1
|
Dekker HM, Stroomberg GJ, Van der Molen AJ, Prokop M. Review of strategies to reduce the contamination of the water environment by gadolinium-based contrast agents. Insights Imaging 2024; 15:62. [PMID: 38411847 PMCID: PMC10899148 DOI: 10.1186/s13244-024-01626-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/19/2024] [Indexed: 02/28/2024] Open
Abstract
Gadolinium-based contrast agents (GBCA) are essential for diagnostic MRI examinations. GBCA are only used in small quantities on a per-patient basis; however, the acquisition of contrast-enhanced MRI examinations worldwide results in the use of many thousands of litres of GBCA per year. Data shows that these GBCA are present in sewage water, surface water, and drinking water in many regions of the world. Therefore, there is growing concern regarding the environmental impact of GBCA because of their ubiquitous presence in the aquatic environment. To address the problem of GBCA in the water system as a whole, collaboration is necessary between all stakeholders, including the producers of GBCA, medical professionals and importantly, the consumers of drinking water, i.e. the patients. This paper aims to make healthcare professionals aware of the opportunity to take the lead in making informed decisions about the use of GBCA and provides an overview of the different options for action.In this paper, we first provide a summary on the metabolism and clinical use of GBCA, then the environmental fate and observations of GBCA, followed by measures to reduce the use of GBCA. The environmental impact of GBCA can be reduced by (1) measures focusing on the application of GBCA by means of weight-based contrast volume reduction, GBCA with higher relaxivity per mmol of Gd, contrast-enhancing sequences, and post-processing; and (2) measures that reduce the waste of GBCA, including the use of bulk packaging and collecting residues of GBCA at the point of application.Critical relevance statement This review aims to make healthcare professionals aware of the environmental impact of GBCA and the opportunity for them to take the lead in making informed decisions about GBCA use and the different options to reduce its environmental burden.Key points• Gadolinium-based contrast agents are found in sources of drinking water and constitute an environmental risk.• Radiologists have a wide spectrum of options to reduce GBCA use without compromising diagnostic quality.• Radiology can become more sustainable by adopting such measures in clinical practice.
Collapse
Affiliation(s)
- Helena M Dekker
- Department of Medical Imaging, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands.
| | - Gerard J Stroomberg
- RIWA-Rijn - Association of River Water Works, Groenendael 6, 3439 LV, Nieuwegein, The Netherlands
| | - Aart J Van der Molen
- Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Mathias Prokop
- Department of Medical Imaging, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands
| |
Collapse
|
2
|
Goldman-Yassen AE, Raz E, Borja MJ, Chen D, Derman A, Dogra S, Block KT, Dehkharghani S. Highly time-resolved 4D MR angiography using golden-angle radial sparse parallel (GRASP) MRI. Sci Rep 2022; 12:15099. [PMID: 36064872 PMCID: PMC9445093 DOI: 10.1038/s41598-022-18191-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 08/08/2022] [Indexed: 11/11/2022] Open
Abstract
Current dynamic MRA techniques are limited by temporal resolution and signal-to-noise penalties. GRASP, a fast and flexible MRI technique combining compressed-sensing, parallel imaging, and golden-angle radial sampling, acquires volumetric data continuously and can be reconstructed post hoc for user-defined applications. We describe a custom pipeline to retrospectively reconstruct ultrahigh temporal resolution, dynamic MRA from GRASP imaging obtained in the course of routine practice. GRASP scans were reconstructed using a custom implementation of the GRASP algorithm and post-processed with MeVisLab (MeVis Medical Solutions AG, Germany). Twenty consecutive examinations were scored by three neuroradiologists for angiographic quality of specific vascular segments and imaging artifacts using a 4-point scale. Unsubtracted images, baseline-subtracted images, and a temporal gradient dataset were available in 2D and 3D reconstructions. Distinct arterial and capillary phases were identified in all reconstructions, with a median of 2 frames (IQR1-3 and 2-3, respectively). Median rating for vascular segments was 3 (excellent) in all reconstructions and for nearly all segments, with excellent intraclass correlation (range 0.91-1.00). No cases were degraded by artifacts. GRASP-MRI obtained in routine practice can be seamlessly repurposed to produce high quality 4D MRA with 1-2-s resolved isotropic cerebrovascular angiography. Further exploration into diagnostic accuracy in disease-specific applications is warranted.
Collapse
Affiliation(s)
- Adam E Goldman-Yassen
- Department of Radiology, Children's Healthcare of Atlanta, Atlanta, GA, USA
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA, USA
| | - Eytan Raz
- Department of Radiology, NYU Langone Health, New York, NY, USA
| | - Maria J Borja
- Department of Radiology, NYU Langone Health, New York, NY, USA
| | - Duan Chen
- Department of Radiology, New York-Presbyterian Hospital, New York, NY, USA
| | - Anna Derman
- Department of Radiology, Maimonides Medical Center, New York, NY, USA
| | - Siddhant Dogra
- Department of Radiology, NYU Langone Health, New York, NY, USA
| | | | - Seena Dehkharghani
- Department of Radiology, NYU Langone Health, New York, NY, USA.
- Department of Neurology, NYU Langone Health, New York, NY, USA.
- Center for Biomedical Imaging, New York University Langone Health, 660 First Ave, 2nd Floor, New York, NY, 10016, USA.
| |
Collapse
|
3
|
Raz E, Goldman-Yassen A, Derman A, Derakhshani A, Grinstead J, Dehkharghani S. Vessel wall imaging with advanced flow suppression in the characterization of intracranial aneurysms following flow diversion with Pipeline embolization device. J Neurointerv Surg 2022; 14:1264-1269. [PMID: 34987073 DOI: 10.1136/neurintsurg-2021-018086] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 12/12/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND High-resolution vessel wall MRI (VWI) is increasingly used to characterize intramural disorders of the intracranial vasculature unseen by conventional arteriography. OBJECTIVE To evaluate the use of VWI for surveillance of flow diverter (FD) treated aneurysms. MATERIALS AND METHODS Retrospective study of 28 aneurysms (in 21 patients) treated with a FD (mean 57 years; 14 female). All examinations included VWI and a contemporaneously obtained digital subtraction angiogram. Multiplanar pre- and post-gadolinium 3D, variable flip-angle T1 black-blood VWI was obtained using delay alternating nutation for tailored excitation (DANTE) at 3T. 3D time-of-flight MR angiography (MRA) was also carried out. Images were assessed for in-stent stenosis, aneurysm occlusion, presence and pattern/distribution of aneurysmal or parent vessel gadolinium enhancement. RESULTS The VWI-MRI was performed on average at 361±259 days after the intervention. Follow-up DSA was performed at 338±254 days postintervention. Good or excellent black-blood angiographic quality was recorded in 22/28 (79%) pre-contrast and 21/28 (75%) post-contrast VWI, with no cases excluded for image quality. Aneurysm enhancement was noted in 24/28 (85.7%) aneurysms, including in 79% of angiographically occluded aneurysms and 100% of angiographically non-occluded aneurysms. Enhancement of the stented parent-vessel wall occurred significantly more often when aneurysm enhancement was present (92% vs 33%, p=0.049). CONCLUSION Advanced VWI produces excellent depiction of FD-treated aneurysms, with robust evaluation of the parent vessel and aneurysm wall to an extent not achievable with conventional MRI/MRA. Gadolinium enhancement may, however, continue even after enduring catheter angiographic occlusion, confounding interpretation, and requiring cognizance of this potentially prolonged effect in such patients.
Collapse
Affiliation(s)
- Eytan Raz
- Department of Radiology, New York University Langone Medical Center, New York, New York, USA
| | | | - Anna Derman
- Department of Radiology, New York University Langone Medical Center, New York, New York, USA
| | - Ahrya Derakhshani
- Department of Radiology, New York University Langone Medical Center, New York, New York, USA
| | | | - Seena Dehkharghani
- Department of Radiology, New York University Langone Medical Center, New York, New York, USA
| |
Collapse
|
4
|
Ferumoxytol-enhanced ultrashort TE MRA and quantitative morphometry of the human kidney vasculature. Abdom Radiol (NY) 2021; 46:3288-3300. [PMID: 33666735 DOI: 10.1007/s00261-021-02984-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/28/2021] [Accepted: 02/09/2021] [Indexed: 10/22/2022]
Abstract
PURPOSE To evaluate the feasibility of Quantitative Ultrashort-Time-to-Echo Contrast-Enhanced (QUTE-CE) MRA using ferumoxytol as a contrast agent for abdominal angiography in the kidney. METHODS Four subjects underwent ferumoxytol-enhanced MRA with the 3D UTE Spiral VIBE WIP sequence at 3 T. Image quality metrics were quantified, specifically the blood Signal-to-Noise Ratio (SNR), blood-tissue Contrast-to-Noise Ratio (CNR) and Intraluminal Signal Heterogeneity (ISH) from both the aorta and inferior vena cava (IVC). Morphometric analysis of the vessels was performed using manual approach and semi-automatic approach using Vascular Modeling ToolKit (VMTK). Image quality and branching order were compared between QUTE-CE MRA and the Gadolinium (Gd) CEMRA reference image. RESULTS QUTE-CE MRA provides a bright blood snapshot that delineates arteries and veins equally in the same scan. The maximum SNR and CNR values were 3,282 ± 1,218 and 1,295 ± 580, respectively - significantly higher than available literature values using other CEMRA techniques. QUTE-CE MRA had lower ISH and depicted higher vessel branching order (7th vs 3rd) within the kidney compared to a standard dynamic clinical Gd CEMRA scan. Morphometric analysis yielded quantitative results for the total kidney volume, total cyst volume and for diameters of the branching arterial network down to the 7th branch. Vessel curvature was significantly increased (p < 0.001) in the presence of a renal cyst compared to equivalent vessels in normal kidney regions. CONCLUSION QUTE-CE MRA is feasible for kidney angiography, providing greater detail of kidney vasculature, enabling quantitative morphometric analysis of the abdominal and intra-renal vessels and yielding metrics relevant to vascular diseases while using a contrast agent ferumoxytol that is safe for CKD patients.
Collapse
|
5
|
Theek B, Nolte T, Pantke D, Schrank F, Gremse F, Schulz V, Kiessling F. Emerging methods in radiology. Radiologe 2020; 60:41-53. [PMID: 32430576 DOI: 10.1007/s00117-020-00696-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Imaging modalities have developed rapidly in recent decades. In addition to improved resolution as well as whole-body and faster image acquisition, the possibilities of functional and molecular examination of tissue pathophysiology have had a decisive influence on imaging diagnostics and provided ground-breaking knowledge. Many promising approaches are currently being pursued to increase the application area of devices and contrast media and to improve their sensitivity and quantitative informative value. These are complemented by new methods of data processing, multiparametric data analysis, and integrated diagnostics. The aim of this article is to provide an overview of technological innovations that will enrich clinical imaging in the future, and to highlight the resultant diagnostic options. These relate to the established imaging methods such as CT, MRI, ultrasound, PET, and SPECT but also to new methods such as magnetic particle imaging (MPI), optical imaging, and photoacoustics. In addition, approaches to radiomic image evaluation are explained and the chances and difficulties for their broad clinical introduction are discussed. The potential of imaging to describe pathophysiological relationships in ever increasing detail, both at whole-body and tissue level, can in future be used to better understand the mechanistic effect of drugs, to preselect patients to therapies, and to improve monitoring of therapy success. Consequently, the use of interdisciplinary integrated diagnostics will greatly change and enrich the profession of radiologists.
Collapse
Affiliation(s)
- B Theek
- Institute for Experimental Molecular Imaging, Medical Faculty, RWTH Aachen International University, Forckenbeckstraße 55, 52074, Aachen, Germany.,Fraunhofer Institute for Digital Medicine MEVIS, Bremen, Germany
| | - T Nolte
- Institute for Experimental Molecular Imaging, Medical Faculty, RWTH Aachen International University, Forckenbeckstraße 55, 52074, Aachen, Germany
| | - D Pantke
- Institute for Experimental Molecular Imaging, Medical Faculty, RWTH Aachen International University, Forckenbeckstraße 55, 52074, Aachen, Germany
| | - F Schrank
- Institute for Experimental Molecular Imaging, Medical Faculty, RWTH Aachen International University, Forckenbeckstraße 55, 52074, Aachen, Germany
| | - F Gremse
- Institute for Experimental Molecular Imaging, Medical Faculty, RWTH Aachen International University, Forckenbeckstraße 55, 52074, Aachen, Germany
| | - V Schulz
- Institute for Experimental Molecular Imaging, Medical Faculty, RWTH Aachen International University, Forckenbeckstraße 55, 52074, Aachen, Germany.,Fraunhofer Institute for Digital Medicine MEVIS, Bremen, Germany.,Comprehensive Diagnostic Center Aachen (CDCA), University Hospital RWTH Aachen, Aachen, Germany
| | - F Kiessling
- Institute for Experimental Molecular Imaging, Medical Faculty, RWTH Aachen International University, Forckenbeckstraße 55, 52074, Aachen, Germany. .,Fraunhofer Institute for Digital Medicine MEVIS, Bremen, Germany. .,Comprehensive Diagnostic Center Aachen (CDCA), University Hospital RWTH Aachen, Aachen, Germany.
| |
Collapse
|
6
|
Nael K, Drummond J, Costa AB, De Leacy RA, Fung MM, Mocco J. Differential Subsampling with Cartesian Ordering for Ultrafast High-Resolution MRA in the Assessment of Intracranial Aneurysms. J Neuroimaging 2019; 30:40-44. [PMID: 31721362 DOI: 10.1111/jon.12677] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/29/2019] [Accepted: 10/29/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND AND PURPOSE We aimed to evaluate the feasibility of an ultrafast whole head contrast-enhanced MRA (CE-MRA) in morphometric assessment of intracranial aneurysms in comparison to routinely used time-of-flight (TOF)-MRA. METHODS In this prospective single institutional study, patients with known untreated intracranial aneurysm underwent MRA. Routine multislab TOF-MRA was obtained with a 3D voxel sizes of .6 × .6 × 1 (6-minute acquisition time). CE-MRA of whole head was obtained using Differential Subsampling with Cartesian Ordering (DISCO) and 2D Auto-calibrating Reconstruction for Cartesian imaging with a 3D voxel-sizes of .75 × .75 × 1 mm3 during a 6-second temporal resolution. Morphometric features of intracranial aneurysms, including size, aneurysm sac morphology, and the presence of intraluminal thrombosis, were assessed on both techniques. Statistical analysis was performed using a combination of Kappa test, Bland-Altman, and correlation coefficient analysis. RESULTS A total of 34 aneurysms in 28 patients were included. Aneurysm size measurements (mean ± SD) were similar between DISCO-MRA (4.1 ± 2.3 mm) and TOF-MRA (4.3 ± 2.8 mm) (P = .27). Bland-Altman analysis showed a mean difference of .4 mm and there was excellent correlation r = .91 (95% CI: .87-.96). In six aneurysms (17.6%), TOF-MRA was nonconfidant to exclude intraluminal thrombosis. In seven aneurysms (20%), TOF-MRA was unable or nonconfidant in depicting aneurysm sac morphology. CONCLUSIONS Described ultrafast high spatial-resolution MRA is superior to routinely used TOF-MRA in assessment of morphometric features of intracranial aneurysms, such as intraluminal thrombosis and aneurysm morphology, and is obtained in a fraction of the time (6 seconds).
Collapse
Affiliation(s)
- Kambiz Nael
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - James Drummond
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Anthony B Costa
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Reade A De Leacy
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY
| | | | - J Mocco
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
7
|
Li HL, Ding H, Yin XZ, Chen ZH, Tang B, Sun JY, Hu XH, Lv X, Kang ST, Fan YS, Wu T, Zhao SF, Xiao B, Zhang MQ. Comparison of high-resolution synchrotron-radiation-based phase-contrast imaging and absorption-contrast imaging for evaluating microstructure of vascular networks in rat brain: from 2D to 3D views. JOURNAL OF SYNCHROTRON RADIATION 2019; 26:2024-2032. [PMID: 31721747 DOI: 10.1107/s1600577519011688] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 08/21/2019] [Indexed: 06/10/2023]
Abstract
Conventional imaging methods such as magnetic resonance imaging, computed tomography and digital subtraction angiography have limited temporospatial resolutions and shortcomings like invasive angiography, potential allergy to contrast agents, and image deformation, that restrict their application in high-resolution visualization of the structure of microvessels. In this study, through comparing synchrotron radiation (SR) absorption-contrast imaging to absorption phase-contrast imaging, it was found that SR-based phase-contrast imaging could provide more detailed ultra-high-pixel images of microvascular networks than absorption phase-contrast imaging. Simultaneously, SR-based phase-contrast imaging was used to perform high-quality, multi-dimensional and multi-scale imaging of rat brain angioarchitecture. With the aid of image post-processing, high-pixel-size two-dimensional virtual slices can be obtained without sectioning. The distribution of blood supply is in accordance with the results of traditional tissue staining. Three-dimensional anatomical maps of cerebral angioarchitecture can also be acquired. Functional partitions of regions of interest are reproduced in the reconstructed rat cerebral vascular networks. Imaging analysis of the same sample can also be displayed simultaneously in two- and three-dimensional views, which provides abundant anatomical information together with parenchyma and vessels. In conclusion, SR-based phase-contrast imaging holds great promise for visualizing microstructure of microvascular networks in two- and three-dimensional perspectives during the development of neurovascular diseases.
Collapse
Affiliation(s)
- Hong Lei Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China
| | - Hui Ding
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China
| | - Xian Zhen Yin
- State Key Laboratory of Drug Research, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China
| | - Zhuo Hui Chen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China
| | - Bin Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China
| | - Jing Yan Sun
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China
| | - Xin Hang Hu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China
| | - Xinyi Lv
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China
| | - Shun Tong Kang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China
| | - Yi Shu Fan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China
| | - Tong Wu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China
| | - Song Feng Zhao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China
| | - Meng Qi Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China
| |
Collapse
|
8
|
Dynamic Detection of Thrombolysis in Embolic Stroke Rats by Synchrotron Radiation Angiography. Transl Stroke Res 2019; 10:695-704. [PMID: 30680639 DOI: 10.1007/s12975-019-0687-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 11/30/2018] [Accepted: 01/03/2019] [Indexed: 12/20/2022]
Abstract
A rodent model of embolic middle cerebral artery occlusion is used to mimic cerebral embolism in clinical patients. Thrombolytic therapy is the effective treatment for this ischemic injury. However, it is difficult to detect thrombolysis dynamically in living animals. Synchrotron radiation angiography may provide a novel approach to directly monitor the thrombolytic process and assess collateral circulation after embolic stroke. Thirty-six adult Sprague-Dawley rats underwent the embolic stroke model procedure and were then treated with tissue plasminogen activator. The angiographic images were obtained in vivo by synchrotron radiation angiography. Synchrotron radiation angiography confirmed the successful establishment of occlusion and detected the thrombolysis process after the thrombolytic treatment. The time of thrombolytic recanalization was unstable during embolic stroke. The infarct volume increased as the recanalization time was delayed from 2 to 6 h (p < 0.05). The collateral circulation of the internal carotid artery to the ophthalmic artery, the olfactory artery to the ophthalmic artery, and the posterior cerebral artery to the middle cerebral artery opened after embolic stroke and manifested different opening rates (59%, 24%, and 75%, respectively) in the rats. The opening of the collateral circulation from the posterior cerebral artery to the middle cerebral artery alleviated infarction in rats with successful thrombolysis (p < 0.05). The cerebral vessels of the circle of Willis narrowed after thrombolysis (p < 0.05). Synchrotron radiation angiography provided a unique tool to dynamically detect and assess the thrombolysis process and the collateral circulation during thrombolytic therapy.
Collapse
|
9
|
Colafati GS, Rossi E, Carducci C, Piga S, Voicu IP, Mastronuzzi A, Tomà P. Half-dose versus full-dose macrocyclic gadolinium at 3-T magnetic resonance imaging in paediatric bone and soft-tissue disease. Pediatr Radiol 2018; 48:1724-1735. [PMID: 30046901 DOI: 10.1007/s00247-018-4204-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 05/31/2018] [Accepted: 07/02/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND Given the recent concerns about gadolinium-based contrast agent safety, dose reduction strategies are being investigated. OBJECTIVE To compare half-dose and standard full-dose gadoterate meglumine at 3-tesla (T) MRI in paediatric bone and soft-tissue diseases. MATERIALS AND METHODS We prospectively enrolled 45 children (age range 2.7 months to 17.5 years, median age 8.7 years, 49 total anatomical segments) with bone and soft-tissue diseases (neoplastic, inflammatory/infectious, ischaemic and vascular) imaged at 3-T MRI. Two consecutive half-doses of gadoterate meglumine (0.05 mmol/kg body weight) were administered. Two sets of post-contrast T1-weighted images were obtained, one after the first half dose and the other after the second half dose. For qualitative analysis, three radiologists, masked to the gadolinium dose, compared the diagnostic quality of the images. For quantitative analysis, we compared signal-to-noise ratio and contrast-to-noise ratio at half and full doses. RESULTS Signal-to-noise ratio and contrast-to-noise ratio did not vary significantly between the two groups. Qualitative analysis yielded excellent image quality in both post-contrast image datasets (Cohen κ=0.8). CONCLUSION In paediatric bone and soft-tissue 3-T MRI, it is feasible to halve the standard dose of gadoterate meglumine without losing image quality.
Collapse
Affiliation(s)
- Giovanna Stefania Colafati
- Department of Imaging, Neuroradiology Unit, Bambino Gesù Children's Hospital, Piazza Sant'Onofrio 4, 00165, Rome, Italy.
| | - Enrica Rossi
- Department of Imaging, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Chiara Carducci
- Department of Imaging, Neuroradiology Unit, Bambino Gesù Children's Hospital, Piazza Sant'Onofrio 4, 00165, Rome, Italy
| | - Simone Piga
- Unit of Clinical Epidemiology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Ioan Paul Voicu
- Department of Hematology/Oncology and Stem Cell Transplantation, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Angela Mastronuzzi
- Department of Hematology/Oncology and Stem Cell Transplantation, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Paolo Tomà
- Department of Imaging, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| |
Collapse
|
10
|
Wang L, Mu Z, Lin X, Geng J, Xiao TQ, Zhang Z, Wang Y, Guan Y, Yang GY. Simultaneous Imaging of Cerebrovascular Structure and Function in Hypertensive Rats Using Synchrotron Radiation Angiography. Front Aging Neurosci 2017; 9:359. [PMID: 29163140 PMCID: PMC5673661 DOI: 10.3389/fnagi.2017.00359] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 10/19/2017] [Indexed: 12/12/2022] Open
Abstract
Hypertension has a profound influence on the structure and function of blood vessels. Cerebral vessels undergo both structural and functional changes in hypertensive animals. However, dynamic changes of cerebrovasculature and the factors involved in this process are largely unknown. In this study, we explored the dynamic changes of vascular structure in hypertensive rats using novel synchrotron radiation angiography. Twenty-four spontaneously hypertensive rats (SHR) and 24 Sprague–Dawley (SD) rats underwent synchrotron radiation (SR) angiography. Each group had 8 animals. We studied the cerebral vascular changes in SHR over a time period of 3–12-month and performed quantitative analysis. No vascular morphology differences between SHR and SD rats were observed in the early stage of hypertension. The number of twisted blood vessels in the front brain significantly increased at the 9- and 12-month observation time-points in the SHR compared to the SD rats (p < 0.01). The vessel density of the cortex and the striatum in SHR was consistently higher than that in SD rats at time points of 3-, 9-, and 12-month (p < 0.001). Vascular elasticity decreased both in SHR and SD rats with aging. There were statistically significant differences in the relative vascular elasticity of extracranial/intracranial internal carotid artery, middle cerebral artery, posterior cerebral artery and anterior cerebral artery between SHR and SD rats at 12-month (p < 0.01). We concluded that the dynamic vascular alterations detected by SR angiography provided novel imaging data for the study of hypertension in vivo. The longer the course of hypertension was, the more obvious the vascular differences between the SHR and the SD rats became.
Collapse
Affiliation(s)
- Liping Wang
- Department of Neurology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Zhihao Mu
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.,Department of Pathology and Pathophysiology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming, China
| | - Xiaojie Lin
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Jieli Geng
- Department of Neurology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ti Qiao Xiao
- Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, CAS, Shanghai, China
| | - Zhijun Zhang
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yongting Wang
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yongjing Guan
- Department of Radiology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Guo-Yuan Yang
- Department of Neurology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
11
|
Effects of Height and Blood Volume on Venous Enhancement After Gadolinium-Based Contrast Administration in MR Venography: A Paradigm Challenge and Implications for Clinical Imaging. AJR Am J Roentgenol 2016; 207:621-7. [PMID: 27304717 DOI: 10.2214/ajr.16.16049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OBJECTIVE The purpose of this study was to analyze quantitative and qualitative effects of estimated blood volume on venous enhancement in patients undergoing cerebral MR venography (MRV) with standard weight-based dosing of a gadolinium-based contrast agent. MATERIALS AND METHODS Fifty-two patients with normal 1.5-T cerebral MRV findings and contemporaneous height and weight measurements were included. Estimated blood volume was calculated with the Nadler formula for blood volume. Standard weight-based cerebral MRV was performed after administration of gadobenate dimeglumine (0.1 mmol/kg up to 20 mL). Venous enhancement within the superior sagittal sinus, right jugular bulb, and left jugular bulb was measured. Patients were dichotomized on the basis of administration of less than versus a maximum weight-based gadolinium-based contrast dose of 20 mL. Venographic quality was assigned by two neuroradiologists. Correlational and multiple linear regression analyses were performed. RESULTS Among patients receiving less than the maximum 20 mL of gadolinium, no significant correlations were observed between weight and vascular enhancement (p > 0.05). Significant correlations between height and enhancement were observed in the superior sagittal sinus and left jugular bulb. This finding suggests that differences in estimated blood volume driven by height remain unaccounted for (p < 0.05). With the 20-mL maximal dose, a significant inverse relation was noted between estimated blood volume and contrast enhancement of all vascular segments (p < 0.05). Within all vascular segments, significant correlations were observed between enhancement and user-defined quality scores (p < 0.05). This finding suggests that optimized dosing may affect reader confidence. CONCLUSION Standard weight-based dosing for cerebral MRV insufficiently accounts for differences in circulating blood volume. An expanded biometric dosing paradigm leveraging readily attainable subject data may mitigate unintended variations in enhancement affecting venography and other clinical imaging modalities.
Collapse
|
12
|
Morphological and Quantitative 7 T MRI of Hip Cartilage Transplants in Comparison to 3 T—Initial Experiences. Invest Radiol 2016; 51:552-9. [DOI: 10.1097/rli.0000000000000264] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|