SDCT chest. This study involved the acquisition of a reference SDCT chest followed immediately by an ULDCT chest. Nodule identification, nodule characterisation, nodule measurement, objective and subjective image quality and radiation dose were compared between ULDCT with MBIR and SDCT chest. RESULTS One hundred solid nodules were detected on ULDCT chest and 98 on SDCT chest. There was no significant difference in the characteristics of correctly identified nodules when comparing SDCT chest to ULDCT chest protocols. Signal-to-noise ratio was significantly increased in the ULDCT chest in all areas except in the paraspinal muscle at the maximum cardiac diameter level (P < 0.001). The mean subjective image quality score for overall diagnostic acceptability was 8.9/10. The mean dose length product, computed tomography volume dose index and effective dose for the ULDCT chest protocol were 5.592 mGy.cm, 0.16 mGy and 0.08 mSv respectively. These were significantly less than the SDCT chest protocol (P < 0.001) and represent a radiation dose reduction of 97.6%. CONCLUSION ULDCT chest combined with MBIR is non-inferior to SDCT chest in the analysis of previously identified solid pulmonary nodules and facilitates a large reduction in radiation dose.
Collapse
Affiliation(s)
- Patrick W O'Regan
- Department of Radiology, School of Medicine, University College Cork, Cork T12 AK54, Ireland
| | | | | | - Claire Crowley
- Department of Radiology, Mercy University Hospital, Cork T12WE28, Ireland
| | - Stella Joyce
- Department of Radiology, Cork University Hospital, Cork T12 DC4A, Ireland
| | - Niamh Moore
- Department of Radiology, School of Medicine, University College Cork, Cork T12 AK54, Ireland
| | - Owen J O'Connor
- Department of Radiology, Cork University Hospital, Cork T12 DC4A, Ireland
| | - Michael T Henry
- Department of Respiratory Medicine, Cork University Hospital, Cork T12 DC4A, Ireland
| | - David J Ryan
- Department of Radiology, School of Medicine, University College Cork, Cork T12 AK54, Ireland
| | - Michael M Maher
- Department of Radiology, School of Medicine, University College Cork, Cork T12 AK54, Ireland
- Department of Radiology, Cork University Hospital, Cork T12 DC4A, Ireland
| |
Collapse
|
2
|
Hop JF, Walstra ANH, Pelgrim GJ, Xie X, Panneman NA, Schurink NW, Faby S, van Straten M, de Bock GH, Vliegenthart R, Greuter MJW. Detectability and Volumetric Accuracy of Pulmonary Nodules in Low-Dose Photon-Counting Detector Computed Tomography: An Anthropomorphic Phantom Study. Diagnostics (Basel) 2023; 13:3448. [PMID: 37998584 PMCID: PMC10669978 DOI: 10.3390/diagnostics13223448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/05/2023] [Accepted: 11/13/2023] [Indexed: 11/25/2023] Open
Abstract
The aim of this phantom study was to assess the detectability and volumetric accuracy of pulmonary nodules on photon-counting detector CT (PCD-CT) at different low-dose levels compared to conventional energy-integrating detector CT (EID-CT). In-house fabricated artificial nodules of different shapes (spherical, lobulated, spiculated), sizes (2.5-10 mm and 5-1222 mm3), and densities (-330 HU and 100 HU) were randomly inserted into an anthropomorphic thorax phantom. The phantom was scanned with a low-dose chest protocol with PCD-CT and EID-CT, in which the dose with PCD-CT was lowered from 100% to 10% with respect to the EID-CT reference dose. Two blinded observers independently assessed the CT examinations of the nodules. A third observer measured the nodule volumes using commercial software. The influence of the scanner type, dose, observer, physical nodule volume, shape, and density on the detectability and volumetric accuracy was assessed by a multivariable regression analysis. In 120 CT examinations, 642 nodules were present. Observer 1 and 2 detected 367 (57%) and 289 nodules (45%), respectively. With PCD-CT and EID-CT, the nodule detectability was similar. The physical nodule volumes were underestimated by 20% (range 8-52%) with PCD-CT and 24% (range 9-52%) with EID-CT. With PCD-CT, no significant decrease in the detectability and volumetric accuracy was found at dose reductions down to 10% of the reference dose (p > 0.05). The detectability and volumetric accuracy were significantly influenced by the observer, nodule volume, and a spiculated nodule shape (p < 0.05), but not by dose, CT scanner type, and nodule density (p > 0.05). Low-dose PCD-CT demonstrates potential to detect and assess the volumes of pulmonary nodules, even with a radiation dose reduction of up to 90%.
Collapse
Affiliation(s)
- Joost F. Hop
- Department of Radiology, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands; (A.N.H.W.); (G.-J.P.); (N.A.P.); (R.V.); (M.J.W.G.)
| | - Anna N. H. Walstra
- Department of Radiology, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands; (A.N.H.W.); (G.-J.P.); (N.A.P.); (R.V.); (M.J.W.G.)
| | - Gert-Jan Pelgrim
- Department of Radiology, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands; (A.N.H.W.); (G.-J.P.); (N.A.P.); (R.V.); (M.J.W.G.)
| | - Xueqian Xie
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China;
| | - Noor A. Panneman
- Department of Radiology, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands; (A.N.H.W.); (G.-J.P.); (N.A.P.); (R.V.); (M.J.W.G.)
| | - Niels W. Schurink
- Siemens Healthineers Nederland B.V., 2595 BN Den Haag, The Netherlands
| | - Sebastian Faby
- Computed Tomography, Siemens Healthcare GmbH, 91301 Forchheim, Germany;
| | - Marcel van Straten
- Department of Radiology, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands;
| | - Geertruida H. de Bock
- Department of Epidemiology, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands;
| | - Rozemarijn Vliegenthart
- Department of Radiology, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands; (A.N.H.W.); (G.-J.P.); (N.A.P.); (R.V.); (M.J.W.G.)
| | - Marcel J. W. Greuter
- Department of Radiology, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands; (A.N.H.W.); (G.-J.P.); (N.A.P.); (R.V.); (M.J.W.G.)
| |
Collapse
|
3
|
Guedes Pinto E, Penha D, Ravara S, Monaghan C, Hochhegger B, Marchiori E, Taborda-Barata L, Irion K. Factors influencing the outcome of volumetry tools for pulmonary nodule analysis: a systematic review and attempted meta-analysis. Insights Imaging 2023; 14:152. [PMID: 37741928 PMCID: PMC10517915 DOI: 10.1186/s13244-023-01480-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/08/2023] [Indexed: 09/25/2023] Open
Abstract
Health systems worldwide are implementing lung cancer screening programmes to identify early-stage lung cancer and maximise patient survival. Volumetry is recommended for follow-up of pulmonary nodules and outperforms other measurement methods. However, volumetry is known to be influenced by multiple factors. The objectives of this systematic review (PROSPERO CRD42022370233) are to summarise the current knowledge regarding factors that influence volumetry tools used in the analysis of pulmonary nodules, assess for significant clinical impact, identify gaps in current knowledge and suggest future research. Five databases (Medline, Scopus, Journals@Ovid, Embase and Emcare) were searched on the 21st of September, 2022, and 137 original research studies were included, explicitly testing the potential impact of influencing factors on the outcome of volumetry tools. The summary of these studies is tabulated, and a narrative review is provided. A subset of studies (n = 16) reporting clinical significance were selected, and their results were combined, if appropriate, using meta-analysis. Factors with clinical significance include the segmentation algorithm, quality of the segmentation, slice thickness, the level of inspiration for solid nodules, and the reconstruction algorithm and kernel in subsolid nodules. Although there is a large body of evidence in this field, it is unclear how to apply the results from these studies in clinical practice as most studies do not test for clinical relevance. The meta-analysis did not improve our understanding due to the small number and heterogeneity of studies testing for clinical significance. CRITICAL RELEVANCE STATEMENT: Many studies have investigated the influencing factors of pulmonary nodule volumetry, but only 11% of these questioned their clinical relevance in their management. The heterogeneity among these studies presents a challenge in consolidating results and clinical application of the evidence. KEY POINTS: • Factors influencing the volumetry of pulmonary nodules have been extensively investigated. • Just 11% of studies test clinical significance (wrongly diagnosing growth). • Nodule size interacts with most other influencing factors (especially for smaller nodules). • Heterogeneity among studies makes comparison and consolidation of results challenging. • Future research should focus on clinical applicability, screening, and updated technology.
Collapse
Affiliation(s)
- Erique Guedes Pinto
- R. Marquês de Ávila E Bolama, Universidade da Beira Interior Faculdade de Ciências da Saúde, 6201-001, Covilhã, Portugal.
| | - Diana Penha
- R. Marquês de Ávila E Bolama, Universidade da Beira Interior Faculdade de Ciências da Saúde, 6201-001, Covilhã, Portugal
- Liverpool Heart and Chest Hospital NHS Foundation Trust, Thomas Dr, Liverpool, L14 3PE, UK
| | - Sofia Ravara
- R. Marquês de Ávila E Bolama, Universidade da Beira Interior Faculdade de Ciências da Saúde, 6201-001, Covilhã, Portugal
| | - Colin Monaghan
- Liverpool Heart and Chest Hospital NHS Foundation Trust, Thomas Dr, Liverpool, L14 3PE, UK
| | | | - Edson Marchiori
- Faculdade de Medicina, Universidade Federal Do Rio de Janeiro, Bloco K - Av. Carlos Chagas Filho, 373 - 2º Andar, Sala 49 - Cidade Universitária da Universidade Federal Do Rio de Janeiro, Rio de Janeiro - RJ, 21044-020, Brasil
- Faculdade de Medicina, Universidade Federal Fluminense, Av. Marquês Do Paraná, 303 - Centro, Niterói - RJ, 24220-000, Brasil
| | - Luís Taborda-Barata
- R. Marquês de Ávila E Bolama, Universidade da Beira Interior Faculdade de Ciências da Saúde, 6201-001, Covilhã, Portugal
| | - Klaus Irion
- Manchester University NHS Foundation Trust, Manchester Royal Infirmary, Oxford Rd, Manchester, M13 9WL, UK
| |
Collapse
|
4
|
Zhao K, Jiang B, Zhang S, Zhang L, Zhang L, Feng Y, Li J, Zhang Y, Xie X. Measurement Accuracy and Repeatability of RECIST-Defined Pulmonary Lesions and Lymph Nodes in Ultra-Low-Dose CT Based on Deep Learning Image Reconstruction. Cancers (Basel) 2022; 14:5016. [PMID: 36291800 PMCID: PMC9599467 DOI: 10.3390/cancers14205016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/11/2022] [Indexed: 08/16/2023] Open
Abstract
BACKGROUND Deep learning image reconstruction (DLIR) improves image quality. We aimed to compare the measured diameter of pulmonary lesions and lymph nodes between DLIR-based ultra-low-dose CT (ULDCT) and contrast-enhanced CT. METHODS The consecutive adult patients with noncontrast chest ULDCT (0.07-0.14 mSv) and contrast-enhanced CT (2.38 mSv) were prospectively enrolled. Patients with poor image quality and body mass index ≥ 30 kg/m2 were excluded. The diameter of pulmonary target lesions and lymph nodes defined by Response Evaluation Criteria in Solid Tumors (RECIST) was measured. The measurement variability between ULDCT and enhanced CT was evaluated by Bland-Altman analysis. RESULTS The 141 enrolled patients (62 ± 12 years) had 89 RECIST-defined measurable pulmonary target lesions (including 30 malignant lesions, mainly adenocarcinomas) and 45 measurable mediastinal lymph nodes (12 malignant). The measurement variation of pulmonary lesions between high-strength DLIR (DLIR-H) images of ULDCT and contrast-enhanced CT was 2.2% (95% CI: 1.7% to 2.6%) and the variation of lymph nodes was 1.4% (1.0% to 1.9%). CONCLUSIONS The measured diameters of pulmonary lesions and lymph nodes in DLIR-H images of ULDCT are highly close to those of contrast-enhanced CT. DLIR-based ULDCT may facilitate evaluating target lesions with greatly reduced radiation exposure in tumor evaluation and lung cancer screening.
Collapse
Affiliation(s)
- Keke Zhao
- Radiology Department, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Haining Rd.100, Shanghai 200080, China
| | - Beibei Jiang
- Radiology Department, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Haining Rd.100, Shanghai 200080, China
| | - Shuai Zhang
- CT Imaging Research Center, GE Healthcare China, Shanghai 201203, China
| | - Lu Zhang
- Radiology Department, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Haining Rd.100, Shanghai 200080, China
| | - Lin Zhang
- Radiology Department, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Haining Rd.100, Shanghai 200080, China
| | - Yan Feng
- Radiology Department, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Haining Rd.100, Shanghai 200080, China
| | - Jianying Li
- CT Imaging Research Center, GE Healthcare China, Shanghai 201203, China
| | - Yaping Zhang
- Radiology Department, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Haining Rd.100, Shanghai 200080, China
| | - Xueqian Xie
- Radiology Department, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Haining Rd.100, Shanghai 200080, China
| |
Collapse
|
5
|
Liu Q, Feng Z, Liu WV, Fu W, He L, Cheng X, Mao Z, Zhou W. Assessment of Solid Pulmonary Nodules or Masses Using Zero Echo Time MR Lung Imaging: A Prospective Head-to-Head Comparison With CT. Front Oncol 2022; 12:812014. [PMID: 35558517 PMCID: PMC9088008 DOI: 10.3389/fonc.2022.812014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/24/2022] [Indexed: 11/13/2022] Open
Abstract
Objective The aim of this study is to determine the potential of zero echo time (ZTE) MR lung imaging in the assessment of solid pulmonary nodules or masses and diagnostic consistency to CT in terms of morphologic characterization. Methods Our Institutional Review Board approved this prospective study. Seventy-one patients with solid pulmonary nodules or masses larger than 1 cm in diameter confirmed by chest CT were enrolled and underwent further lung ZTE-MRI scans within 7 days. ZTE-MRI and CT images were compared in terms of image quality and imaging features. Unidimensional diameter and three-dimensional volume measurements on both modalities were manually measured and compared using the Wilcoxon signed-rank test, intraclass correlation coefficient (ICC), Pearson's correlation analysis, and Bland-Altman analysis. Multivariable logistic regression analysis was used to identify the factors associated with significant inter-modality variation of volume. Results Fifty-four of 71 (76.1%) patients were diagnosed with lung cancer. Subjective image quality was superior in CT compared with ZTE-MRI (p < 0.001). Inter-modality agreement for the imaging features was moderate for emphysema (kappa = 0.50), substantial for fibrosis (kappa = 0.76), and almost perfect (kappa = 0.88-1.00) for the remaining features. The size measurements including diameter and volume between ZTE-MRI and CT showed no significant difference (p = 0.36 for diameter and 0.60 for volume) and revealed perfect inter-observer (ICC = 0.975-0.980) and inter-modality (ICC = 0.942-0.992) agreements. Multivariable analysis showed that non-smooth margin [odds ratio (OR) = 6.008, p = 0.015] was an independent predictor for the significant inter-modality variation of volume. Conclusion ZTE lung imaging is feasible as a part of chest MRI in the assessment and surveillance for solid pulmonary nodules or masses larger than 1 cm, presenting perfect agreement with CT in terms of morphologic characterization.
Collapse
Affiliation(s)
- Qianyun Liu
- Department of Medical Imaging, Yueyang Central Hospital, Yueyang, China
| | - Zhichao Feng
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Weiyin Vivian Liu
- Magnetic Resonance (MR) Research, General Electric (GE) Healthcare, Beijing, China
| | - Weidong Fu
- Department of Medical Imaging, Yueyang Central Hospital, Yueyang, China
| | - Lei He
- Department of Medical Imaging, Yueyang Central Hospital, Yueyang, China
| | - Xiaosan Cheng
- Department of Medical Imaging, Yueyang Central Hospital, Yueyang, China
| | - Zhongliang Mao
- Department of Medical Imaging, Yueyang Central Hospital, Yueyang, China
| | - Wenming Zhou
- Department of Medical Imaging, Yueyang Central Hospital, Yueyang, China
| |
Collapse
|
6
|
Milanese G, Sabia F, Ledda RE, Sestini S, Marchianò AV, Sverzellati N, Pastorino U. Volumetric Measurements in Lung Cancer Screening Reduces Unnecessary Low-Dose Computed Tomography Scans: Results from a Single-Center Prospective Trial on 4119 Subjects. Diagnostics (Basel) 2022; 12:diagnostics12020229. [PMID: 35204320 PMCID: PMC8871316 DOI: 10.3390/diagnostics12020229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/07/2022] [Accepted: 01/09/2022] [Indexed: 02/05/2023] Open
Abstract
This study aims to compare the low-dose computed tomography (LDCT) outcome and volume-doubling time (VDT) derived from the measured volume (MV) and estimated volume (EV) of pulmonary nodules (PNs) detected in a single-center lung cancer screening trial. MV, EV and VDT were obtained for prevalent pulmonary nodules detected at the baseline round of the bioMILD trial. The LDCT outcome (based on bioMILD thresholds) and VDT categories were simulated on PN- and screenee-based analyses. A weighted Cohen’s kappa test was used to assess the agreement between diagnostic categories as per MV and EV, and 1583 screenees displayed 2715 pulmonary nodules. In the PN-based analysis, 40.1% PNs were included in different LDCT categories when measured by MV or EV. The agreements between MV and EV were moderate (κ = 0.49) and fair (κ = 0.37) for the LDCT outcome and VDT categories, respectively. In the screenee-based analysis, 46% pulmonary nodules were included in different LDCT categories when measured by MV or EV. The agreements between MV and EV were moderate (κ = 0.52) and fair (κ = 0.34) for the LDCT outcome and VDT categories, respectively. Within a simulated lung cancer screening based on a recommendation by estimated volumetry, the number of LDCTs performed for the evaluation of pulmonary nodules was higher compared with in prospective volumetric management.
Collapse
Affiliation(s)
- Gianluca Milanese
- Radiological Sciences, Department of Medicine and Surgery (DiMeC), University Hospital of Parma, 43126 Parma, Italy; (G.M.); (R.E.L.); (N.S.)
| | - Federica Sabia
- Fondazione IRCCS Istituto Nazionale Tumori of Milan, 20133 Milan, Italy; (F.S.); (S.S.); (A.V.M.)
| | - Roberta Eufrasia Ledda
- Radiological Sciences, Department of Medicine and Surgery (DiMeC), University Hospital of Parma, 43126 Parma, Italy; (G.M.); (R.E.L.); (N.S.)
- Fondazione IRCCS Istituto Nazionale Tumori of Milan, 20133 Milan, Italy; (F.S.); (S.S.); (A.V.M.)
| | - Stefano Sestini
- Fondazione IRCCS Istituto Nazionale Tumori of Milan, 20133 Milan, Italy; (F.S.); (S.S.); (A.V.M.)
| | | | - Nicola Sverzellati
- Radiological Sciences, Department of Medicine and Surgery (DiMeC), University Hospital of Parma, 43126 Parma, Italy; (G.M.); (R.E.L.); (N.S.)
| | - Ugo Pastorino
- Fondazione IRCCS Istituto Nazionale Tumori of Milan, 20133 Milan, Italy; (F.S.); (S.S.); (A.V.M.)
- Correspondence:
| |
Collapse
|
7
|
Impact of Vessel Suppressed-CT on Diagnostic Accuracy in Detection of Pulmonary Metastasis and Reading Time. Acad Radiol 2021; 28:988-994. [PMID: 32037256 DOI: 10.1016/j.acra.2020.01.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/09/2020] [Accepted: 01/09/2020] [Indexed: 11/20/2022]
Abstract
RATIONALE AND OBJECTIVES To assess if vessel suppression (VS) improves nodule detection rate, interreader agreement, and reduces reading time in oncologic chest computed tomography (CT). MATERIAL AND METHODS One-hundred consecutive oncologic patients (65 male; median age 60y) who underwent contrast-enhanced chest CT were retrospectively included. For all exams, additional VS series (ClearRead CT, Riverrain Technologies, Miamisburg) were reconstructed. Two groups of three radiologists each with matched experience were defined. Each group evaluated the SD-CT as well as VS-CT. Each reader marked the presence, size, and position of pulmonary nodules and documented reading time. In addition, for the VS-CT the presence of false positive nodules had to be stated. Cohen's Kappa (k) was used to calculate the interreader-agreement between groups. Reading time was compared using paired t test. RESULTS Nodule detection rate was significantly higher in VS-CT compared to the SD-CT (+21%; p <0.001). Interreader-agreement was higher in the VS-CT (k = 0.431, moderate agreement) compared to SD-CT (k = 0.209, fair agreement). Almost all VS-CT series had false positive findings (97-99 out of 100). Average reading time was significantly shorter in the VS-CT compared to the SD-CT (154 ± 134vs. 194 ± 126; 21%, p<0.001). CONCLUSIONS Vessel suppression increases nodule detection rate, improves interreader agreement, and reduces reading time in chest CT of oncologic patients. Due to false positive results a consensus reading with the SD-CT is essential.
Collapse
|
8
|
Yoshida Y, Yanagawa M, Hata A, Sato Y, Tsubamoto M, Doi S, Yamagata K, Miyata T, Kikuchi N, Tomiyama N. Quantitative volumetry of ground-glass nodules on high-spatial-resolution CT with 0.25-mm section thickness and 1024 matrix: Phantom and clinical studies. Eur J Radiol Open 2021; 8:100362. [PMID: 34141831 PMCID: PMC8184508 DOI: 10.1016/j.ejro.2021.100362] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/26/2021] [Accepted: 05/29/2021] [Indexed: 11/25/2022] Open
Abstract
High-spatial-resolution CT provided more accurate volume of a −800-HU nodule in a phantom than conventional settings. The maximum CT attenuation values were significantly higher in high-resolution setting than conventional setting. The high-resolution setting might allow earlier detection of solid components in GGNs during follow-up.
Objectives To compare high-resolution (HR) and conventional (C) settings of high-spatial-resolution computed tomography (CT) for software volumetry of ground-glass nodules (GGNs) in phantoms and patients. Methods We placed −800 and −630 HU spherical GGN-mimic nodules in 28 different positions in phantoms and scanned them individually. Additionally, 60 GGNs in 45 patients were assessed retrospectively. Images were reconstructed using the HR-setting (matrix size, 1024; slice thickness, 0.25 mm) and C-setting (matrix size, 512; slice thickness, 0.5 mm). We measured the GGN volume and mass using software. In the phantom study, the absolute percentage error (APE) was calculated as the absolute difference between Vernier caliper measurement-based and software-based volumes. In patients, we measured the density (mean, maximum, and minimum) and classified GGNs into low- and high-attenuation GGNs. Results In images of the −800 HU, but not −630 HU, phantom nodules, the volumes and masses differed significantly between the two settings (both p < 0.01). The APE was significantly lower in the HR-setting than in the C-setting (p < 0.01). In patients, volumes did not differ significantly between settings (p = 0.59). Although the mean attenuation was not significantly different, the maximum and minimum values were significantly increased and decreased, respectively, in the HR-setting (both p < 0.01). The volumes of both low-attenuation and high-attenuation GGNs were not significantly different between settings (p = 0.78 and 0.39, respectively). Conclusion The HR-setting might yield a more accurate volume for phantom GGN of −800 HU and influence the detection of maximum and minimum CT attenuation.
Collapse
Affiliation(s)
- Yuriko Yoshida
- Department of Diagnostic and Interventional Radiology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka Suita, Osaksa 565-0871, Japan
| | - Masahiro Yanagawa
- Department of Diagnostic and Interventional Radiology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka Suita, Osaksa 565-0871, Japan
| | - Akinori Hata
- Department of Diagnostic and Interventional Radiology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka Suita, Osaksa 565-0871, Japan
| | - Yukihisa Sato
- Department of Diagnostic Radiology, Suita Municipal Hospital, 5-7 Kishibeshinmachi Suita, Osaka 564-8567, Japan
| | - Mitsuko Tsubamoto
- Department of Diagnositic Radiology, Nishinomiya Municipal Central Hospital, 8-24 Hayashidacho, Nishinomiya, Hyogo, 663-8014, Japan
| | - Shuhei Doi
- Department of Diagnostic and Interventional Radiology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka Suita, Osaksa 565-0871, Japan
| | - Kazuki Yamagata
- Department of Diagnostic and Interventional Radiology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka Suita, Osaksa 565-0871, Japan
| | - Tomo Miyata
- Department of Future Diagnostic Radiology, Osaka University Graduate School of Medicine 2-2 Yamadaoka Suita, Osaksa 565-0871, Japan
| | - Noriko Kikuchi
- Department of Diagnostic and Interventional Radiology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka Suita, Osaksa 565-0871, Japan
| | - Noriyuki Tomiyama
- Department of Diagnostic and Interventional Radiology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka Suita, Osaksa 565-0871, Japan
| |
Collapse
|
9
|
CT Volumetry of Convoluted Objects-A Simple Method Using Volume Averaging. ACTA ACUST UNITED AC 2021; 7:120-129. [PMID: 33924342 PMCID: PMC8167628 DOI: 10.3390/tomography7020011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 03/31/2021] [Accepted: 04/08/2021] [Indexed: 11/17/2022]
Abstract
Accurate measurement of object volumes using computed tomography is often important but can be challenging, especially for finely convoluted objects with severe marginal blurring from volume averaging. We aimed to test the accuracy of a simple method for volumetry by constructing, scanning and analyzing a phantom object with these characteristics which consisted of a cluster of small lucite beads embedded in petroleum jelly. Our method involves drawing simple regions of interest containing the entirety of the object and a portion of the surrounding material and using its density, along with the densities of pure lucite and petroleum jelly and the slice thickness to calculate the volume of the object in each slice. Comparison of our results with the object’s true volume showed the technique to be highly accurate, irrespective of slice thickness, image noise, reconstruction planes, spatial resolution and variations in regions of interest. We conclude that the method can be easily used for accurate volumetry in clinical and research scans without the need for specialized volumetry computer programs.
Collapse
|
10
|
Guo J, Zhang S, Li H, Hassan MOO, Lu T, Zhao J, Zhang L. Lung Metastases in Newly Diagnosed Esophageal Cancer: A Population-Based Study. Front Oncol 2021; 11:603953. [PMID: 33718154 PMCID: PMC7947855 DOI: 10.3389/fonc.2021.603953] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/11/2021] [Indexed: 12/16/2022] Open
Abstract
Background Esophageal cancer is one of the most common cancer types, with its most common distant metastatic site being the lung. Currently, population-based data regarding the proportion and prognosis of patients with esophageal cancer with lung metastases (ECLM) at the time of diagnosis is insufficient. Therefore, we aimed to determine the proportion of patients with ECLM at diagnosis, as well as to investigate the prognostic parameters of ECLM. Methods This population-based observational study obtained data from the Surveillance, Epidemiology, and End Results (SEER) database registered between 2010 and 2016. Multivariable logistic regression was performed to identify predictors of the presence of ECLM at diagnosis. Multivariable Cox regression and competing risk analysis were used to assess prognostic factors in patients with ECLM. Median survival was estimated using Kaplan–Meier curves. Results Of 10,965 patients diagnosed with esophageal cancer between 2010 and 2016, 713 (6.50%) presented with initial lung metastasis at diagnosis. Lung metastasis represented 27.15% of all cases with metastatic disease to any distant site. Considering all patients with esophageal cancer, multivariable logistic regression indicated that pathology grade, pathology type, T staging, N staging, race, and number of extrapulmonary metastatic sites were predictive factors for the occurrence of lung metastases at diagnosis. The median survival time of patients with ECLM was 4.0 months. Patients receiving chemotherapy or chemoradiotherapy had the longest median overall survival, 7.0 months. Multivariable Cox regression indicated that age, histology type, T2 staging, number of extrapulmonary metastatic sites, and treatment (chemotherapy, radiotherapy, or chemoradiotherapy) were independent predictors for overall survival (OS). Multivariable competing risk analysis determined that age, number of extrapulmonary metastatic sites, and treatment were independent predictors for esophageal cancer-specific survival (CSS). Conclusion The findings of this study may provide important information for the early diagnosis of ECLM, as well as aid physicians in choosing appropriate treatment regimens for these patients.
Collapse
Affiliation(s)
- Jida Guo
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shengqiang Zhang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Huawei Li
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Mohamed Osman Omar Hassan
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tong Lu
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiaying Zhao
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Linyou Zhang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
11
|
Rawashdeh MA, Saade C. Radiation dose reduction considerations and imaging patterns of ground glass opacities in coronavirus: risk of over exposure in computed tomography. LA RADIOLOGIA MEDICA 2021; 126:380-387. [PMID: 32897493 PMCID: PMC7477737 DOI: 10.1007/s11547-020-01271-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 08/23/2020] [Indexed: 01/07/2023]
Abstract
This article aims to summarize the available data on the severe acute respiratory syndrome coronavirus 2 (SAR-CoV-2) imaging patterns as well as reducing radiation dose exposure in chest computed tomography (CT) protocols. First, the general aspects of radiation dose in CT and radiation risk are discussed, followed by the effect of changing parameters on image quality. This article attempts to highlight some of the common chest CT signs that radiologists and emergency physicians are likely to encounter. With the increasing trend of using chest CT scans as an imaging tool to diagnose and monitor SAR-CoV-2, we emphasize that pattern recognition is the key, and this pictorial essay should serve as a guide to help establish correct diagnosis coupled with correct scanner parameters to reduce radiation dose without affecting imaging quality in this tragic pandemic the world is facing.
Collapse
Affiliation(s)
- Mohammad Ahmmad Rawashdeh
- grid.37553.370000 0001 0097 5797Department of Allied Medical Sciences, Jordan University of Science and Technology, P.O.Box 3030, Irbid, 22110 Jordan
| | - Charbel Saade
- grid.411654.30000 0004 0581 3406Diagnostic Radiology Department, American University of Beirut Medical Center, P.O.Box 11-0236, Riad El-Solh, Beirut, 1107 2020 Lebanon
| |
Collapse
|
12
|
Dyer SC, Bartholmai BJ, Koo CW. Implications of the updated Lung CT Screening Reporting and Data System (Lung-RADS version 1.1) for lung cancer screening. J Thorac Dis 2020; 12:6966-6977. [PMID: 33282402 PMCID: PMC7711402 DOI: 10.21037/jtd-2019-cptn-02] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Lung cancer remains the leading cause of cancer death in the United States. Screening with low-dose computed tomography (LDCT) has been proven to aid in early detection of lung cancer and reduce disease specific mortality. In 2014, the American College of Radiology (ACR) released version 1.0 of the Lung CT Screening Reporting and Data System (Lung-RADS) as a quality tool to standardize the reporting of lung cancer screening LDCT. In 2019, 5 years after the implementation of Lung-RADS version 1.0 the ACR released the updated Lung-RADS version 1.1 which incorporates initial experience with lung cancer screening. In this review, we outline the implications of the changes and additions in Lung-RADS version 1.1 and examine relevant literature for many of the updates. We also highlight several challenges and opportunities as Lung-RADS version 1.1 is implemented in lung cancer screening programs.
Collapse
Affiliation(s)
- Spencer C Dyer
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | | | - Chi Wan Koo
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
13
|
Eberhard M, Stocker D, Milanese G, Martini K, Nguyen-Kim TDL, Wurnig MC, Frauenfelder T, Baumueller S. Volumetric assessment of solid pulmonary nodules on ultralow-dose CT: a phantom study. J Thorac Dis 2019; 11:3515-3524. [PMID: 31559058 DOI: 10.21037/jtd.2019.08.12] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background To reduce the radiation exposure from chest computed tomography (CT), ultralow-dose CT (ULDCT) protocols performed at sub-millisievert levels were previously tested for the evaluation of pulmonary nodules (PNs). The purpose of our study was to investigate the effect of ULDCT and iterative image reconstruction on volumetric measurements of solid PNs. Methods CT datasets of an anthropomorphic chest phantom containing solid microspheres were obtained with a third-generation dual-source CT at standard dose, 1/8th, 1/20th and 1/70th of standard dose [CT volume dose index (CTDIvol): 0.03-2.03 mGy]. Semi-automated volumetric measurements were performed on CT datasets reconstructed with filtered back projection (FBP) and advanced modelled iterative reconstruction (ADMIRE), at strength level 3 and 5. Absolute percentage error (APE) evaluated measurement accuracy related to the effective volume. Scan repetition differences were evaluated using Bland-Altman analysis. Two-way analysis of variance (ANOVA) assessed influence of different scan parameters on APE. Proportional differences (PDs) tested the effect of dose settings and reconstruction algorithms on volumetric measurements, as compared to the standard protocol (standard dose-FBP). Results Bland-Altman analysis revealed small mean interscan differences of APE with narrow limits of agreement (-0.1%±4.3% to -0.3%±3.8%). Dose settings (P<0.001), reconstruction algorithms (P<0.001), nodule diameters (P<0.001) and nodule density (P=0.011) had statistically significant influence on APE. Post-hoc Bonferroni tests showed slightly higher APE when scanning with 1/70th of standard dose [mean difference: 3.4%, 95% confidence interval (CI): 2.5-4.3%; P<0.001], and for image reconstruction with ADMIRE5 (mean difference: 1.8%, 95% CI: 1.0-2.5%; P<0.001). No significant differences for scanning with 1/20th of standard dose (P=0.42), and image reconstruction with ADMIRE3 (P=0.19) were found. Scanning with 1/70th of standard dose and image reconstruction with FBP showed the widest range of PDs (-16.8% to 23.4%) compared to standard dose-FBP. Conclusions Our phantom study showed no significant difference between nodule volume measurements on standard dose CT (CTDIvol: 2 mGy) and ULDCT with 1/20th of standard dose (CTDIvol: 0.10 mGy).
Collapse
Affiliation(s)
- Matthias Eberhard
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich, Switzerland
| | - Daniel Stocker
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich, Switzerland
| | - Gianluca Milanese
- Division of Radiology, Department of Medicine and Surgery (DiMeC), University of Parma, Parma, Italy
| | - Katharina Martini
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich, Switzerland
| | - Thi Dan Linh Nguyen-Kim
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich, Switzerland
| | - Moritz C Wurnig
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich, Switzerland
| | - Thomas Frauenfelder
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich, Switzerland
| | - Stephan Baumueller
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
14
|
Jreige M, Letovanec I, Chaba K, Renaud S, Rusakiewicz S, Cristina V, Peters S, Krueger T, de Leval L, Kandalaft LE, Nicod-Lalonde M, Romero P, Prior JO, Coukos G, Schaefer N. 18F-FDG PET metabolic-to-morphological volume ratio predicts PD-L1 tumour expression and response to PD-1 blockade in non-small-cell lung cancer. Eur J Nucl Med Mol Imaging 2019; 46:1859-1868. [PMID: 31214790 DOI: 10.1007/s00259-019-04348-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 04/29/2019] [Indexed: 12/21/2022]
Abstract
PURPOSE Anti-PD-1/PD-L1 blockade can restore tumour-specific T-cell immunity and is an emerging therapy in non-small-cell lung cancer (NSCLC). We investigated the correlation between 18F-FDG PET/CT-based markers and tumour tissue expression of PD-L1, necrosis and clinical outcome in patients receiving checkpoint inhibitor treatment. METHODS PD-Li expression in biopsy or resection specimens from 49 patients with confirmed NSCLC was investigated by immunohistochemistry. Maximum standardized uptake value (SUVmax), mean SUV (SUVmean), metabolic tumour volume (MTV) and total lesion glycolysis (TLG) were obtained from 18F-FDG PET/CT images. The ratio of metabolic to morphological lesion volumes (MMVR) and its association with PD-L1 expression in each lesion were calculated. The associations between histologically reported necrosis and 18F-FDG PET imaging patterns and radiological outcome (evaluated by iRECIST) following anti-PD-1/PD-L1 therapy were also analysed. In 14 patients, the association between necrosis and MMVR and tumour immune contexture were analysed by multiple immunofluorescent (IF) staining for CD8, PD-1, granzyme B (GrzB) and NFATC2. RESULTS In total, 25 adenocarcinomas and 24 squamous cell carcinomas were analysed. All tumours showed metabolic 18F-FDG PET uptake. MMVR was correlated inversely with PD-L1 expression in tumour cells. Furthermore, PD-L1 expression and low MMVR were significantly correlated with clinical benefit. Necrosis was correlated negatively with MMVR. Multiplex IF staining showed a greater frequency of activated CD8+ cells in necrotic tumours than in nonnecrotic tumours in both stromal and epithelial tumour compartments. CONCLUSION This study introduces MMVR as a new imaging biomarker and its ability to noninvasively capture increased PD-L1 tumour expression and predict clinical benefit from checkpoint blockade in NSCLC should be further evaluated.
Collapse
Affiliation(s)
- Mario Jreige
- Department of Nuclear Medicine and Molecular Imaging, Lausanne University Hospital, Rue du Bugnon 46, CH-1011, Lausanne, Switzerland
| | - Igor Letovanec
- Institute of Pathology, Lausanne University Hospital, Lausanne, Switzerland
| | - Kariman Chaba
- Center of Experimental Therapies (CTE), Department of Oncology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Stephanie Renaud
- Center of Experimental Therapies (CTE), Department of Oncology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Sylvie Rusakiewicz
- Center of Experimental Therapies (CTE), Department of Oncology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Valerie Cristina
- Translational Tumor Immunology Group, Department of Oncology, Lausanne University Hospital, Epalinges, Switzerland
| | - Solange Peters
- Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Thorsten Krueger
- Department of Thoracic Surgery, Lausanne University Hospital, Lausanne, Switzerland
| | - Laurence de Leval
- Institute of Pathology, Lausanne University Hospital, Lausanne, Switzerland
| | - Lana E Kandalaft
- Center of Experimental Therapies (CTE), Department of Oncology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Marie Nicod-Lalonde
- Department of Nuclear Medicine and Molecular Imaging, Lausanne University Hospital, Rue du Bugnon 46, CH-1011, Lausanne, Switzerland
| | - Pedro Romero
- Translational Tumor Immunology Group, Department of Oncology, Lausanne University Hospital, Epalinges, Switzerland
| | - John O Prior
- Department of Nuclear Medicine and Molecular Imaging, Lausanne University Hospital, Rue du Bugnon 46, CH-1011, Lausanne, Switzerland
| | - George Coukos
- Center of Experimental Therapies (CTE), Department of Oncology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.,Translational Tumor Immunology Group, Department of Oncology, Lausanne University Hospital, Epalinges, Switzerland
| | - Niklaus Schaefer
- Department of Nuclear Medicine and Molecular Imaging, Lausanne University Hospital, Rue du Bugnon 46, CH-1011, Lausanne, Switzerland.
| |
Collapse
|
15
|
Jin L, Sun Y, Li M. Use of an Anthropomorphic Chest Model to Evaluate Multiple Scanning Protocols for High-Definition and Standard-Definition Computed Tomography to Detect Small Pulmonary Nodules. Med Sci Monit 2019; 25:2195-2205. [PMID: 30907379 PMCID: PMC6442497 DOI: 10.12659/msm.913243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND This study aimed to use the LUNGMAN N1 anthropomorphic chest model to evaluate protocols for high-definition computed tomography (HDCT) and standard-definition CT (SDCT) to detect and compare small pulmonary nodules and determine the most appropriate low-dose scanning protocols. MATERIAL AND METHODS HDCT imaging used the Discovery HD750 scanner (80, 100, 120 and 140 kVp; 360, 320, 280, 240, 200, 160, 120, 80, 40, and 20 mA), and SDCT imaging used the Lightspeed VCT scanner (80, 120, and 140 kVp; 360, 320, 280, 240, 200, 160, 120, 80, 40, and 20 mA). The LUNGMAN N1 anthropomorphic chest model contained artificial pulmonary nodules (diameter: 5, 8, 10, and 12 mm). Low-dose scanning protocols were used in image acquisition. Two experienced radiologists evaluated the image quality. The combinations of voltage, tube current, image noise, and radiation dose were recorded. Consistency of the image quality between raters was assessed by kappa statistical analysis. RESULTS Seventy CT scans of pulmonary nodules (diameter, 5-12 mm) were performed. There was a high degree of consistency for image quality between the two observers (K=0.929 for 5 mm nodules; K=0.819 for overall image quality). For 8 mm nodules, 100% were detected on both SDCT and HDCT. HDCT outperformed SDCT by 5%, in terms of effective dose. There was no significant difference in image quality between the SDCT and HDCT scanners. CONCLUSIONS Using an anthropomorphic chest model, the identification and image quality using SDCT was similar to that of HDCT for small pulmonary nodules between 5-12 mm.
Collapse
Affiliation(s)
- Liang Jin
- Department of Radiology, Huadong Hospital, Affiliated to Fudan University, Shanghai, China (mainland)
| | - Yingli Sun
- Department of Radiology, Huadong Hospital, Affiliated to Fudan University, Shanghai, China (mainland)
| | - Ming Li
- Department of Radiology, Huadong Hospital, Affiliated to Fudan University, Shanghai, China (mainland)
| |
Collapse
|
16
|
Heuvelmans MA, Oudkerk M. Pulmonary nodules measurements in CT lung cancer screening. J Thorac Dis 2018; 10:S2100-S2102. [PMID: 30023131 DOI: 10.21037/jtd.2018.05.166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Marjolein A Heuvelmans
- Center for Medical Imaging-North East Netherlands, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Department of Pulmonary Medicine, Medisch Spectrum Twente, Enschede, The Netherlands
| | - Matthijs Oudkerk
- Center for Medical Imaging-North East Netherlands, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
17
|
Zhang Y, Heuvelmans M, Zhang H, Oudkerk M, Zhang G, Xie X. Changes in quantitative CT image features of ground-glass nodules in differentiating invasive pulmonary adenocarcinoma from benign and in situ lesions: histopathological comparisons. Clin Radiol 2018; 73:504.e9-504.e16. [DOI: 10.1016/j.crad.2017.12.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 12/06/2017] [Indexed: 01/15/2023]
|
18
|
de Margerie-Mellon C, Heidinger BH, Bankier AA. 2D or 3D measurements of pulmonary nodules: preliminary answers and more open questions. J Thorac Dis 2018; 10:547-549. [PMID: 29608182 DOI: 10.21037/jtd.2018.01.67] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
| | - Benedikt H Heidinger
- Department of Radiology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Alexander A Bankier
- Department of Radiology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
19
|
Milanese G, Eberhard M, Martini K, Vittoria De Martini I, Frauenfelder T. Vessel suppressed chest Computed Tomography for semi-automated volumetric measurements of solid pulmonary nodules. Eur J Radiol 2018; 101:97-102. [PMID: 29571809 DOI: 10.1016/j.ejrad.2018.02.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 02/09/2018] [Accepted: 02/14/2018] [Indexed: 10/18/2022]
Abstract
OBJECTIVE To evaluate whether vessel-suppressed computed tomography (VSCT) can be reliably used for semi-automated volumetric measurements of solid pulmonary nodules, as compared to standard CT (SCT) MATERIAL AND METHODS: Ninety-three SCT were elaborated by dedicated software (ClearRead CT, Riverain Technologies, Miamisburg, OH, USA), that allows subtracting vessels from lung parenchyma. Semi-automated volumetric measurements of 65 solid nodules were compared between SCT and VSCT. The measurements were repeated by two readers. For each solid nodule, volume measured on SCT by Reader 1 and Reader 2 was averaged and the average volume between readers acted as standard of reference value. Concordance between measurements was assessed using Lin's Concordance Correlation Coefficient (CCC). Limits of agreement (LoA) between readers and CT datasets were evaluated. RESULTS Standard of reference nodule volume ranged from 13 to 366 mm3. The mean overestimation between readers was 3 mm3 and 2.9 mm3 on SCT and VSCT, respectively. Semi-automated volumetric measurements on VSCT showed substantial agreement with the standard of reference (Lin's CCC = 0.990 for Reader 1; 0.985 for Reader 2). The upper and lower LoA between readers' measurements were (16.3, -22.4 mm3) and (15.5, -21.4 mm3) for SCT and VSCT, respectively. CONCLUSIONS VSCT datasets are feasible for the measurements of solid nodules, showing an almost perfect concordance between readers and with measurements on SCT.
Collapse
Affiliation(s)
- Gianluca Milanese
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Ramistrasse 100, 8091 Zurich, Switzerland.
| | - Matthias Eberhard
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Ramistrasse 100, 8091 Zurich, Switzerland.
| | - Katharina Martini
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Ramistrasse 100, 8091 Zurich, Switzerland.
| | - Ilaria Vittoria De Martini
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Ramistrasse 100, 8091 Zurich, Switzerland.
| | - Thomas Frauenfelder
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Ramistrasse 100, 8091 Zurich, Switzerland.
| |
Collapse
|
20
|
Larici AR, Farchione A, Franchi P, Ciliberto M, Cicchetti G, Calandriello L, del Ciello A, Bonomo L. Lung nodules: size still matters. Eur Respir Rev 2017; 26:26/146/170025. [DOI: 10.1183/16000617.0025-2017] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 10/28/2017] [Indexed: 12/18/2022] Open
Abstract
The incidence of indeterminate pulmonary nodules has risen constantly over the past few years. Determination of lung nodule malignancy is pivotal, because the early diagnosis of lung cancer could lead to a definitive intervention. According to the current international guidelines, size and growth rate represent the main indicators to determine the nature of a pulmonary nodule. However, there are some limitations in evaluating and characterising nodules when only their dimensions are taken into account. There is no single method for measuring nodules, and intrinsic errors, which can determine variations in nodule measurement and in growth assessment, do exist when performing measurements either manually or with automated or semi-automated methods. When considering subsolid nodules the presence and size of a solid component is the major determinant of malignancy and nodule management, as reported in the latest guidelines. Nevertheless, other nodule morphological characteristics have been associated with an increased risk of malignancy. In addition, the clinical context should not be overlooked in determining the probability of malignancy. Predictive models have been proposed as a potential means to overcome the limitations of a sized-based assessment of the malignancy risk for indeterminate pulmonary nodules.
Collapse
|
21
|
Devaraj A, van Ginneken B, Nair A, Baldwin D. Use of Volumetry for Lung Nodule Management: Theory and Practice. Radiology 2017; 284:630-644. [DOI: 10.1148/radiol.2017151022] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Anand Devaraj
- From the Department of Radiology, Royal Brompton Hospital, Sydney St, London SW3 6NP, England (A.D.); Department of of Radiology and Nuclear Medicine, Radboud UMC, Nijmegen, the Netherlands (B.v.G.); Department of Radiology, Guy’s & St Thomas’ NHS Foundation Trust, London, England (A.N.); and Department of Respiratory Medicine, Nottingham University Hospitals and University of Nottingham, Nottingham, England
| | - Bram van Ginneken
- From the Department of Radiology, Royal Brompton Hospital, Sydney St, London SW3 6NP, England (A.D.); Department of of Radiology and Nuclear Medicine, Radboud UMC, Nijmegen, the Netherlands (B.v.G.); Department of Radiology, Guy’s & St Thomas’ NHS Foundation Trust, London, England (A.N.); and Department of Respiratory Medicine, Nottingham University Hospitals and University of Nottingham, Nottingham, England
| | - Arjun Nair
- From the Department of Radiology, Royal Brompton Hospital, Sydney St, London SW3 6NP, England (A.D.); Department of of Radiology and Nuclear Medicine, Radboud UMC, Nijmegen, the Netherlands (B.v.G.); Department of Radiology, Guy’s & St Thomas’ NHS Foundation Trust, London, England (A.N.); and Department of Respiratory Medicine, Nottingham University Hospitals and University of Nottingham, Nottingham, England
| | - David Baldwin
- From the Department of Radiology, Royal Brompton Hospital, Sydney St, London SW3 6NP, England (A.D.); Department of of Radiology and Nuclear Medicine, Radboud UMC, Nijmegen, the Netherlands (B.v.G.); Department of Radiology, Guy’s & St Thomas’ NHS Foundation Trust, London, England (A.N.); and Department of Respiratory Medicine, Nottingham University Hospitals and University of Nottingham, Nottingham, England
| |
Collapse
|
22
|
Robins M, Solomon J, Sahbaee P, Sedlmair M, Roy Choudhury K, Pezeshk A, Sahiner B, Samei E. Techniques for virtual lung nodule insertion: volumetric and morphometric comparison of projection-based and image-based methods for quantitative CT. Phys Med Biol 2017; 62:7280-7299. [PMID: 28786399 DOI: 10.1088/1361-6560/aa83f8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Virtual nodule insertion paves the way towards the development of standardized databases of hybrid CT images with known lesions. The purpose of this study was to assess three methods (an established and two newly developed techniques) for inserting virtual lung nodules into CT images. Assessment was done by comparing virtual nodule volume and shape to the CT-derived volume and shape of synthetic nodules. 24 synthetic nodules (three sizes, four morphologies, two repeats) were physically inserted into the lung cavity of an anthropomorphic chest phantom (KYOTO KAGAKU). The phantom was imaged with and without nodules on a commercial CT scanner (SOMATOM Definition Flash, Siemens) using a standard thoracic CT protocol at two dose levels (1.4 and 22 mGy CTDIvol). Raw projection data were saved and reconstructed with filtered back-projection and sinogram affirmed iterative reconstruction (SAFIRE, strength 5) at 0.6 mm slice thickness. Corresponding 3D idealized, virtual nodule models were co-registered with the CT images to determine each nodule's location and orientation. Virtual nodules were voxelized, partial volume corrected, and inserted into nodule-free CT data (accounting for system imaging physics) using two methods: projection-based Technique A, and image-based Technique B. Also a third Technique C based on cropping a region of interest from the acquired image of the real nodule and blending it into the nodule-free image was tested. Nodule volumes were measured using a commercial segmentation tool (iNtuition, TeraRecon, Inc.) and deformation was assessed using the Hausdorff distance. Nodule volumes and deformations were compared between the idealized, CT-derived and virtual nodules using a linear mixed effects regression model which utilized the mean, standard deviation, and coefficient of variation ([Formula: see text], [Formula: see text] and [Formula: see text] of the regional Hausdorff distance. Overall, there was a close concordance between the volumes of the CT-derived and virtual nodules. Percent differences between them were less than 3% for all insertion techniques and were not statistically significant in most cases. Correlation coefficient values were greater than 0.97. The deformation according to the Hausdorff distance was also similar between the CT-derived and virtual nodules with minimal statistical significance in the ([Formula: see text]) for Techniques A, B, and C. This study shows that both projection-based and image-based nodule insertion techniques yield realistic nodule renderings with statistical similarity to the synthetic nodules with respect to nodule volume and deformation. These techniques could be used to create a database of hybrid CT images containing nodules of known size, location and morphology.
Collapse
Affiliation(s)
- Marthony Robins
- Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Medical Physics Graduate Program, Duke University Medical Center, Durham, NC 27705, United States of America
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Narita A, Ohkubo M, Murao K, Matsumoto T, Wada S. Generation of realistic virtual nodules based on three-dimensional spatial resolution in lung computed tomography: A pilot phantom study. Med Phys 2017; 44:5303-5313. [PMID: 28777462 DOI: 10.1002/mp.12503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 07/03/2017] [Accepted: 07/24/2017] [Indexed: 11/08/2022] Open
Abstract
PURPOSE The aim of this feasibility study using phantoms was to propose a novel method for obtaining computer-generated realistic virtual nodules in lung computed tomography (CT). METHODS In the proposed methodology, pulmonary nodule images obtained with a CT scanner are deconvolved with the point spread function (PSF) in the scan plane and slice sensitivity profile (SSP) measured for the scanner; the resultant images are referred to as nodule-like object functions. Next, by convolving the nodule-like object function with the PSF and SSP of another (target) scanner, the virtual nodule can be generated so that it has the characteristics of the spatial resolution of the target scanner. To validate the methodology, the authors applied physical nodules of 5-, 7- and 10-mm-diameter (uniform spheres) included in a commercial CT test phantom. The nodule-like object functions were calculated from the sphere images obtained with two scanners (Scanner A and Scanner B); these functions were referred to as nodule-like object functions A and B, respectively. From these, virtual nodules were generated based on the spatial resolution of another scanner (Scanner C). By investigating the agreement of the virtual nodules generated from the nodule-like object functions A and B, the equivalence of the nodule-like object functions obtained from different scanners could be assessed. In addition, these virtual nodules were compared with the real (true) sphere images obtained with Scanner C. As a practical validation, five types of laboratory-made physical nodules with various complicated shapes and heterogeneous densities, similar to real lesions, were used. The nodule-like object functions were calculated from the images of these laboratory-made nodules obtained with Scanner A. From them, virtual nodules were generated based on the spatial resolution of Scanner C and compared with the real images of laboratory-made nodules obtained with Scanner C. RESULTS Good agreement of the virtual nodules generated from the nodule-like object functions A and B of the phantom spheres was found, suggesting the validity of the nodule-like object functions. The virtual nodules generated from the nodule-like object function A of the phantom spheres were similar to the real images obtained with Scanner C; the root mean square errors (RMSEs) between them were 10.8, 11.1, and 12.5 Hounsfield units (HU) for 5-, 7-, and 10-mm-diameter spheres, respectively. The equivalent results (RMSEs) using the nodule-like object function B were 15.9, 16.8, and 16.5 HU, respectively. These RMSEs were small considering the high contrast between the sphere density and background density (approximately 674 HU). The virtual nodules generated from the nodule-like object functions of the five laboratory-made nodules were similar to the real images obtained with Scanner C; the RMSEs between them ranged from 6.2 to 8.6 HU in five cases. CONCLUSIONS The nodule-like object functions calculated from real nodule images would be effective to generate realistic virtual nodules. The proposed method would be feasible for generating virtual nodules that have the characteristics of the spatial resolution of the CT system used in each institution, allowing for site-specific nodule generation.
Collapse
Affiliation(s)
- Akihiro Narita
- Graduate School of Health Sciences, Niigata University, Niigata, 951-8518, Japan
| | - Masaki Ohkubo
- Graduate School of Health Sciences, Niigata University, Niigata, 951-8518, Japan
| | | | | | - Shinichi Wada
- Graduate School of Health Sciences, Niigata University, Niigata, 951-8518, Japan
| |
Collapse
|
24
|
|
25
|
Han D, Heuvelmans MA, Oudkerk M. Volume versus diameter assessment of small pulmonary nodules in CT lung cancer screening. Transl Lung Cancer Res 2017; 6:52-61. [PMID: 28331824 DOI: 10.21037/tlcr.2017.01.05] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Currently, lung cancer screening by low-dose chest CT is implemented in the United States for high-risk persons. A disadvantage of lung cancer screening is the large number of small-to-intermediate sized lung nodules, detected in around 50% of all participants, the large majority being benign. Accurate estimation of nodule size and growth is essential in the classification of lung nodules. Currently, manual diameter measurements are the standard for lung cancer screening programs and routine clinical care. However, European screening studies using semi-automated volume measurements have shown higher accuracy and reproducibility compared to diameter measurements. In addition to this, with the optimization of CT scan techniques and reconstruction parameters, as well as advances in segmentation software, the accuracy of nodule volume measurement can be improved even further. The positive results of previous studies on volume and diameter measurements of lung nodules suggest that manual measurements of nodule diameter may be replaced by semi-automated volume measurements in the (near) future.
Collapse
Affiliation(s)
- Daiwei Han
- University of Groningen, University Medical Center Groningen, Center for Medical Imaging-North East Netherlands, Groningen, the Netherlands
| | - Marjolein A Heuvelmans
- University of Groningen, University Medical Center Groningen, Center for Medical Imaging-North East Netherlands, Groningen, the Netherlands
| | - Matthijs Oudkerk
- University of Groningen, University Medical Center Groningen, Center for Medical Imaging-North East Netherlands, Groningen, the Netherlands
| |
Collapse
|
26
|
Sui X, Meinel FG, Song W, Xu X, Wang Z, Wang Y, Jin Z, Chen J, Vliegenthart R, Schoepf UJ. Detection and size measurements of pulmonary nodules in ultra-low-dose CT with iterative reconstruction compared to low dose CT. Eur J Radiol 2016; 85:564-570. [PMID: 26860668 DOI: 10.1016/j.ejrad.2015.12.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 12/12/2015] [Accepted: 12/16/2015] [Indexed: 11/15/2022]
Abstract
BACKGROUND In this study, the accuracy of ultra-low-dose computed tomography (CT) with iterative reconstruction (IR) for detection and measurement of pulmonary nodules was evaluated. METHODS Eighty-four individuals referred for lung cancer screening (mean age: 54.5±10.8 years) underwent low-dose computed tomography (LDCT) and ultra-low-dose CT. CT examinations were performed with attenuation-based tube current modulation. Reference tube voltage and current were set to 120kV/25mÅs for LDCT and 80kV/4mÅs for ultra-low-dose CT. CT images were reconstructed with filtered back projection (FBP) for LDCT, and with FBP and IR for ultra-low-dose CT datasets. A reference standard was established by a consensus panel of 2 different radiologists on LDCT. Volume and diameter of the solid nodules were measured on LDCT with FBP and ultra-low dose CT with FBP and IR. Interobserver and interscan variability were analyzed and compared by the Bland-Altman method. RESULTS A total of 127 nodules were identified, including 105 solid nodules, 15 part solid nodules, 7 ground glass nodules. On ultra-low-dose CT scans, the effective radiation dose was 0.13±0.11mSv. A total of 113 (88.9%) and 110 (86.6%) true-positive nodules with FBP versus 117 (92.1%) and 118(92.9%) with IR were detected by two observers, respectively. The volume and size of the 105 solid nodules were measured, with mean volume/diameter of 46.5±46.6 mm(3)/5.1±1.6mm. There was no significant difference in nodule volume or diameter measurements between ultra-low-dose CT and LDCT protocols for solid nodules. CONCLUSIONS Ultra-low-dose CT with iterative reconstruction has high sensitivity for lung nodule detection without significant difference in nodule size and volume measurement compared to LDCT.
Collapse
Affiliation(s)
- Xin Sui
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China.
| | - Felix G Meinel
- Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA; Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital, Munich, Germany.
| | - Wei Song
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaoli Xu
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China.
| | - Zixing Wang
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Science, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, China.
| | - Yuyan Wang
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Science, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, China.
| | - Zhengyu Jin
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China.
| | | | - Rozemarijn Vliegenthart
- Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA; University of Groningen, University Medical Center Groningen, Center for Medical Imaging-North East Netherlands, Department of Radiology, Groningen, The Netherlands.
| | - U Joseph Schoepf
- Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
27
|
Hochhegger B, Marchiori E, Alves GRT, Guimarães MD, Irion K. Influences in CT Scan Lung Nodule Volumetry. Chest 2014; 146:e69-e70. [DOI: 10.1378/chest.14-0763] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|