1
|
Liu Y, Dong Y, Xie F. Global research hotspots and trends of iodinated contrast agents in medical imaging: a bibliometric and visualization analysis. Front Med (Lausanne) 2024; 11:1506634. [PMID: 39650193 PMCID: PMC11620865 DOI: 10.3389/fmed.2024.1506634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 11/12/2024] [Indexed: 12/11/2024] Open
Abstract
Objective This study employs bibliometric methods to explore the global research dynamics of iodine contrast agents in medical imaging. Through the visualization of knowledge maps, it presents research progress and reveals the research directions, hotspots, trends, and frontiers in this field. Methods Using Web of Science Core Collection database, CiteSpace and VOSviewer were employed to conduct a visual analysis of the global application of iodine contrast agents in medical imaging over the past four decades. The analysis focused on annual publication volume, collaboration networks, citation characteristics, and keywords. Results A total of 3,775 studies on the application of iodine contrast agents in medical imaging were included. The earliest paper was published in 1977, with a slight increase in publications from 1991 to 2004, followed by a significant rise after 2005. The United States emerged as the leading country in publication volume. Harvard University was identified as a globally influential institution with 126 publications. Although a large author collaboration cluster and several smaller ones were formed, most collaborations between authors were relatively weak, with no high-density integrated academic network yet established. Pietsch Hubertus was the most prolific author, while Bae KT was the most highly co-cited author. The most highly cited journal was Radiology, with 2,384 citations. Co-occurrence analysis revealed that the top three keywords by frequency were "agent," "CT," and "image quality." Keyword clustering analysis showed that the top three clusters were "gadolinium," "gold nanoparticles," and "image quality." The timeline analysis indicated that clusters such as "gadolinium," "gold nanoparticles," "image quality," and "material decomposition" exhibited strong temporal continuity, while the keyword with the highest burst value was "digital subtraction angiography" (19.38). Burst term trend analysis suggested that recent research has been focusing on areas like "deep learning," "risk," "radiation dosage," and "iodine quantification." Conclusion This study is the first to systematically reveal the global trends, hotspots, frontiers, and development dynamics of iodine contrast agents in medical imaging through the use of CiteSpace and VOSviewer. It provides a novel perspective for understanding the role of iodine contrast agents in imaging and offers valuable insights for advancing global research in medical imaging.
Collapse
Affiliation(s)
- Yun Liu
- Department of Imaging, Jiangxi Provincial People’s Hospital (The First Affiliated Hospital of Nanchang Medical College), Nanchang, Jiangxi, China
| | - Yonghai Dong
- Jiangxi Provincial Key Laboratory of Major Epidemics Prevention and Control, Young Scientific Research and Innovation Team, Jiangxi Provincial Center for Disease Control and Prevention, Nanchang, Jiangxi, China
| | - Fei Xie
- Guangdong Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
2
|
Arenas-Jiménez JJ, Bernabé García JM, Fernández Suárez G, Calvo Blanco J. Optimising the use of iodinated contrast agents in CT scans: Vascular, visceral, multiphasic and split-bolus examinations. RADIOLOGIA 2024; 66 Suppl 2:S15-S28. [PMID: 39603737 DOI: 10.1016/j.rxeng.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/14/2024] [Indexed: 11/29/2024]
Abstract
Iodinated contrast is administered when carrying out computed tomography (CT) scans to define anatomical structures and detect pathologies. The contrast is administered according to different protocols which vary significantly and include vascular, visceral, multiphasic and split-bolus injection studies. Each protocol has its own indications and particularities to optimise the use of the contrast medium in each situation. There are numerous factors that influence the degree of contrast enhancement obtained, including the patient's weight, cardiac output, study delay, the technical characteristics used for acquisition-mainly kilovoltage-, and variables related to the administration and dosage of the contrast medium, such as iodine delivery rate and load. This article will discuss how each of these variables affects the level of enhancement achieved and the parameters that can be modified in order to optimise the results of the different types of scans performed with iodinated contrast.
Collapse
Affiliation(s)
- J J Arenas-Jiménez
- Servicio de Radiodiagnóstico, Hospital General Universitario Dr. Balmis; Departamento de Patología y Cirugía, Universidad Miguel Hernández; Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain.
| | - J M Bernabé García
- Servicio de Radiodiagnóstico, Hospital General Universitario Dr. Balmis; Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain
| | - G Fernández Suárez
- Servicio de Radiodiagnóstico, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - J Calvo Blanco
- Servicio de Radiodiagnóstico, Hospital Universitario Central de Asturias, Oviedo, Spain
| |
Collapse
|
3
|
Kuba T, Tokushige A, Murayama S, Ueda S. Proposal of a novel protocol using estimated cardiac index fractional dose to improve aortic contrast enhancement for early-phase dynamic CT. Medicine (Baltimore) 2022; 101:e29410. [PMID: 35758375 PMCID: PMC9276326 DOI: 10.1097/md.0000000000029410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 04/18/2022] [Indexed: 11/25/2022] Open
Abstract
Maximum aortic computed tomography value (CTV) is difficult to control because of variations in cardiac function and patient physique. Therefore, to improve early-phase aortic enhancement on dynamic computed tomography (CT), we developed an estimated cardiac index fractional dose (eciFD). The eciFD protocol is a novel and original protocol for administering fractional dose (FD), representing the amount of iodine per unit body weight per injection duration, based on cardiac index (cardiac output divided by body surface area) as estimated by age in early-phase dynamic CT. At the time of administration, by selecting FD based on the patient's age and selecting a parameter that can achieve this FD, an aortic CTV ≥300 HU (ACTV≥300) can be obtained. This study aimed to investigate aortic enhancement on CT angiography using the eciFD protocol.This retrospective study investigated 291 consecutive patients who underwent dynamic CT from neck to abdomen after recommendation of the eciFD protocol at our institution. We compared early-phase aortic CTV distributions by scan delay between an eciFD group (eciFD applied, n = 135) and a non-eciFD group (eciFD not applied, n = 80). The effect of eciFD on early-phase ACTV≥300 was evaluated using logistic regression analysis adjusted for several potentially meaningful clinical confounders related to aortic CTV, namely male sex, heart rate ≤80 beats/min, estimated glomerular filtration rate ≤40 mL/min, use of eciFD, bolus tracking (BT), history of myocardial infarction, and order from the emergency center.The eciFD protocol was a significant factor for early-phase ACTV≥300 after adjusting for several confounders (odds ratio 3.03; 95% confidence intervals 1.59-5.77; P = .001). No interaction was seen between BT and eciFD protocol (p for interaction = 0.76). In terms of CTV distribution, with both a fixed scan delay time and BT, the eciFD group showed a high aortic CTV. The combination of eciFD protocol with BT provided a particularly high percentage of patients with ACTV≥300 (86.4%).The eciFD protocol was useful for improving aortic contrast enhancement. These findings need to be validated in a randomized controlled study.
Collapse
Affiliation(s)
- Tadashi Kuba
- Department of Clinical Research and Quality Management, Graduate School of Medical Science, University of the Ryukyus, Okinawa, Japan
| | - Akihiro Tokushige
- Department of Clinical Pharmacology and Therapeutics, Graduate School of Medical Science, University of the Ryukyus, Okinawa, Japan
| | - Sadayuki Murayama
- Department of Radiology, Graduate School of Medical Science, University of the Ryukyus, Okinawa, Japan
| | - Shinichiro Ueda
- Department of Clinical Pharmacology and Therapeutics, Graduate School of Medical Science, University of the Ryukyus, Okinawa, Japan
| |
Collapse
|
4
|
Morisaka H, Matsuura K, Yamaguchi H, Ichikawa T, Onishi H. Effect of decreased contrast injection flow rate on aortic enhancement in 80-KV peak CT with contrast dose reduction. Acta Radiol 2021; 64:353-359. [PMID: 34923851 DOI: 10.1177/02841851211067144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Effect of decreased injection flow rate of contrast agent at the same iodine dose and delivery rate on aortic enhancement has not been clearly elucidated. PURPOSE To evaluate the effect of decreased injection flow rate of contrast agent on aortic peak enhancement in a dynamic flow phantom and on aortic enhancement in clinical dynamic 80-kVp computed tomography (CT) with contrast dose reduction. MATERIAL AND METHODS In the dynamic flow phantom experiment, the effect of a decreased injection flow rate at the same total iodine dose and delivery rate on simulated aortic peak enhancement was evaluated. In the clinical retrospective study, we searched 312 patients with renal dysfunction who underwent an 80-kVp abdominal dynamic CT with 40% reduction of contrast agent from a standard 120-kVp protocol and measured the aortic enhancement at the level of the hepatic hilum. Independent predictors for aortic enhancement were determined by multiple linear regression analysis, and after adjustment of significant predictors, independent variables for acquiring optimal aortic enhancement, ≥300 HU, were determined by multiple logistic regression analysis. RESULTS In the phantom experiment, decreased flow rate showed a significant but small descent effect (6%-9%) on simulated aortic peak enhancement. In the multiple linear regression analysis, only age was an independent predictor of aortic enhancement; there was no independent predictor for optimal age-adjusted aortic enhancement of ≥300 HU. CONCLUSIONS Decreased injection flow rate had a small influence on aortic enhancement in vitro but had no significant effect on the aortic enhancement in clinical dynamic 80-kVp CT.
Collapse
Affiliation(s)
- Hiroyuki Morisaka
- Department of Radiology, University of Yamanashi, Chuo, Yamanashi, Japan
- Diagnostic Radiology, Saitama Medical University International Medical Center, Hidaka, Saitama, Japan
| | - Koichiro Matsuura
- Diagnostic Radiology, Saitama Medical University International Medical Center, Hidaka, Saitama, Japan
| | - Haruomi Yamaguchi
- Department of Radiology, Graduate School of Medicine, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Tomoaki Ichikawa
- Department of Diagnostic Radiology and Nuclear Medicine, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Hiroshi Onishi
- Department of Radiology, University of Yamanashi, Chuo, Yamanashi, Japan
| |
Collapse
|
5
|
Low kV Computed Tomography of Parenchymal Abdominal Organs-A Systematic Animal Study of Different Contrast Media Injection Protocols. Tomography 2021; 7:815-828. [PMID: 34941641 PMCID: PMC8705800 DOI: 10.3390/tomography7040069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/17/2021] [Accepted: 11/23/2021] [Indexed: 01/14/2023] Open
Abstract
Objectives: To evaluate multiphase low kV computed tomography (CT) imaging of the abdomen with reduced contrast media (CM) dose using different injection protocols. Methods: Two injection protocols were evaluated for use with low kV (80 kV) multiphase abdominal imaging in comparison to the standard procedure acquired at 120 kV (500 mgI/kg; 5 mL/s). This evaluation was conducted in a highly standardized animal study (5 Goettingen minipigs). The low kV protocols consisted of (a) a single-flow (SF) injection with 40% reduced CM dose and injection rate (300 mgI/kg; 3 mL/s) and (b) a DualFlow (DF) injection protocol consisting of 60%/40% contrast to saline ratio administered at 5 mL/s. Dynamic CT was first performed within representative liver regions to determine optimal contrast phases, followed by evaluation of the three protocols in multiphase abdominal CT imaging. The evaluation criteria included contrast enhancement (CE) of abdominal organs and vasculature. Results: The 80 kV DF injection protocol showed similar CE of the abdominal parenchymatous organs and vessels to the 120 kV reference and the 80 kV SF protocol. Hepatic parenchyma showed comparable CT values for all contrast phases. In particular, in the portal venous parenchymal phase, the 80 kV DF protocol demonstrated higher hepatic parenchymal enhancement; however, results were statistically non-significant. Similarly, CE of the kidney, pancreas, and abdominal arterial/venous vessels showed no significant differences between injection protocols. Conclusions: Adapted SF and DF injection protocols with reduced IDR/iodine load offer the potential to calibrate optimal CM doses to the tube voltage in abdominal multiphase low kV CT imaging. The data suggest that the DF approach allows the use of predefined injection protocols and adaption of the contrast to saline ratio to an individualized kV setting and yields the potential for patient-individualized CM adaption.
Collapse
|
6
|
Zanca F, Brat HG, Pujadas P, Racine D, Dufour B, Fournier D, Rizk B. Prospective multicenter study on personalized and optimized MDCT contrast protocols: results on liver enhancement. Eur Radiol 2021; 31:8236-8245. [PMID: 33914115 DOI: 10.1007/s00330-021-07953-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/12/2021] [Accepted: 03/26/2021] [Indexed: 01/19/2023]
Abstract
OBJECTIVE To determine a personalized and optimized contrast injection protocol for a uniform and optimal diagnostic level of liver parenchymal enhancement, in a large patient population enrolled in a multicenter study. METHODS Six hundred ninety-two patients who underwent a standardized multi-phase liver CT examination were prospectively assigned to one contrast media (CM) protocol group: G1 (100 mL fixed volume, 37 gI); G2 (600 mgI/kg of total body weight (TBW)); G3 (750 mgI/kg of fat-free mass (FFM)), and G4 (600 mgI/kg of FFM). Change in liver parenchyma CT number between unenhanced and contrast-enhanced images was measured by two radiologists, on 3-mm pre-contrast and portal phase axial reconstructions. The enhancement histograms were compared across CM protocols, specifically according to a target diagnostic value of 50 HU. The total amount of iodine dose was also compared among protocols by median and interquartile range (IQR). The Kruskal-Wallis and Mann-Whitney U tests were used to assess significant differences (p < 0.005), as appropriate. RESULTS A significant difference (p < 0.001) was found across the groups with liver enhancement decreasing from median over-enhanced values of 77.0 (G1), 71.3 (G2), and 65.1 (G3) to a target enhancement of 53.2 HU for G4. Enhancement IQR was progressively reduced from 26.5 HU (G1), 26.0 HU (G2), and 17.8 HU (G3) to 14.5 HU (G4). G4 showed a median iodine dose of 26.0 gI, significantly lower (p < 0.001) than G3 (33.9 gI), G2 (38.8 gI), and G1 (37 gI). CONCLUSIONS The 600 mgI/kg FFM-based protocol enabled a diagnostically optimized liver enhancement and improved patient-to-patient enhancement uniformity, while significantly reducing iodine load. KEY POINTS • Consistent and clinically adequate liver enhancement is observed with personalized and optimized contrast injection protocol. • Fat-free mass is an appropriate body size parameter for correlation with liver parenchymal enhancement. • Diagnostic oncology follow-up liver CT examinations may be obtained using 600 mgI/kg of FFM.
Collapse
Affiliation(s)
- F Zanca
- Palindromo Consulting, Willem de Corylaan, 51 3001, Leuven, Belgium.
| | - H G Brat
- Institut de Radiologie de Sion, Groupe 3R, Sion, Switzerland
| | | | - D Racine
- Institute of Radiation Physics (IRA), Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - B Dufour
- Institut de Radiologie de Sion, Groupe 3R, Sion, Switzerland
| | - D Fournier
- Institut de Radiologie de Sion, Groupe 3R, Sion, Switzerland
| | - B Rizk
- Centre d'Imagerie de Fribourg, Groupe 3R, Fribourg, Switzerland
| |
Collapse
|
7
|
A Solution for Homogeneous Liver Enhancement in Computed Tomography: Results From the COMpLEx Trial. Invest Radiol 2020; 55:666-672. [PMID: 32898357 DOI: 10.1097/rli.0000000000000693] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVES The aim of the study was to reach homogeneous enhancement of the liver, irrespective of total body weight (TBW) or tube voltage. An easy-to-use rule of thumb, the 10-to-10 rule, which pairs a 10 kV reduction in tube voltage with a 10% decrease in contrast media (CM) dose, was evaluated. MATERIALS AND METHODS A total of 256 patients scheduled for an abdominal CT in portal venous phase were randomly allocated to 1 of 4 groups. In group 1 (n = 64), a tube voltage of 120 kV and a TBW-adapted CM injection protocol was used: 0.521 g I/kg. In group 2 (n = 63), tube voltage was 90 kV and the TBW-adapted CM dosing factor remained 0.521 g I/kg. In group 3 (n = 63), tube voltage was reduced by 20 kV and CM dosing factor by 20% compared with group 1, in line with the 10-to-10 rule (100 kV; 0.417 g I/kg). In group 4 (n = 66), tube voltage was decreased by 30 kV paired with a 30% decrease in CM dosing factor compared with group 1, in line with the 10-to-10 rule (90 kV; 0.365 g I/kg). Objective image quality was evaluated by measuring attenuation in Hounsfield units (HU), signal-to-noise ratio, and contrast-to-noise ratio in the liver. Overall subjective image quality was assessed by 2 experienced readers by using a 5-point Likert scale. Two-sided P values below 0.05 were considered significant. RESULTS Mean attenuation values in groups 1, 3, and 4 were comparable (118.2 ± 10.0, 117.6 ± 13.9, 117.3 ± 21.6 HU, respectively), whereas attenuation in group 2 (141.0 ± 18.2 HU) was significantly higher than all other groups (P < 0.01). No significant difference in attenuation was found between weight categories 80 kg or less and greater than 80 kg within the 4 groups (P ≥ 0.371). No significant differences in subjective image quality were found (P = 0.180). CONCLUSIONS The proposed 10-to-10 rule is an easily reproducible method resulting in similar enhancement in portal venous CT of the liver throughout the patient population, irrespective of TBW or tube voltage.
Collapse
|
8
|
Individually Body Weight-Adapted Contrast Media Application in Computed Tomography Imaging of the Liver at 90 kVp. Invest Radiol 2019; 54:177-182. [PMID: 30721159 DOI: 10.1097/rli.0000000000000525] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
OBJECTIVES The aim of the present study was to evaluate the attenuation and image quality (IQ) of a body weight-adapted contrast media (CM) protocol compared with a fixed injection protocol in computed tomography (CT) of the liver at 90 kV. MATERIALS AND METHODS One hundred ninety-nine consecutive patients referred for abdominal CT imaging in portal venous phase were included. Group 1 (n = 100) received a fixed CM dose with a total iodine load (TIL) of 33 g I at a flow rate of 3.5 mL/s, resulting in an iodine delivery rate (IDR) of 1.05 g I/s. Group 2 (n = 99) received a body weight-adapted CM protocol with a dosing factor of 0.4 g I/kg with a subsequent TIL adapted to the patients' weight. Injection time of 30 seconds was kept identical for all patients. Therefore, flow rate and IDR changed with different body weight. Patients were divided into 3 weight categories; 70 kg or less, 71 to 85 kg, and 86 kg or greater. Attenuation (HU) in 3 segments of the liver, signal-to-noise ratio, and contrast-to-noise ratio were used to evaluate objective IQ. Subjective IQ was assessed by a 5-point Likert scale. Differences between groups were statistically analyzed (P < 0.05 was considered statistically significant). RESULTS No significant differences in baseline characteristics were found between groups. The CM volume and TIL differed significantly between groups (P < 0.01), with mean values in group 1 of 110 mL and 33 g I, and in group 2 of 104.1 ± 21.2 mL and 31.2 ± 6.3 g I, respectively. Flow rate and IDR were not significantly different between groups (P > 0.05). Body weight-adapted protocoling led to more homogeneous enhancement of the liver parenchyma compared with a fixed protocol with a mean enhancement per weight category in group 2 of 126.5 ± 15.8, 128.2 ± 15.3, and 122.7 ± 21.2 HU compared with that in group 1 of 139.9 ± 21.4, 124.6 ± 24.8, and 116.2 ± 17.8 HU, respectively. CONCLUSIONS Body weight-adapted CM injection protocols result in more homogeneous enhancement of the liver parenchyma at 90 kV in comparison to a fixed CM volume with comparable objective and subjective IQ, whereas overall CM volume can be safely reduced in more than half of patients.
Collapse
|
9
|
Komiyama R, Ohira S, Kanayama N, Karino T, Washio H, Ueda Y, Miyazaki M, Teshima T. Volumetric modulated arc therapy treatment planning based on virtual monochromatic images for head and neck cancer: effect of the contrast-enhanced agent on dose distribution. J Appl Clin Med Phys 2019; 20:144-152. [PMID: 31633869 PMCID: PMC6839366 DOI: 10.1002/acm2.12752] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 09/01/2019] [Accepted: 09/24/2019] [Indexed: 12/14/2022] Open
Abstract
Virtual monochromatic images (VMIs) at a lower energy level can improve image quality but the computed tomography (CT) number of iodine contained in the contrast‐enhanced agent is dramatically increased. We assessed the effect of the use of contrast‐enhanced agent on the dose distributions in volumetric modulated arc therapy (VMAT) planning for head and neck cancer (HNC). Based on the VMIs at 40 keV (VMI40keV), 60 keV(VMI60keV), and 77 keV (VMI77keV) of a tissue characterization phantom, lookup tables (LUTs) were created. VMAT plans were generated for 15 HNC patients based on contrast‐enhanced‐ (CE‐) VMIs at 40‐, 60‐, and 77 keV using the corresponding LUTs, and the doses were recalculated based on the noncontrast‐enhanced‐ (nCE‐) VMIs. For all structures, the difference in CT numbers owing to the contrast‐enhanced agent was prominent as the energy level of the VMI decreased, and the mean differences in CT number between CE‐ and nCE‐VMI was the largest for the clinical target volume (CTV) (125.3, 55.9, and 33.1 HU for VMI40keV, VMI60keV, and VMI77keV, respectively). The mean difference of the dosimetric parameters (D99%, D50%, D1%, Dmean, and D0.1cc) for CTV and OARs was <1% in the treatment plans based on all VMIs. The maximum difference was observed for CTV in VMI40keV (2.4%), VMI60keV (1.9%), and VMI77keV (1.5%) plans. The effect of the contrast‐enhanced agent was larger in the VMAT plans based on the VMI at a lower energy level for HNC patients. This effect is not desirable in a treatment planning procedure.
Collapse
Affiliation(s)
- Riho Komiyama
- Department of Radiation Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Shingo Ohira
- Department of Radiation Oncology, Osaka International Cancer Institute, Osaka, Japan.,Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, Suita, Japan
| | - Naoyuki Kanayama
- Department of Radiation Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Tsukasa Karino
- Department of Radiation Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Hayate Washio
- Department of Radiation Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Yoshihiro Ueda
- Department of Radiation Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Masayoshi Miyazaki
- Department of Radiation Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Teruki Teshima
- Department of Radiation Oncology, Osaka International Cancer Institute, Osaka, Japan
| |
Collapse
|
10
|
Zhou W, Michalak G, Weaver J, Ferrero A, Gong H, Fetterly KA, McCollough CH, Leng S. Determination of iodine detectability in different types of multiple-energy images for a photon-counting detector computed tomography system. J Med Imaging (Bellingham) 2019; 6:043501. [PMID: 31620546 DOI: 10.1117/1.jmi.6.4.043501] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 09/16/2019] [Indexed: 11/14/2022] Open
Abstract
In addition to low-energy-threshold images (TLIs), photon-counting detector (PCD) computed tomography (CT) can generate virtual monoenergetic images (VMIs) and iodine maps. Our study sought to determine the image type that maximizes iodine detectability. Adult abdominal phantoms with iodine inserts of various concentrations and lesion sizes were scanned on a PCD-CT system. TLIs, VMIs at 50 keV, and iodine maps were generated, and iodine contrast-to-noise ratio (CNR) was measured. A channelized Hotelling observer was used to determine the area under the receiver-operating-characteristic curve (AUC) for iodine detectability. Iodine map CNR ( 0.57 ± 0.42 ) was significantly higher ( P < 0.05 ) than for TLIs ( 0.46 ± 0.26 ) and lower ( P < 0.001 ) than for VMIs at 50 keV ( 0.74 ± 0.33 ) for 0.5 mgI/cc and a 35-cm phantom. For the same condition and an 8-mm lesion, iodine detectability from iodine maps ( AUC = 0.95 ± 0.01 ) was significantly lower ( P < 0.001 ) than both TLIs ( AUC = 0.99 ± 0.00 ) and VMIs ( AUC = 0.99 ± 0.01 ). VMIs at 50 keV had similar detectability to TLIs and both outperformed iodine maps. The lowest detectable iodine concentration was 0.5 mgI/cc for an 8-mm lesion and 1.0 mgI/cc for a 4-mm lesion.
Collapse
Affiliation(s)
- Wei Zhou
- Mayo Clinic, Department of Radiology, Rochester, Minnesota, United States
| | - Gregory Michalak
- Mayo Clinic, Department of Radiology, Rochester, Minnesota, United States
| | - Jayse Weaver
- Mayo Clinic, Department of Radiology, Rochester, Minnesota, United States
| | - Andrea Ferrero
- Mayo Clinic, Department of Radiology, Rochester, Minnesota, United States
| | - Hao Gong
- Mayo Clinic, Department of Radiology, Rochester, Minnesota, United States
| | - Kenneth A Fetterly
- Mayo Clinic, Department of Radiology, Rochester, Minnesota, United States.,Mayo Clinic, Department of Cardiovascular Medicine, Rochester, Minnesota, United States
| | | | - Shuai Leng
- Mayo Clinic, Department of Radiology, Rochester, Minnesota, United States
| |
Collapse
|
11
|
Dose Optimization of Perfusion-derived Response Assessment in Hepatocellular Carcinoma Treated with Transarterial Chemoembolization: Comparison of Volume Perfusion CT and Iodine Concentration. Acad Radiol 2019; 26:1154-1163. [PMID: 30482626 DOI: 10.1016/j.acra.2018.09.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 09/27/2018] [Accepted: 09/27/2018] [Indexed: 01/14/2023]
Abstract
RATIONALE AND OBJECTIVES We assessed the value of iodine concentration (IC) as a perfusion-derived response marker for hepatocellular carcinoma (HCC) treated with transarterial chemoembolization (TACE) in comparison with volume perfusion computed tomography (VPCT) parameters. MATERIALS AND METHODS Forty-one HCC lesions in 32 patients examined before and after TACE were analyzed retrospectively. VPCT-parameters were calculated and lesion iodine-maps were computed using subtraction of the baseline and the scan 7 seconds after aortic peak enhancement from the corresponding 80 kVp-VPCT data set. Modified RECIST was used as standard response criteria. Comparisons were performed using Student's t test for normal distributed data and Mann-Whitney U test for non-normal distributed data. Additionally, correlation analysis, receiver operating characteristics (ROC) and interreader agreement were assessed. RESULTS In responding lesions, mean pre-TACE IC and blood flow (BF) were 131.2 mg/100 mL and 96.7 mL/100 mL/min, decreasing to IC 25.6 mg/100 mL (P < 0.001) and BF 28.5 mL/100 mL/min (P < 0.001) post-TACE. In nonresponding lesions, the values remained almost unchanged: pre-TACE: mean BF 79.3 mL/100 mL/min and mean IC 90.4 mg/100 mL; post-TACE: mean BF 71.3 mL/100 mL/min (n.s.) and mean IC 105.4 mg/100 mL (n.s.). Differences in IC-values revealed a high sensitivity/specificity of 96.7%/81.8%. IC and VPCT-parameters showed strong, positive correlations. Mean volume CT dose index for VPCT was 63.4 mGy and 4.9 mGy for iodine maps. CONCLUSION Thus, IC is a meaningful perfusion marker for local therapy response monitoring in HCC that can be acquired with low radiation dose. This information is important for further therapy response applications using dual and single energy CT.
Collapse
|
12
|
Lin YM, Chiou YY, Wu MH, Huang SS, Shen SH. Postablation assessment of hepatocellular carcinoma using dual-energy CT: Comparison of half versus standard iodine contrast medium. PLoS One 2019; 14:e0219577. [PMID: 31287838 PMCID: PMC6615706 DOI: 10.1371/journal.pone.0219577] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 06/26/2019] [Indexed: 12/15/2022] Open
Abstract
This retrospective study was aimed to evaluate the reduced iodine load on image quality and diagnostic performance in multiphasic hepatic CT using a novel monoenergetic reconstruction algorithm (nMERA) in assessment of local tumor progression after radiofrequency ablation (RFA) of hepatocellular carcinoma (HCC). Ninety patients who underwent CT 1 month after RFA of HCC. Forty-five patients had multiphasic hepatic dual-energy CT with a half-reduced contrast medium (HRCM) of 277.5 mg I/kg. The nMERA (40-70-keV) images were reconstructed in each phase. Another 45 patients received a standard contrast medium (SCM) of 555 mg I/kg, and the images were reconstructed as a simulated 120-kVp images. Primary outcome was accuracy, sensitivity, specificity, and area under the receiver operating characteristic curve (AUC) in assessment of local tumor progression. Additional advanced assessments included the image noise, attenuation value, contrast-to-noise ratio (CNR), and subjective image quality between the groups. The accuracy, sensitivity and specificity of nMERA HRCM images were 95.7%, 100% and 93.9% for 40 keV, 95.7%, 85.7% and 100% for 50 keV, 83.0%, 42.8% and 100% for 60 keV, and 83.0%, 42.9% and 100% for 70 keV. The AUROC was 0.99, 0.99, 0.94, and 0.93 for 40-70 keV nMERA HRCM images, respectively. Compared with simulated 120-kVp SCM images, nMERA HRCM images demonstrated comparable noise at 70-keV (P < 0.05), and comparable CNR at 40- and 50-keV (P < 0.05). nMERA DECT enables the contrast medium to be reduced to up to 50% in multiphasic hepatic CT while preserving diagnostic accuracy.
Collapse
Affiliation(s)
- Yuan-Mao Lin
- Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yi-You Chiou
- Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Mei-Han Wu
- School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Medical Imaging, Cheng Hsin General Hospital, Taipei, Taiwan
| | - Shan Su Huang
- Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shu-Huei Shen
- Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang-Ming University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
13
|
Noda Y, Goshima S, Nagata S, Miyoshi T, Kawada H, Kawai N, Tanahashi Y, Matsuo M. Right adrenal vein: comparison between adaptive statistical iterative reconstruction and model-based iterative reconstruction. Clin Radiol 2018; 73:594.e1-594.e6. [DOI: 10.1016/j.crad.2018.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 01/15/2018] [Indexed: 11/29/2022]
|