1
|
Muscogiuri G, Palumbo P, Kitagawa K, Nakamura S, Senatieri A, De Cecco CN, Gershon G, Chierchia G, Usai J, Sferratore D, D'Angelo T, Guglielmo M, Dell'Aversana S, Jankovic S, Salgado R, Saba L, Cau R, Marra P, Di Cesare E, Sironi S. State of the art of CT myocardial perfusion. LA RADIOLOGIA MEDICA 2025; 130:438-452. [PMID: 39704963 DOI: 10.1007/s11547-024-01942-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 12/11/2024] [Indexed: 12/21/2024]
Abstract
Coronary computed tomography angiography (CCTA) is a powerful tool to rule out coronary artery disease (CAD). In the last decade, myocardial perfusion CT (CTP) technique has been developed for the evaluation of myocardial ischemia, thereby increasing positive predictive value for diagnosis of obstructive CAD. A diagnostic strategy combining CCTA and perfusion acquisitions provides both anatomical coronary evaluation and functional evaluation of the stenosis, increasing the specificity and the positive predictive value of cardiac CT. This could improve risk stratification and guide revascularization procedures, reducing unnecessary diagnostic procedures in invasive coronary angiography. Two different acquisitions protocol have been developed for CTP. Static CTP allows a qualitative or semiquantitative evaluation of myocardial perfusion using a single scan during the first pass of iodinated contrast material in the myocardium. Dynamic CTP is capable of a quantitative evaluation of perfusion through multiple acquisitions, providing direct measure of the myocardial blood flow. For both, CTP acquisition hyperemia is reached using stressor agents such as adenosine or regadenoson. CTP in addition to CCTA acquisition shows good diagnostic accuracy compared to invasive fractional flow reserve (FFR). Furthermore, the evaluation of late iodine enhancement (LIE) could be performed allowing the detection of myocardial infarction.
Collapse
Affiliation(s)
- Giuseppe Muscogiuri
- Department of Radiology, ASST Papa Giovanni XXIII Hospital, Piazza OMS, 1, 24127, Bergamo, Italy.
- School of Medicine, University of Milano-Bicocca, Milan, Italy.
| | - Pierpaolo Palumbo
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Kakuya Kitagawa
- Regional Co-Creation Deployment Center, Mie University Mie Regional Plan Co-Creation Organization, Mie, Japan
- Department of Advanced Diagnostic Imaging, Mie University Graduate School of Medicine, Mie, Japan
| | - Satoshi Nakamura
- Department of Advanced Diagnostic Imaging, Mie University Graduate School of Medicine, Mie, Japan
| | | | - Carlo Nicola De Cecco
- Division of Cardiothoracic Imaging, Department of Radiology and Imaging Sciences, Emory University, Altanta, GA, USA
- Translational Laboratory for Cardiothoracic Imaging and Artificial Intelligence, Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA, USA
| | - Gabrielle Gershon
- Translational Laboratory for Cardiothoracic Imaging and Artificial Intelligence, Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA, USA
| | | | - Jessica Usai
- School of Medicine, University of Milano-Bicocca, Milan, Italy
| | | | - Tommaso D'Angelo
- Diagnostic and Interventional Radiology Unit, Department of Dental and Morphological and Functional Imaging, University Hospital Messina, Messina, Italy
| | - Marco Guglielmo
- Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Sonja Jankovic
- Center for Radiology, University Clinical Center Nis, Nis, Republic of Serbia
| | - Rodrigo Salgado
- Department of Radiology, Antwerp University Hospital & Holy Heart Lier, Antwerp, Belgium
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria, Monserrato, Cagliari, Italy
| | - Riccardo Cau
- Department of Radiology, Azienda Ospedaliero Universitaria, Monserrato, Cagliari, Italy
| | - Paolo Marra
- Department of Radiology, ASST Papa Giovanni XXIII Hospital, Piazza OMS, 1, 24127, Bergamo, Italy
- School of Medicine, University of Milano-Bicocca, Milan, Italy
| | - Ernesto Di Cesare
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Sandro Sironi
- Department of Radiology, ASST Papa Giovanni XXIII Hospital, Piazza OMS, 1, 24127, Bergamo, Italy
- School of Medicine, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
2
|
Magalhães TA, Carneiro ACDC, Moreira VDM, Trad HS, Lopes MMU, Cerci RJ, Nacif MS, Schvartzman PR, Chagas ACP, Costa IBSDS, Schmidt A, Shiozaki AA, Montenegro ST, Piegas LS, Zapparoli M, Nicolau JC, Fernandes F, Hadlich MS, Ghorayeb N, Mesquita ET, Gonçalves LFG, Ramires FJA, Fernandes JDL, Schwartzmann PV, Rassi S, Torreão JA, Mateos JCP, Beck-da-Silva L, Silva MC, Liberato G, Oliveira GMMD, Feitosa Filho GS, Carvalho HDSMD, Markman Filho B, Rocha RPDS, Azevedo Filho CFD, Taratsoutchi F, Coelho-Filho OR, Kalil Filho R, Hajjar LA, Ishikawa WY, Melo CA, Jatene IB, Albuquerque ASD, Rimkus CDM, Silva PSDD, Vieira TDR, Jatene FB, Azevedo GSAAD, Santos RD, Monte GU, Ramires JAF, Bittencourt MS, Avezum A, Silva LSD, Abizaid A, Gottlieb I, Precoma DB, Szarf G, Sousa ACS, Pinto IMF, Medeiros FDM, Caramelli B, Parga Filho JR, Santos TSGD, Prazeres CEED, Lopes MACQ, Avila LFRD, Scanavacca MI, Gowdak LHW, Barberato SH, Nomura CH, Rochitte CE. Cardiovascular Computed Tomography and Magnetic Resonance Imaging Guideline of the Brazilian Society of Cardiology and the Brazilian College of Radiology - 2024. Arq Bras Cardiol 2024; 121:e20240608. [PMID: 39475988 DOI: 10.36660/abc.20240608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2025] Open
Affiliation(s)
- Tiago Augusto Magalhães
- Complexo Hospital de Clínicas da Universidade Federal do Paraná (CHC-UFPR), Curitiba, PR - Brasil
- Hospital do Coração (HCOR), São Paulo, SP - Brasil
- Hospital Sírio Libanês, SP, São Paulo, SP - Brasil
| | | | - Valéria de Melo Moreira
- Instituto do Coração (Incor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo SP - Brasil
| | | | - Marly Maria Uellendahl Lopes
- Universidade Federal de São Paulo (UNIFESP), São Paulo, SP - Brasil
- DASA - Diagnósticos da América S/A, São Paulo, SP - Brasil
| | | | - Marcelo Souto Nacif
- Universidade Federal Fluminense, Niterói, RJ - Brasil
- Hospital Universitário Antonio Pedro, Niterói, RJ - Brasil
| | | | - Antônio Carlos Palandrini Chagas
- Instituto do Coração (Incor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo SP - Brasil
- Faculdade de Medicina do ABC, Santo André, SP - Brasil
| | | | - André Schmidt
- Universidade de São Paulo (USP), Ribeirão Preto, SP - Brasil
| | - Afonso Akio Shiozaki
- ND Núcleo Diagnóstico, Maringá, PR - Brasil
- Ômega Diagnóstico, Maringá, PR - Brasil
- Hospital Paraná, Maringá, PR - Brasil
| | | | | | - Marcelo Zapparoli
- Quanta Diagnóstico por Imagem, Curitiba, PR - Brasil
- DAPI, Curitiba, PR - Brasil
| | - José Carlos Nicolau
- Instituto do Coração (Incor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo SP - Brasil
| | - Fabio Fernandes
- Instituto do Coração (Incor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo SP - Brasil
| | - Marcelo Souza Hadlich
- Fleury Medicina e Saúde, Rio de Janeiro, RJ - Brasil
- Rede D'Or RJ, Rio de Janeiro, RJ - Brasil
- Unimed, Rio de Janeiro, RJ - Brasil
- Instituto Nacional de Cardiologia (INC), Rio de Janeiro, RJ - Brasil
| | - Nabil Ghorayeb
- Instituto Dante Pazzanese de Cardiologia, São Paulo, SP - Brasil
- Inspirali Educação, São Paulo, SP - Brasil
- Anhanguera Educacional, São Paulo, SP - Brasil
| | | | - Luiz Flávio Galvão Gonçalves
- Hospital São Lucas, Rede D'Or SE, Aracaju, SE - Brasil
- Hospital Universitário da Universidade Federal de Sergipe, Aracaju, SE - Brasil
- Clínica Climedi, Aracaju, SE - Brasil
| | - Felix José Alvarez Ramires
- Instituto do Coração (Incor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo SP - Brasil
| | | | - Pedro Vellosa Schwartzmann
- Hospital Unimed Ribeirão Preto, Ribeirão Preto, SP - Brasil
- Centro Avançado de Pesquisa, Ensino e Diagnóstico (CAPED), Ribeirão Preto, SP - Brasil
| | | | | | - José Carlos Pachón Mateos
- Hospital do Coração (HCOR), São Paulo, SP - Brasil
- Hospital Sírio Libanês, SP, São Paulo, SP - Brasil
| | - Luiz Beck-da-Silva
- Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS - Brasil
| | | | - Gabriela Liberato
- Hospital Sírio Libanês, SP, São Paulo, SP - Brasil
- Instituto do Coração (Incor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo SP - Brasil
| | | | | | - Hilka Dos Santos Moraes de Carvalho
- PROCAPE - Universidade de Pernambuco, Recife, PE - Brasil
- Hospital das Clínicas de Pernambuco da Universidade Federal de Pernambuco (UFPE), Recife, PE - Brasil
- Real Hospital Português de Pernambuco, Recife, PE - Brasil
| | - Brivaldo Markman Filho
- Hospital das Clínicas de Pernambuco da Universidade Federal de Pernambuco (UFPE), Recife, PE - Brasil
| | | | | | - Flávio Taratsoutchi
- Instituto do Coração (Incor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo SP - Brasil
| | | | - Roberto Kalil Filho
- Instituto do Coração (Incor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo SP - Brasil
| | | | - Walther Yoshiharu Ishikawa
- Instituto do Coração (Incor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo SP - Brasil
| | - Cíntia Acosta Melo
- Hospital Beneficência Portuguesa de São Paulo, São Paulo, SP - Brasil
- Hospital Infantil Sabará, São Paulo, SP - Brasil
| | | | | | - Carolina de Medeiros Rimkus
- Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo SP - Brasil
- Instituto D'Or de Pesquisa e Ensino (IDOR), São Paulo SP - Brasil
| | - Paulo Savoia Dias da Silva
- Fleury Medicina e Saúde, Rio de Janeiro, RJ - Brasil
- University of Iowa Hospitals and Clinics, Iowa City - EUA
| | - Thiago Dieb Ristum Vieira
- Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo SP - Brasil
| | - Fabio Biscegli Jatene
- Instituto do Coração (Incor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo SP - Brasil
| | - Guilherme Sant Anna Antunes de Azevedo
- ECOMAX, Blumenau, SC - Brasil
- Hospital Unimed Blumenau, Blumenau, SC - Brasil
- Hospital São José de Jaraguá do Sul, Blumenau, SC - Brasil
- Cliniimagem Criciúma, Blumenau, SC - Brasil
| | - Raul D Santos
- Hospital Sírio Libanês, SP, São Paulo, SP - Brasil
- Universidade de São Paulo (USP), Ribeirão Preto, SP - Brasil
| | | | - José Antonio Franchini Ramires
- Instituto do Coração (Incor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo SP - Brasil
| | | | - Alvaro Avezum
- Hospital Alemão Oswaldo Cruz, São Paulo, SP - Brasil
| | | | | | - Ilan Gottlieb
- Fonte Imagem Medicina Diagnostica, Rio de Janeiro, RJ - Brasil
| | | | - Gilberto Szarf
- Universidade Federal de São Paulo (UNIFESP), São Paulo, SP - Brasil
| | - Antônio Carlos Sobral Sousa
- Universidade Federal de Sergipe, Aracaju, SE - Brasil
- Hospital São Lucas, Aracaju, SE - Brasil
- Rede D'Or de Aracaju, Aracaju, SE - Brasil
| | | | | | - Bruno Caramelli
- Instituto do Coração (Incor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo SP - Brasil
| | - José Rodrigues Parga Filho
- Hospital Sírio Libanês, SP, São Paulo, SP - Brasil
- Instituto do Coração (Incor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo SP - Brasil
| | | | | | | | | | - Mauricio Ibrahim Scanavacca
- Instituto do Coração (Incor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo SP - Brasil
| | - Luis Henrique Wolff Gowdak
- Instituto do Coração (Incor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo SP - Brasil
- Universidade de São Paulo (USP), Ribeirão Preto, SP - Brasil
| | - Silvio Henrique Barberato
- Quanta Diagnóstico por Imagem, Curitiba, PR - Brasil
- Cardioeco, Centro de Diagnóstico Cardiovascular, Curitiba, PR - Brasil
| | | | - Carlos Eduardo Rochitte
- Hospital do Coração (HCOR), São Paulo, SP - Brasil
- Instituto do Coração (Incor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo SP - Brasil
- DASA - Diagnósticos da América S/A, São Paulo, SP - Brasil
| |
Collapse
|
3
|
Abu-Omar A, Murray N, Ali IT, Khosa F, Barrett S, Sheikh A, Nicolaou S, Tamburrini S, Iacobellis F, Sica G, Granata V, Saba L, Masala S, Scaglione M. Utility of Dual-Energy Computed Tomography in Clinical Conundra. Diagnostics (Basel) 2024; 14:775. [PMID: 38611688 PMCID: PMC11012177 DOI: 10.3390/diagnostics14070775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Advancing medical technology revolutionizes our ability to diagnose various disease processes. Conventional Single-Energy Computed Tomography (SECT) has multiple inherent limitations for providing definite diagnoses in certain clinical contexts. Dual-Energy Computed Tomography (DECT) has been in use since 2006 and has constantly evolved providing various applications to assist radiologists in reaching certain diagnoses SECT is rather unable to identify. DECT may also complement the role of SECT by supporting radiologists to confidently make diagnoses in certain clinically challenging scenarios. In this review article, we briefly describe the principles of X-ray attenuation. We detail principles for DECT and describe multiple systems associated with this technology. We describe various DECT techniques and algorithms including virtual monoenergetic imaging (VMI), virtual non-contrast (VNC) imaging, Iodine quantification techniques including Iodine overlay map (IOM), and two- and three-material decomposition algorithms that can be utilized to demonstrate a multitude of pathologies. Lastly, we provide our readers commentary on examples pertaining to the practical implementation of DECT's diverse techniques in the Gastrointestinal, Genitourinary, Biliary, Musculoskeletal, and Neuroradiology systems.
Collapse
Affiliation(s)
- Ahmad Abu-Omar
- Department of Emergency Radiology, University of British Columbia, Vancouver General Hospital, Vancouver, BC V5Z 1M9, Canada (I.T.A.)
| | - Nicolas Murray
- Department of Emergency Radiology, University of British Columbia, Vancouver General Hospital, Vancouver, BC V5Z 1M9, Canada (I.T.A.)
| | - Ismail T. Ali
- Department of Emergency Radiology, University of British Columbia, Vancouver General Hospital, Vancouver, BC V5Z 1M9, Canada (I.T.A.)
| | - Faisal Khosa
- Department of Emergency Radiology, University of British Columbia, Vancouver General Hospital, Vancouver, BC V5Z 1M9, Canada (I.T.A.)
| | - Sarah Barrett
- Department of Emergency Radiology, University of British Columbia, Vancouver General Hospital, Vancouver, BC V5Z 1M9, Canada (I.T.A.)
| | - Adnan Sheikh
- Department of Emergency Radiology, University of British Columbia, Vancouver General Hospital, Vancouver, BC V5Z 1M9, Canada (I.T.A.)
| | - Savvas Nicolaou
- Department of Emergency Radiology, University of British Columbia, Vancouver General Hospital, Vancouver, BC V5Z 1M9, Canada (I.T.A.)
| | - Stefania Tamburrini
- Department of Radiology, Ospedale del Mare-ASL NA1 Centro, Via Enrico Russo 11, 80147 Naples, Italy
| | - Francesca Iacobellis
- Department of General and Emergency Radiology, A. Cardarelli Hospital, Via A. Cardarelli 9, 80131 Naples, Italy;
| | - Giacomo Sica
- Department of Radiology, Monaldi Hospital, Azienda Ospedaliera dei Colli, 80131 Naples, Italy;
| | - Vincenza Granata
- Division of Radiology, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS Di Napoli, 80131 Naples, Italy
| | - Luca Saba
- Medical Oncology Department, AOU Cagliari, Policlinico Di Monserrato (CA), 09042 Monserrato, Italy
| | - Salvatore Masala
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Viale S. Pietro, 07100 Sassari, Italy; (S.M.)
| | - Mariano Scaglione
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Viale S. Pietro, 07100 Sassari, Italy; (S.M.)
- Department of Radiology, Pineta Grande Hospital, 81030 Castel Volturno, Italy
- Department of Radiology, James Cook University Hospital, Marton Road, Middlesbrough TS4 3BW, UK
| |
Collapse
|
4
|
Böttcher B, Zsarnoczay E, Varga-Szemes A, Schoepf UJ, Meinel FG, van Assen M, De Cecco CN. Dual-Energy Computed Tomography in Cardiac Imaging. Radiol Clin North Am 2023; 61:995-1009. [PMID: 37758366 DOI: 10.1016/j.rcl.2023.05.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Dual-energy computed tomography (DECT) acquires images using two energy spectra and offers a variation of reconstruction techniques for improved cardiac imaging. Virtual monoenergetic images decrease artifacts improving coronary plaque and stent visualization. Further, contrast attenuation is increased allowing significant reduction of contrast dose. Virtual non-contrast reconstructions enable coronary artery calcium scoring from contrast-enhanced scans. DECT provides advanced plaque imaging with detailed analysis of plaque components, indicating plaque stability. Extracellular volume assessment using DECT offers noninvasive detection of myocardial fibrosis. This review aims to outline the current cardiac applications of DECT, summarize recent literature, and discuss their findings.
Collapse
Affiliation(s)
- Benjamin Böttcher
- Division of Cardiothoracic Imaging, Department of Radiology and Imaging Sciences, Emory University Hospital, 1364 Clifton Road NE, Suite D112, Atlanta, GA 30322, USA; Institute of Diagnostic and Interventional Radiology, Pediatric Radiology and Neuroradiology, University Medical Centre Rostock, Ernst-Heydemann-Strasse 6, 18057 Rostock, Germany
| | - Emese Zsarnoczay
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Clinical Science Building, 96 Jonathan Lucas Street, Suite 210, MSC 323 Charleston, SC 29425, USA; MTA-SE Cardiovascular Imaging Research Group, Medical Imaging Center, Semmelweis University, Üllői út 26, 1085 Budapest, Hungary
| | - Akos Varga-Szemes
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Clinical Science Building, 96 Jonathan Lucas Street, Suite 210, MSC 323 Charleston, SC 29425, USA
| | - Uwe Joseph Schoepf
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Clinical Science Building, 96 Jonathan Lucas Street, Suite 210, MSC 323 Charleston, SC 29425, USA
| | - Felix G Meinel
- Institute of Diagnostic and Interventional Radiology, Pediatric Radiology and Neuroradiology, University Medical Centre Rostock, Ernst-Heydemann-Strasse 6, 18057 Rostock, Germany
| | - Marly van Assen
- Division of Cardiothoracic Imaging, Department of Radiology and Imaging Sciences, Emory University Hospital, 1364 Clifton Road NE, Suite D112, Atlanta, GA 30322, USA
| | - Carlo N De Cecco
- Division of Cardiothoracic Imaging and Imaging Informatics, Department of Radiology and Imaging Sciences, Emory University Hospital, Emory Healthcare, Inc. 1365 Clifton Road NE, Suite - AT503, Atlanta, GA 30322, USA.
| |
Collapse
|
5
|
Pugliese L, Ricci F, Sica G, Scaglione M, Masala S. Non-Contrast and Contrast-Enhanced Cardiac Computed Tomography Imaging in the Diagnostic and Prognostic Evaluation of Coronary Artery Disease. Diagnostics (Basel) 2023; 13:2074. [PMID: 37370969 DOI: 10.3390/diagnostics13122074] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/07/2023] [Accepted: 06/11/2023] [Indexed: 06/29/2023] Open
Abstract
In recent decades, cardiac computed tomography (CT) has emerged as a powerful non-invasive tool for risk stratification, as well as the detection and characterization of coronary artery disease (CAD), which remains the main cause of morbidity and mortality in the world. Advances in technology have favored the increasing use of cardiac CT by allowing better performance with lower radiation doses. Coronary artery calcium, as assessed by non-contrast CT, is considered to be the best marker of subclinical atherosclerosis, and its use is recommended for the refinement of risk assessment in low-to-intermediate risk individuals. In addition, coronary CT angiography (CCTA) has become a gate-keeper to invasive coronary angiography (ICA) and revascularization in patients with acute chest pain by allowing the assessment not only of the extent of lumen stenosis, but also of its hemodynamic significance if combined with the measurement of fractional flow reserve or perfusion imaging. Moreover, CCTA provides a unique incremental value over functional testing and ICA by imaging the vessel wall, thus allowing the assessment of plaque burden, composition, and instability features, in addition to perivascular adipose tissue attenuation, which is a marker of vascular inflammation. There exists the potential to identify the non-obstructive lesions at high risk of progression to plaque rupture by combining all of these measures.
Collapse
Affiliation(s)
- Luca Pugliese
- Radiology Unit, Department of Medical-Surgical Sciences and Translational Medicine, Sapienza University of Rome, Sant'Andrea University Hospital, 00189 Rome, Italy
| | - Francesca Ricci
- Radiology Unit, Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy
| | - Giacomo Sica
- Radiology Unit, Monaldi Hospital, 80131 Napoli, Italy
| | - Mariano Scaglione
- Radiology Unit, Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy
| | - Salvatore Masala
- Radiology Unit, Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy
| |
Collapse
|
6
|
Ahmed Z, Campeau D, Gong H, Rajendran K, Rajiah P, McCollough C, Leng S. High-pitch, high temporal resolution, multi-energy cardiac imaging on a dual-source photon-counting-detector CT. Med Phys 2023; 50:1428-1435. [PMID: 36427356 PMCID: PMC10033375 DOI: 10.1002/mp.16124] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 11/11/2022] [Accepted: 11/12/2022] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE To measure the accuracy of material decomposition using a dual-source photon-counting-detector (DS-PCD) CT operated in the high-pitch helical scanning mode and compare the results against dual-source energy-integrating-detector (DS-EID) CT, which requires use of a low-pitch value in dual-energy mode. METHODS A DS-PCD CT and a DS-EID CT were used to scan a cardiac motion phantom consisting of a 3-mm diameter iodine cylinder. Iodine maps were reconstructed using DS-PCD in high-pitch mode and DS-EID in low-pitch mode. Image-based circularity, diameter, and iodine concentration of the iodine cylinder were calculated and compared between the two scanners. With institutional review board approval, in vivo exams were performed with the DS-PCD CT in high-pitch mode. Images were qualitatively compared against patients with similar heart rates that were scanned with DS-EID CT in low-pitch dual-energy mode. RESULTS On iodine maps, the mean circularity was 0.97 ± 0.02 with DS-PCD in high-pitch mode and 0.95 ± 0.06 with DS-EID in low-pitch mode. The mean diameter was 2.9 ± 0.2 mm with DS-PCD and 3.1 ± 0.2 mm with DS-EID, both of which are close to the 3 mm ground truth. For DS-PCD, the mean iodine concentration was 9.6 ± 0.8 mg/ml and this was consistent with the 9.4 ± 0.6 mg/ml value obtained with the cardiac motion disabled. For DS-EID, the concentration was 12.7 ± 1.2 mg/ml with motion enabled and 11.7 ± 0.5 mg/ml disabled. The background noise in the iodine maps was 15.1 HU with DS-PCD and 14.4 HU with DS-EID, whereas the volume CT dose index (CTDIvol ) was 3 mGy with DS-PCD and 11 mGy with DS-EID. On comparison of six patients (three on PCD, three on EID) with similar heart rates, DS-PCD provided iodine maps with well-defined coronaries even at a high heart rate of 86 beats per minute. Meanwhile, there were substantial motion artifacts in iodine maps obtained with DS-EID for patients with similar heart rates. CONCLUSION In a cardiac motion phantom, DS-PCD CT can perform accurate material decomposition in high-pitch mode, providing iodine maps with excellent geometric accuracy and robustness to motion at approximately 38% of the dose for similar noise as DS-EID CT.
Collapse
Affiliation(s)
- Zaki Ahmed
- Department of Radiology, Mayo Clinic, Rochester, MN
| | - David Campeau
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN
| | - Hao Gong
- Department of Radiology, Mayo Clinic, Rochester, MN
| | | | | | | | - Shuai Leng
- Department of Radiology, Mayo Clinic, Rochester, MN
| |
Collapse
|
7
|
Dell’Aversana S, Ascione R, De Giorgi M, De Lucia DR, Cuocolo R, Boccalatte M, Sibilio G, Napolitano G, Muscogiuri G, Sironi S, Di Costanzo G, Cavaglià E, Imbriaco M, Ponsiglione A. Dual-Energy CT of the Heart: A Review. J Imaging 2022; 8:jimaging8090236. [PMID: 36135402 PMCID: PMC9503750 DOI: 10.3390/jimaging8090236] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/09/2022] [Accepted: 08/30/2022] [Indexed: 11/26/2022] Open
Abstract
Dual-energy computed tomography (DECT) represents an emerging imaging technique which consists of the acquisition of two separate datasets utilizing two different X-ray spectra energies. Several cardiac DECT applications have been assessed, such as virtual monoenergetic images, virtual non-contrast reconstructions, and iodine myocardial perfusion maps, which are demonstrated to improve diagnostic accuracy and image quality while reducing both radiation and contrast media administration. This review will summarize the technical basis of DECT and review the principal cardiac applications currently adopted in clinical practice, exploring possible future applications.
Collapse
Affiliation(s)
- Serena Dell’Aversana
- Department of Radiology, Santa Maria delle Grazie Hospital, ASL Napoli 2 Nord, 80078 Pozzuoli, Italy
- Correspondence:
| | - Raffaele Ascione
- Department of Advanced Biomedical Sciences, University of Naples Federico II, 80131 Naples, Italy
| | - Marco De Giorgi
- Department of Advanced Biomedical Sciences, University of Naples Federico II, 80131 Naples, Italy
| | - Davide Raffaele De Lucia
- Department of Advanced Biomedical Sciences, University of Naples Federico II, 80131 Naples, Italy
| | - Renato Cuocolo
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Baronissi, Italy
| | - Marco Boccalatte
- Coronary Care Unit, Santa Maria delle Grazie Hospital, ASL Napoli 2 Nord, 80078 Pozzuoli, Italy
| | - Gerolamo Sibilio
- Coronary Care Unit, Santa Maria delle Grazie Hospital, ASL Napoli 2 Nord, 80078 Pozzuoli, Italy
| | | | - Giuseppe Muscogiuri
- Department of Radiology, Istituto Auxologico Italiano IRCCS, San Luca Hospital, University Milano Bicocca, 20149 Milan, Italy
| | - Sandro Sironi
- Department of Radiology, Istituto Auxologico Italiano IRCCS, San Luca Hospital, University Milano Bicocca, 20149 Milan, Italy
| | - Giuseppe Di Costanzo
- Department of Radiology, Santa Maria delle Grazie Hospital, ASL Napoli 2 Nord, 80078 Pozzuoli, Italy
| | - Enrico Cavaglià
- Department of Radiology, Santa Maria delle Grazie Hospital, ASL Napoli 2 Nord, 80078 Pozzuoli, Italy
| | - Massimo Imbriaco
- Department of Advanced Biomedical Sciences, University of Naples Federico II, 80131 Naples, Italy
| | - Andrea Ponsiglione
- Department of Advanced Biomedical Sciences, University of Naples Federico II, 80131 Naples, Italy
| |
Collapse
|
8
|
Vulasala SSR, Wynn GC, Hernandez M, Kadambi I, Gopireddy DR, Bhosale P, Virarkar MK. Dual-Energy Imaging of the Chest. Semin Ultrasound CT MR 2022; 43:311-319. [PMID: 35738816 DOI: 10.1053/j.sult.2022.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Dual-energy computed tomography (DECT) is a contemporary development by which the tissue can be characterized beyond conventional computed tomography. It improves tissue differentiation by exploiting the X-ray absorptive property of the tissues. Although still in its early stages, DECT utilization in pulmonary and cardiovascular pathologies is emerging. It includes applications such as pulmonary embolism, pulmonary hypertension, myocardial perfusion, and coronary artery assessment. This article discusses DECT principles and their current and emerging applications in thoracic imaging.
Collapse
Affiliation(s)
- Sai Swarupa R Vulasala
- Research Assistant, Department of Radiology, University of Florida College of Medicine, Jacksonville, Florida, 32209, United States
| | - Gregory Carl Wynn
- Associate Professor, Division of Cardiovascular and Thoracic Imaging, University of Florida College of Medicine, Jacksonville, Florida, 32209, United States
| | - Mauricio Hernandez
- Radiology Research Manager II, Department of Radiology, University of Florida College of Medicine, Jacksonville, Florida, 32209, United States.
| | - Isiri Kadambi
- Observer, Department of Radiology, University of Florida College of Medicine, Jacksonville, Florida, 32209, United States
| | - Dheeraj Reddy Gopireddy
- Associate Professor & Associate Chair, Clinical Operations, and Quality Assurance., Department of Radiology, University of Florida College of Medicine, Jacksonville, Florida, 32209, United States
| | - Priya Bhosale
- Professor, Department of Diagnostic Radiology, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas, 77030, United States
| | - Mayur K Virarkar
- Assistant Professor, Department of Radiology, University of Florida College of Medicine, Jacksonville, Florida, 32209, United States
| |
Collapse
|
9
|
Narula J, Chandrashekhar Y, Ahmadi A, Abbara S, Berman DS, Blankstein R, Leipsic J, Newby D, Nicol ED, Nieman K, Shaw L, Villines TC, Williams M, Hecht HS. SCCT 2021 Expert Consensus Document on Coronary Computed Tomographic Angiography: A Report of the Society of Cardiovascular Computed Tomography. J Cardiovasc Comput Tomogr 2021; 15:192-217. [PMID: 33303384 PMCID: PMC8713482 DOI: 10.1016/j.jcct.2020.11.001] [Citation(s) in RCA: 190] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Jagat Narula
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Y Chandrashekhar
- University of Minnesota and VA Medical Center, Minneapolis, MN, USA
| | - Amir Ahmadi
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Suhny Abbara
- University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - Ron Blankstein
- Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
| | | | - David Newby
- University of Edinburgh/British Heart Foundation Centre for Cardiovascular Science, Edinburgh, United Kingdom
| | - Edward D Nicol
- National Heart and Lung Institute, Imperial College, London, United Kingdom
| | | | - Leslee Shaw
- New York-Presbyterian Hospital and Weill Cornell Medicine, New York, NY, USA
| | - Todd C Villines
- University of Virginia Health System, Charlottesville, VA, USA
| | - Michelle Williams
- University of Edinburgh/British Heart Foundation Centre for Cardiovascular Science, Edinburgh, United Kingdom
| | - Harvey S Hecht
- Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
10
|
Punzo B, Cavaliere C, Maffei E, Bossone E, Saba L, Cademartiri F. Narrative review of cardiac computed tomography perfusion: insights into static rest perfusion. Cardiovasc Diagn Ther 2021; 10:1946-1953. [PMID: 33381436 DOI: 10.21037/cdt-20-552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Cardiac or left ventricular perfusion performed with cardiac computed tomography (CCT) is a developing method that may have the potential to complete in a very straight forward way the assessment of ischemic heart disease by means of CT. Myocardial CT perfusion (CTP) can be achieved with a single static scan during the first-pass of the iodinate contrast agent, with the monoenergetic or dual-energy acquisition, or as a dynamic, time-resolved scan during stress by using coronary vasodilator agents. Several methods can be performed, and we focused on static perfusion. CTP may serve as a useful adjunct to coronary CT angiography (CTA) to improve specificity of detecting myocardial ischemia. Technological advances will reduce the radiation dose of myocardial CTP, such as low tube voltage imaging or new reconstruction algorithms, making it a more viable clinical option. The advantages of static first-pass non-stress perfusion are several; the main one is that it can be done to each and every patient who undergoes CCT for the assessment of coronary artery tree. Future advances in CTP will likely improve the diagnostic accuracy of CTP + CTA, and will better estimate the severity of ischemia Therefore, it is simple and comprehensive. However, it has several limitations. In this review we will discuss the technique with its advantages and limitations.
Collapse
Affiliation(s)
- Bruna Punzo
- Department of Radiology, SDN IRCCS, Naples, Italy
| | | | - Erica Maffei
- Department of Radiology, Area Vasta 1, ASUR Marche, Urbino (PU), Italy
| | - Eduardo Bossone
- Department of Cardiology, Ospedale Cardarelli, Naples, Italy
| | - Luca Saba
- Department of Radiology, University of Cagliari, Cagliari, Italy
| | | |
Collapse
|
11
|
Omarov YA, Sukhinina TS, Veselova TN, Shakhnovich RM, Zhukova NS, Merkulova IN, Pevzner DV, Ternovoy SK, Staroverov II. [Possibilities of Stress Computed Tomography Myocardial Perfusion Imaging in the Diagnosis of Ischemic Heart Disease]. ACTA ACUST UNITED AC 2020; 60:122-131. [PMID: 33228515 DOI: 10.18087/cardio.2020.10.n1028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 02/17/2020] [Indexed: 11/18/2022]
Abstract
Computed tomography angiography (CT-angiography, CTA) allows noninvasive visualization of coronary arteries (CA). This method is highly sensitive in detecting coronary atherosclerosis. However, standard CTA does not allow evaluation of the hemodynamic significance of found CA stenoses, which requires additional functional tests for detection of myocardial ischemia. This review focuses on possibilities of clinical use, limitations, technical aspects, and prospects of a combination of CT-angiography and CT myocardial perfusion imaging in diagnostics of ischemic heart disease.
Collapse
Affiliation(s)
- Y A Omarov
- National Medical Research Center of Cardiology" of the Ministry of Health of Russia, Moscow
| | - T S Sukhinina
- National Medical Research Center of Cardiology" of the Ministry of Health of Russia, Moscow
| | - T N Veselova
- National Medical Research Center of Cardiology" of the Ministry of Health of Russia, Moscow
| | - R M Shakhnovich
- National Medical Research Center of Cardiology" of the Ministry of Health of Russia, Moscow
| | - N S Zhukova
- National Medical Research Center of Cardiology" of the Ministry of Health of Russia, Moscow
| | - I N Merkulova
- National Medical Research Center of Cardiology" of the Ministry of Health of Russia, Moscow
| | - D V Pevzner
- National Medical Research Center of Cardiology" of the Ministry of Health of Russia, Moscow
| | - S K Ternovoy
- National Medical Research Center of Cardiology" of the Ministry of Health of Russia, Moscow; First Moscow State Medical University, Sechenov Moscow State Medical University (Sechenov University), Moscow
| | - I I Staroverov
- National Medical Research Center of Cardiology" of the Ministry of Health of Russia, Moscow
| |
Collapse
|
12
|
Peper J, Suchá D, Swaans M, Leiner T. Functional cardiac CT-Going beyond Anatomical Evaluation of Coronary Artery Disease with Cine CT, CT-FFR, CT Perfusion and Machine Learning. Br J Radiol 2020; 93:20200349. [PMID: 32783626 DOI: 10.1259/bjr.20200349] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The aim of this review is to provide an overview of different functional cardiac CT techniques which can be used to supplement assessment of the coronary arteries to establish the significance of coronary artery stenoses. We focus on cine-CT, CT-FFR, CT-myocardial perfusion and how developments in machine learning can supplement these techniques.
Collapse
Affiliation(s)
- Joyce Peper
- Department of Cardiology, St. Antonius Hospital Koekoekslaan 1, Nieuwegein, the Netherlands.,Department of Radiology, University Medical Center Utrecht, Heidelberglaan 100, 3584CX, Utrecht, The Netherlands
| | - Dominika Suchá
- Department of Radiology, University Medical Center Utrecht, Heidelberglaan 100, 3584CX, Utrecht, The Netherlands
| | - Martin Swaans
- Department of Cardiology, St. Antonius Hospital Koekoekslaan 1, Nieuwegein, the Netherlands
| | - Tim Leiner
- Department of Radiology, University Medical Center Utrecht, Heidelberglaan 100, 3584CX, Utrecht, The Netherlands
| |
Collapse
|
13
|
Prasad Reddy KV, Singhal M, Vijayvergiya R, Sood A, Khandelwal N. Role of DECT in coronary artery disease: a comparative study with ICA and SPECT. ACTA ACUST UNITED AC 2020; 26:420-428. [PMID: 32755875 DOI: 10.5152/dir.2020.18569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
PURPOSE Earlier imaging techniques for coronary artery disease (CAD) focused primarily on either morphological or functional assessment of CAD. However, dual-energy computed tomography (DECT) can be used to assess myocardial blood supply both morphologically and functionally. We aimed to evaluate the diagnostic accuracy of DECT in detecting morphological and functional components of CAD, using invasive coronary angiography (ICA) and single photon emission computed tomography (SPECT) as reference standards. METHODS Twenty-five patients with known or suspicious CAD and scheduled for ICA were investigated by DECT and SPECT. DECT was performed during the resting state using retrospective electrocardiography (ECG) gating. CT coronary angiography and perfusion images were generated from the same raw data. All patients were evaluated for significant stenosis (≥50%) on both ICA and DECT coronary angiography, and for myocardial perfusion defects on SPECT and DECT perfusion. Comparison was done between ICA and DECT coronary angiography for detection of significant stenosis and between SPECT and DECT perfusion for detecting myocardial perfusion defects. RESULTS Using ICA as reference standard, sensitivity, specificity, and accuracy of DECT coronary angiography in detecting ≥50% stenosis of coronary artery lumen were 81.6%, 97.8%, and 95.0%, respectively, by segment-based analysis and 92.1%, 96.1%, and 93.7%, respectively, by vessel-based analysis. Using SPECT as the reference standard, the sensitivity, specificity, and accuracy of DECT perfusion in detecting myocardial perfusion defects were 70.4%, 86.4%, and 80.6%, respectively, on per-segment analysis and 90.7%, 66.6%, and 84.7%, respectively, on per-territorial basis. CONCLUSION DECT accurately detected coronary artery stenosis and myocardial ischemia using ICA and SPECT as reference standards. In the same scan, DECT can accurately provide integrative imaging of coronary artery morphology and myocardial perfusion.
Collapse
Affiliation(s)
- Kamireddy V Prasad Reddy
- Department of Radiodiagnosis and Imaging, Postgraduate Institute of Medical Training and Research, Chandigarh, India
| | - Manphool Singhal
- Department of Radiodiagnosis and Imaging, Postgraduate Institute of Medical Training and Research, Chandigarh, India
| | - Rajesh Vijayvergiya
- Department of Cardiology, Postgraduate Institute of Medical Training and Research, Chandigarh, India
| | - Ashwani Sood
- Department of Nuclear Medicine, Postgraduate Institute of Medical Training and Research, Chandigarh, India
| | - Niranjan Khandelwal
- Department of Radiodiagnosis and Imaging, Postgraduate Institute of Medical Training and Research, Chandigarh, India
| |
Collapse
|
14
|
Assen MV, Vonder M, Pelgrim GJ, Von Knebel Doeberitz PL, Vliegenthart R. Computed tomography for myocardial characterization in ischemic heart disease: a state-of-the-art review. Eur Radiol Exp 2020; 4:36. [PMID: 32548777 PMCID: PMC7297926 DOI: 10.1186/s41747-020-00158-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 03/30/2020] [Indexed: 12/21/2022] Open
Abstract
This review provides an overview of the currently available computed tomography (CT) techniques for myocardial tissue characterization in ischemic heart disease, including CT perfusion and late iodine enhancement. CT myocardial perfusion imaging can be performed with static and dynamic protocols for the detection of ischemia and infarction using either single- or dual-energy CT modes. Late iodine enhancement may be used for the analysis of myocardial infarction. The accuracy of these CT techniques is highly dependent on the imaging protocol, including acquisition timing and contrast administration. Additionally, the options for qualitative and quantitative analysis and the accuracy of each technique are discussed.
Collapse
Affiliation(s)
- M van Assen
- University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 EZ, Groningen, The Netherlands.
| | - M Vonder
- Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - G J Pelgrim
- Department of Radiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - P L Von Knebel Doeberitz
- Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - R Vliegenthart
- Department of Radiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
15
|
Tesche C, Gray HN, Albrecht MH. Dual-Energy CT for analyzing extracellular volume fraction: A promising novel technique in myocardial fibrosis diagnostics? J Cardiovasc Comput Tomogr 2020; 14:377-378. [PMID: 32094066 DOI: 10.1016/j.jcct.2020.01.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 01/01/2020] [Accepted: 01/23/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Christian Tesche
- Department of Internal Medicine, St. Johannes-Hospital, Dortmund, Germany; Department of Cardiology, Munich University Clinic, Ludwig-Maximilians-University, Munich, Germany; Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA.
| | - Hunter N Gray
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA
| | - Moritz H Albrecht
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA; Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt, Germany
| |
Collapse
|
16
|
Society of cardiovascular computed tomography expert consensus document on myocardial computed tomography perfusion imaging. J Cardiovasc Comput Tomogr 2020; 14:87-100. [DOI: 10.1016/j.jcct.2019.10.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 10/15/2019] [Indexed: 01/06/2023]
|
17
|
Nieman K. Computed tomography myocardial perfusion imaging vs. computed tomography-derived fractional flow reserve, which way forward? Eur Heart J Cardiovasc Imaging 2018; 19:1230-1231. [DOI: 10.1093/ehjci/jey125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Koen Nieman
- Stanford University School of Medicine and Cardiovascular Institute, Departments of Cardiovascular Medicine and Radiology, Room H2157, 300 Pasteur Drive, Stanford, CA, USA
| |
Collapse
|
18
|
De Santis D, Eid M, De Cecco CN, Jacobs BE, Albrecht MH, Varga-Szemes A, Tesche C, Caruso D, Laghi A, Schoepf UJ. Dual-Energy Computed Tomography in Cardiothoracic Vascular Imaging. Radiol Clin North Am 2018; 56:521-534. [PMID: 29936945 DOI: 10.1016/j.rcl.2018.03.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Dual energy computed tomography is becoming increasingly widespread in clinical practice. It can expand on the traditional density-based data achievable with single energy computed tomography by adding novel applications to help reach a more accurate diagnosis. The implementation of this technology in cardiothoracic vascular imaging allows for improved image contrast, metal artifact reduction, generation of virtual unenhanced images, virtual calcium subtraction techniques, cardiac and pulmonary perfusion evaluation, and plaque characterization. The improved diagnostic performance afforded by dual energy computed tomography is not associated with an increased radiation dose. This review provides an overview of dual energy computed tomography cardiothoracic vascular applications.
Collapse
Affiliation(s)
- Domenico De Santis
- Department of Radiology and Radiological Science, Division of Cardiovascular Imaging, Medical University of South Carolina, 25 Courtenay Drive, Charleston, SC 29425, USA; Department of Radiological Sciences, Oncology and Pathology, University of Rome "Sapienza", Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Marwen Eid
- Department of Radiology and Radiological Science, Division of Cardiovascular Imaging, Medical University of South Carolina, 25 Courtenay Drive, Charleston, SC 29425, USA
| | - Carlo N De Cecco
- Department of Radiology and Radiological Science, Division of Cardiovascular Imaging, Medical University of South Carolina, 25 Courtenay Drive, Charleston, SC 29425, USA
| | - Brian E Jacobs
- Department of Radiology and Radiological Science, Division of Cardiovascular Imaging, Medical University of South Carolina, 25 Courtenay Drive, Charleston, SC 29425, USA
| | - Moritz H Albrecht
- Department of Radiology and Radiological Science, Division of Cardiovascular Imaging, Medical University of South Carolina, 25 Courtenay Drive, Charleston, SC 29425, USA; Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, Frankfurt am Main 60590, Germany
| | - Akos Varga-Szemes
- Department of Radiology and Radiological Science, Division of Cardiovascular Imaging, Medical University of South Carolina, 25 Courtenay Drive, Charleston, SC 29425, USA
| | - Christian Tesche
- Department of Radiology and Radiological Science, Division of Cardiovascular Imaging, Medical University of South Carolina, 25 Courtenay Drive, Charleston, SC 29425, USA; Department of Cardiology and Intensive Care Medicine, Heart Center Munich-Bogenhausen, Lazarettstraße 36, Munich 80636, Germany
| | - Damiano Caruso
- Department of Radiological Sciences, Oncology and Pathology, University of Rome "Sapienza", Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Andrea Laghi
- Department of Radiological Sciences, Oncology and Pathology, University of Rome "Sapienza", Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Uwe Joseph Schoepf
- Department of Radiology and Radiological Science, Division of Cardiovascular Imaging, Medical University of South Carolina, 25 Courtenay Drive, Charleston, SC 29425, USA.
| |
Collapse
|
19
|
Baumann S, Rutsch M, Becher T, Kryeziu P, Haubenreisser H, Vogler N, Schoenike CA, Borggrefe M, Schoenberg SO, Akin I, Henzler T, Lossnitzer D. Clinical Impact of Rest Dual-energy Computed Tomography Myocardial Perfusion in Patients with Coronary Artery Disease. ACTA ACUST UNITED AC 2018; 31:1153-1157. [PMID: 29102938 DOI: 10.21873/invivo.11182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 08/21/2017] [Accepted: 08/22/2017] [Indexed: 12/16/2022]
Abstract
BACKGROUND/AIM To evaluate the hypothesis that patients with suspected coronary artery disease (CAD) assessed using rest dual-energy computed tomography-derived myocardial perfusion imaging (DECT-P), could have fewer invasive coronary angiographies (ICA), showing non-obstructive CAD. MATERIALS AND METHODS Patients who had undergone coronary computed tomography angiography (cCTA), rest DECT-P and ICA were analyzed. RESULTS We evaluated 51 patients (62.7% males, mean age 51.6±12.8 years). Rest DECT-P identified perfusion defects in three (10.7%) of the 28 patients with cCTA negative for luminal stenosis and in 10 (43.5%) of the 23 patients with cCTA positive for luminal stenosis. In total, 21 patients underwent both cCTA and ICA, of which seven (33.3%) showed obstructive CAD. Rest DECT-P revealed false-negative results in four cases (19.1%) and false-positive results in six cases (28.6%). CONCLUSION Adding rest DECT-P to cCTA has no incremental diagnostic value over cCTA alone, to exclude haemodynamically significant CAD. Therefore, a rest-stress-DECT-P protocol or a CT-based FFR calculation might be a promising concept to improve diagnostic accuracy in a real clinical setting.
Collapse
Affiliation(s)
- Stefan Baumann
- First Department of Medicine-Cardiology, University Medical Centre Mannheim, Mannheim, Germany and DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Mannheim, Germany
| | - Marlon Rutsch
- First Department of Medicine-Cardiology, University Medical Centre Mannheim, Mannheim, Germany and DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Mannheim, Germany
| | - Tobias Becher
- First Department of Medicine-Cardiology, University Medical Centre Mannheim, Mannheim, Germany and DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Mannheim, Germany
| | - Philipp Kryeziu
- First Department of Medicine-Cardiology, University Medical Centre Mannheim, Mannheim, Germany and DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Mannheim, Germany
| | - Holger Haubenreisser
- Institute of Clinical Radiology and Nuclear Medicine, University Medical Centre Mannheim, Mannheim, Germany
| | - Nils Vogler
- Institute of Clinical Radiology and Nuclear Medicine, University Medical Centre Mannheim, Mannheim, Germany
| | | | - Martin Borggrefe
- First Department of Medicine-Cardiology, University Medical Centre Mannheim, Mannheim, Germany and DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Mannheim, Germany
| | - Stefan O Schoenberg
- Institute of Clinical Radiology and Nuclear Medicine, University Medical Centre Mannheim, Mannheim, Germany
| | - Ibrahim Akin
- First Department of Medicine-Cardiology, University Medical Centre Mannheim, Mannheim, Germany and DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Mannheim, Germany
| | - Thomas Henzler
- Institute of Clinical Radiology and Nuclear Medicine, University Medical Centre Mannheim, Mannheim, Germany
| | - Dirk Lossnitzer
- First Department of Medicine-Cardiology, University Medical Centre Mannheim, Mannheim, Germany and DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Mannheim, Germany
| |
Collapse
|
20
|
Albrecht MH, De Cecco CN, Schoepf UJ, Spandorfer A, Eid M, De Santis D, Varga-Szemes A, van Assen M, von Knebel-Doeberitz PL, Tesche C, Puntmann VO, Nagel E, Vogl TJ, Nance JW. Dual-energy CT of the heart current and future status. Eur J Radiol 2018; 105:110-118. [PMID: 30017266 DOI: 10.1016/j.ejrad.2018.05.028] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 05/17/2018] [Accepted: 05/29/2018] [Indexed: 11/19/2022]
Abstract
Several applications utilizing dual-energy cardiac CT (DECT) have recently transitioned from the realm of research into clinical workflows. DECT acquisition techniques and subsequent post-processing can provide improved qualitative analysis, allow quantitative imaging, and have the potential to decrease requisite radiation and contrast material doses. Additionally, several experimental DECT techniques are pending further investigation and may improve the diagnostic accuracy of cardiac CT and/or provide evaluation of emerging imaging biomarkers in the future. This review article will summarize the major applications utilizing DECT in diagnosis of cardiovascular disease, including both the clinically used and investigational techniques examined to date.
Collapse
Affiliation(s)
- Moritz H Albrecht
- Medical University of South Carolina, Department of Radiology and Radiological Science, Division of Cardiovascular Imaging, Charleston, SC, United States; University Hospital Frankfurt, Department of Diagnostic and Interventional Radiology, Frankfurt, Germany.
| | - Carlo N De Cecco
- Medical University of South Carolina, Department of Radiology and Radiological Science, Division of Cardiovascular Imaging, Charleston, SC, United States.
| | - U Joseph Schoepf
- Medical University of South Carolina, Department of Radiology and Radiological Science, Division of Cardiovascular Imaging, Charleston, SC, United States.
| | - Adam Spandorfer
- Medical University of South Carolina, Department of Radiology and Radiological Science, Division of Cardiovascular Imaging, Charleston, SC, United States.
| | - Marwen Eid
- Medical University of South Carolina, Department of Radiology and Radiological Science, Division of Cardiovascular Imaging, Charleston, SC, United States.
| | - Domenico De Santis
- Medical University of South Carolina, Department of Radiology and Radiological Science, Division of Cardiovascular Imaging, Charleston, SC, United States; University of Rome "Sapienza", Department of Radiological Sciences, Oncological and Pathological Sciences, Latina, Italy.
| | - Akos Varga-Szemes
- Medical University of South Carolina, Department of Radiology and Radiological Science, Division of Cardiovascular Imaging, Charleston, SC, United States.
| | - Marly van Assen
- Medical University of South Carolina, Department of Radiology and Radiological Science, Division of Cardiovascular Imaging, Charleston, SC, United States; University Medical Center Groningen, Center for Medical Imaging, Department of Radiology, Groningen, The Netherlands.
| | - Philipp L von Knebel-Doeberitz
- Medical University of South Carolina, Department of Radiology and Radiological Science, Division of Cardiovascular Imaging, Charleston, SC, United States.
| | - Christian Tesche
- Medical University of South Carolina, Department of Radiology and Radiological Science, Division of Cardiovascular Imaging, Charleston, SC, United States; Heart Center Munich-Bogenhausen, Department of Cardiology and Intensive Care Medicine, Munich, Germany.
| | - Valentina O Puntmann
- University Hospital Frankfurt, Institute of Experimental and Translational Cardiovascular Imaging, DZHK Centre for Cardiovascular Imaging, Frankfurt, Germany.
| | - Eike Nagel
- University Hospital Frankfurt, Institute of Experimental and Translational Cardiovascular Imaging, DZHK Centre for Cardiovascular Imaging, Frankfurt, Germany.
| | - Thomas J Vogl
- University Hospital Frankfurt, Department of Diagnostic and Interventional Radiology, Frankfurt, Germany.
| | - John W Nance
- Medical University of South Carolina, Department of Radiology and Radiological Science, Division of Cardiovascular Imaging, Charleston, SC, United States.
| |
Collapse
|
21
|
Singh G, Al’Aref SJ, Van Assen M, Kim TS, van Rosendael A, Kolli KK, Dwivedi A, Maliakal G, Pandey M, Wang J, Do V, Gummalla M, De Cecco CN, Min JK. Machine learning in cardiac CT: Basic concepts and contemporary data. J Cardiovasc Comput Tomogr 2018; 12:192-201. [DOI: 10.1016/j.jcct.2018.04.010] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 04/27/2018] [Indexed: 01/16/2023]
|
22
|
Kalisz K, Halliburton S, Abbara S, Leipsic JA, Albrecht MH, Schoepf UJ, Rajiah P. Update on Cardiovascular Applications of Multienergy CT. Radiographics 2017; 37:1955-1974. [DOI: 10.1148/rg.2017170100] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
23
|
Kofoed KF, Sørgaard MH, Linde JJ. Functional Information in Coronary Artery Disease: The Case of Computed Tomography Myocardial Perfusion. Curr Cardiol Rep 2017; 19:126. [PMID: 29071430 DOI: 10.1007/s11886-017-0937-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
PURPOSE OF REVIEW To review methodological and logistical aspects of CT myocardial perfusion, current clinical evidence and possible future directions, with specific focus on use in patients with coronary artery disease (CAD). RECENT FINDINGS CT myocardial perfusion imaging may be performed as an add-on to standard coronary CT angiography (CCTA), to identify regions of myocardial hypoperfusion, at rest and during adenosine stress. The principle of measurement is well-validated in animal experimental models, and CT myocardial perfusion imaging has a high degree of concordance with already clinically available perfusion imaging methods. Combining CCTA and CT myocardial perfusion imaging increases the diagnostic accuracy to identify patients with CAD associated with ischemia. In patients suspected of CAD, CCTA frequently detects coronary atherosclerotic lesions, in which revascularization could be clinically beneficial. CT myocardial perfusion imaging may be helpful to identify coronary lesions associated with myocardial ischemia, and thus potentially suitable for coronary intervention.
Collapse
Affiliation(s)
- Klaus F Kofoed
- Department of Cardiology, The Heart Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.
- Department of Cardiology 2014, The Heart Centre, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen, Denmark.
- Department of Radiology, The Diagnostic Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.
| | - Mathias H Sørgaard
- Department of Cardiology, The Heart Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Jesper J Linde
- Department of Cardiology, The Heart Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
24
|
Rajiah P, Maroules CD. Myocardial ischemia testing with computed tomography: emerging strategies. Cardiovasc Diagn Ther 2017; 7:475-488. [PMID: 29255691 DOI: 10.21037/cdt.2017.09.06] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Although cardiac computed tomography (CT) has high negative predictive value to exclude obstructive coronary artery disease (CAD), particularly in the low to intermediate risk population, it has low specificity in the diagnosis of ischemia-inducing lesions. This inability to predict hemodynamically significant stenosis hampers the ability of CT to be an effective gatekeeper for invasive angiography and to guide appropriate revascularization. Recent advances in CT technology have resulted in the development of multiple techniques to provide hemodynamic information and detect lesion-specific ischemia, namely CT perfusion (CTP), CT-derived fractional flow reserve (CT-FFR) and coronary transluminal attenuation gradient (TAG). In this article, we provide a perspective on these emerging CT techniques in the evaluation of myocardial ischemia.
Collapse
Affiliation(s)
- Prabhakar Rajiah
- Department of Radiology, Cardiothoracic Imaging, UT Southwestern Medical Center, Dallas, Texas, USA
| | | |
Collapse
|
25
|
Cardiac Dual-Energy CT Applications and Clinical Impact. CURRENT RADIOLOGY REPORTS 2017. [DOI: 10.1007/s40134-017-0237-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
26
|
Improved Discrimination of Myocardial Perfusion Defects at Low Energy Levels Using Virtual Monochromatic Imaging. J Comput Assist Tomogr 2017; 41:661-667. [PMID: 28296684 DOI: 10.1097/rct.0000000000000584] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVES The aim of this study was to explore the diagnostic performance of dual-energy computed tomography perfusion (DE-CTP) at different energy levels. METHODS Patients with known or suspected coronary artery disease underwent stress and rest DE-CTP and single-photon emission computed tomography. Images were evaluated using monochromatic data, and perfusion defects were initially identified in a qualitative manner and subsequently confirmed using attenuation levels. RESULTS Thirty-six patients were included. Sensitivity, specificity, positive predictive value, and negative predictive value of DE-CTP for the identification of perfusion defects were 84.1%, 94.2%, 77.3%, and 96.2%, respectively. Perfusion defects showed significantly lower attenuation than normal segments, with the largest differences among low energy levels (sensitivity of 96% and specificity of 98% using a cutoff value ≤ 153 Hounsfield units at 40 keV), progressively declining at the higher levels (P < 0.001). CONCLUSIONS Dual-energy CTP at the lowest energy levels allowed improved discrimination of perfusion defects compared with higher energy levels.
Collapse
|
27
|
Myocardial CT Perfusion: A Review of Current Modalities, Technology, and Clinical Performance. CURRENT CARDIOVASCULAR IMAGING REPORTS 2017. [DOI: 10.1007/s12410-017-9423-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
28
|
Abstract
Coronary computed tomography angiography (CCTA) plays an important role in many specific scenarios such as in symptomatic patients with intermediate pretest of coronary artery disease (CAD), as well as in the triage of patients with acute chest pain with TIMI risk ≤2. However, it cannot detect the presence of associated ischemia, which is critical for clinical decision making among patients with moderate to severe stenosis. Although functional information can be obtained with different non-invasive tools, cardiac CT is the unique modality that can perform a comprehensive evaluation of coronary anatomy plus the functional significance of lesions. Myocardial CT perfusion (CTP) can be performed with different approaches such as static and dynamic CTP. In addition, static CTP can be performed using single energy CT (SECT) or dual energy CT (DECT). In this review, we will discuss the technical parameters and the available clinical evidence of static CTP using both SECT and DECT.
Collapse
Affiliation(s)
- Patricia Carrascosa
- Department of Cardiovascular Imaging, Diagnóstico Maipú, Buenos Aires, Argentina
| | - Carlos Capunay
- Department of Cardiovascular Imaging, Diagnóstico Maipú, Buenos Aires, Argentina
| |
Collapse
|
29
|
Rodriguez-Granillo GA. Delayed enhancement cardiac computed tomography for the assessment of myocardial infarction: from bench to bedside. Cardiovasc Diagn Ther 2017; 7:159-170. [PMID: 28540211 DOI: 10.21037/cdt.2017.03.16] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A large number of studies support the increasingly relevant prognostic value of the presence and extent of delayed enhancement (DE), a surrogate marker of fibrosis, in diverse etiologies. Gadolinium and iodinated based contrast agents share similar kinetics, thus leading to comparable myocardial characterization with cardiac magnetic resonance (CMR) and cardiac computed tomography (CT) at both first-pass perfusion and DE imaging. We review the available evidence of DE imaging for the assessment of myocardial infarction (MI) using cardiac CT (CTDE), from animal to clinical studies, and from 16-slice CT to dual-energy CT systems (DECT). Although both CMR and gadolinium agents have been originally deemed innocuous, a number of concerns (though inconclusive and very rare) have been recently issued regarding safety issues, including DNA double-strand breaks related to CMR, and gadolinium-associated nephrogenic systemic fibrosis and deposition in the skin and certain brain structures. These concerns have to be considered in the context of non-negligible rates of claustrophobia, increasing rates of patients with implantable cardiac devices, and a number of logistic drawbacks compared with CTDE, such as higher costs, longer scanning times, and difficulties to scan patients with impaired breath-holding capabilities. Overall, these issues might encourage the role of CTDE as an alternative for DE-CMR in selected populations.
Collapse
|
30
|
White Paper of the Society of Computed Body Tomography and Magnetic Resonance on Dual-Energy CT, Part 3. J Comput Assist Tomogr 2017; 41:1-7. [DOI: 10.1097/rct.0000000000000538] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
31
|
Sørgaard MH, Kofoed KF, Linde JJ, George RT, Rochitte CE, Feuchtner G, Lima JA, Abdulla J. Diagnostic accuracy of static CT perfusion for the detection of myocardial ischemia. A systematic review and meta-analysis. J Cardiovasc Comput Tomogr 2016; 10:450-457. [DOI: 10.1016/j.jcct.2016.09.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 07/26/2016] [Accepted: 09/23/2016] [Indexed: 12/28/2022]
|
32
|
Pontone G, Muscogiuri G, Andreini D, Guaricci AI, Guglielmo M, Mushtaq S, Baggiano A, Conte E, Beltrama V, Annoni A, Formenti A, Mancini E, Rabbat MG, Pepi M. The New Frontier of Cardiac Computed Tomography Angiography: Fractional Flow Reserve and Stress Myocardial Perfusion. CURRENT TREATMENT OPTIONS IN CARDIOVASCULAR MEDICINE 2016; 18:74. [DOI: 10.1007/s11936-016-0493-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
33
|
Myocardial perfusion imaging with dual energy CT. Eur J Radiol 2016; 85:1914-1921. [DOI: 10.1016/j.ejrad.2016.06.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 06/27/2016] [Accepted: 06/29/2016] [Indexed: 12/31/2022]
|
34
|
|
35
|
Danad I, Szymonifka J, Schulman-Marcus J, Min JK. Static and dynamic assessment of myocardial perfusion by computed tomography. Eur Heart J Cardiovasc Imaging 2016; 17:836-44. [PMID: 27013250 DOI: 10.1093/ehjci/jew044] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 02/18/2016] [Indexed: 12/13/2022] Open
Abstract
Recent developments in computed tomography (CT) technology have fulfilled the prerequisites for the clinical application of myocardial CT perfusion (CTP) imaging. The evaluation of myocardial perfusion by CT can be achieved by static or dynamic scan acquisitions. Although both approaches have proved clinically feasible, substantial barriers need to be overcome before its routine clinical application. The current review provides an outline of the current status of CTP imaging and also focuses on disparities between static and dynamic CTPs for the evaluation of myocardial blood flow.
Collapse
Affiliation(s)
- Ibrahim Danad
- NewYork-Presbyterian Hospital and Weill Cornell Medicine, 413 E. 69th Street, Suite 108, New York 10021, NY, USA Dalio Institute of Cardiovascular Imaging, New York, NY, USA
| | - Jackie Szymonifka
- NewYork-Presbyterian Hospital and Weill Cornell Medicine, 413 E. 69th Street, Suite 108, New York 10021, NY, USA Dalio Institute of Cardiovascular Imaging, New York, NY, USA
| | | | - James K Min
- NewYork-Presbyterian Hospital and Weill Cornell Medicine, 413 E. 69th Street, Suite 108, New York 10021, NY, USA Dalio Institute of Cardiovascular Imaging, New York, NY, USA
| |
Collapse
|
36
|
McLaughlin PD, Mallinson P, Lourenco P, Nicolaou S. Dual-Energy Computed Tomography: Advantages in the Acute Setting. Radiol Clin North Am 2015; 53:619-38, vii. [PMID: 26046502 DOI: 10.1016/j.rcl.2015.02.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The aim of this article is to inform and update emergency radiologists in respect of the clinically relevant benefits that dual-energy computed tomography (CT) contributes over conventional single-energy CT in the emergency setting using practical imaging examples. Particular emphasis will be placed on acute gout, bone marrow edema, acute renal colic, acute cardiovascular and neurovascular emergencies aswell as characterization of abdominal incidentalomas. The relevant scientific literature will be summarized and limitations of the technique also will be emphasized to provide the reader with a rounded concept of the current state of technology.
Collapse
Affiliation(s)
- Patrick D McLaughlin
- Department of Radiology, Vancouver General Hospital, University of British Columbia, 899 West 12th Avenue, Vancouver V5Z 1M9, Canada.
| | - Paul Mallinson
- Department of Radiology, Vancouver General Hospital, University of British Columbia, 899 West 12th Avenue, Vancouver V5Z 1M9, Canada
| | - Pedro Lourenco
- Department of Radiology, Vancouver General Hospital, University of British Columbia, 899 West 12th Avenue, Vancouver V5Z 1M9, Canada
| | - Savvas Nicolaou
- Department of Radiology, Vancouver General Hospital, University of British Columbia, 899 West 12th Avenue, Vancouver V5Z 1M9, Canada
| |
Collapse
|
37
|
Carrascosa PM, Deviggiano A, Capunay C, Campisi R, de Munain ML, Vallejos J, Tajer C, Rodriguez-Granillo GA. Incremental value of myocardial perfusion over coronary angiography by spectral computed tomography in patients with intermediate to high likelihood of coronary artery disease. Eur J Radiol 2015; 84:637-42. [DOI: 10.1016/j.ejrad.2014.12.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 11/04/2014] [Accepted: 12/20/2014] [Indexed: 10/24/2022]
|
38
|
|
39
|
Cannaò PM, Schoepf UJ, Muscogiuri G, Wichmann JL, Fuller SR, Secchi F, Varga-Szemes A, De Cecco CN. Technical prerequisites and imaging protocols for dynamic and dual energy myocardial perfusion imaging. Eur J Radiol 2015; 84:2401-10. [PMID: 25779223 DOI: 10.1016/j.ejrad.2015.02.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 02/15/2015] [Indexed: 12/14/2022]
Abstract
Coronary CT angiography (CCTA) is an established imaging technique used for the non-invasive morphological assessment of coronary artery disease. As in invasive coronary angiography, CCTA anatomical assessment of coronary stenosis does not adequately predict hemodynamic relevance. However, recent technical improvements provide the possibility of CT myocardial perfusion imaging (CTMPI). Two distinct CT techniques are currently available for myocardial perfusion assessment: static CT myocardial perfusion imaging (sCTMPI), with single- or dual-energy modality, and dynamic CT myocardial perfusion imaging (dCTMPI). The combination of CCTA morphological assessment and CTMPI functional evaluation holds promise for achieving a comprehensive assessment of coronary artery anatomy and myocardial perfusion using a single image modality.
Collapse
Affiliation(s)
- Paola M Cannaò
- Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, United States; Scuola di Specializzazione di Radiodiagnostica, Università degli Studi di Milano, Milan, Italy
| | - U Joseph Schoepf
- Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, United States; Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, SC, United States.
| | - Giuseppe Muscogiuri
- Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, United States; Department of Medical-Surgical Sciences and Translational Medicine, University of Rome "Sapienza", Rome, Italy
| | - Julian L Wichmann
- Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, United States; Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt, Germany
| | - Stephen R Fuller
- Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, United States
| | - Francesco Secchi
- Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, United States; Department of Radiology, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Akos Varga-Szemes
- Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, United States
| | - Carlo N De Cecco
- Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, United States; Department of Radiological Sciences, Oncology and Pathology, University of Rome "Sapienza" - Polo Pontino, Latina, Italy
| |
Collapse
|
40
|
Beyond stenosis detection: computed tomography approaches for determining the functional relevance of coronary artery disease. Radiol Clin North Am 2014; 53:317-34. [PMID: 25726997 DOI: 10.1016/j.rcl.2014.11.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Coronary computed tomography angiography (CCTA) is an established imaging technique for the noninvasive assessment of coronary arteries. However, CCTA remains a morphologic technique with the same limitations as invasive coronary angiography in evaluating the hemodynamic significance of coronary stenosis. Different computed tomography (CT) techniques for the functional analysis of coronary lesions have recently emerged, including static and dynamic CT myocardial perfusion imaging and CT-based fractional flow reserve and transluminal attenuation gradient methods. These techniques hold promise for achieving a comprehensive appraisal of anatomic and functional aspects of coronary heart disease with a single modality.
Collapse
|