1
|
Becker J, Feitelson LM, Risch F, Canalini L, Kaufmann D, Wudy R, Jehs B, Haerting M, Wollny C, Scheurig-Muenkler C, Kroencke T, Schwarz F, Decker JA, Bette S. Spectral Differentiation of Hyperdense Non-Vascular and Vascular Renal Lesions Without Solid Components in Contrast-Enhanced Photon-Counting Detector CT Scans-A Pilot Study. Diagnostics (Basel) 2025; 15:79. [PMID: 39795607 PMCID: PMC11719968 DOI: 10.3390/diagnostics15010079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/18/2024] [Accepted: 12/27/2024] [Indexed: 01/13/2025] Open
Abstract
Introduction: The number of incidental renal lesions identified in CT scans of the abdomen is increasing. Objective: The aim of this study was to determine whether hyperdense renal lesions without solid components in a portal venous CT scan can be clearly classified as vascular or non-vascular by material decomposition into iodine and water. Methods: This retrospective single-center study included 26 patients (mean age 72 years ± 9; 16 male) with 42 hyperdense renal lesions (>20 HU) in a contrast-enhanced Photon-Counting Detector CT scan (PCD-CT) between May and December 2022. Spectral decomposition into virtual non-contrast (VNC) images and iodine quantification maps was performed, and HU values were quantified within the lesions. Further imaging and histopathological reports served as reference standards. Results: Mean VNC values were 55.7 (±24.2) HU for non-vascular and 32.2 (±11.1) HU for vascular renal lesions. Mean values in the iodine maps were 5.7 (±7.8) HU for non-vascular and 33.3 (±19.0) HU for vascular renal lesions. Using a threshold of >20.3 HU in iodine maps, a total of 7/8 (87.5%) vascular lesions were correctly identified. Conclusion: This proof-of-principle study suggests that the routine use of spectral information acquired in PCD-CT scans might be able to reduce the necessary workup for hyperdense renal lesions without solid components. Further studies with larger patient cohorts are necessary to validate the results of this study and to determine the usefulness of this method in clinical routine.
Collapse
Affiliation(s)
- Judith Becker
- Clinic for Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Augsburg, Stenglinstr. 2, 86156 Augsburg, Germany; (J.B.); (L.-M.F.); (F.R.); (L.C.); (D.K.); (R.W.); (B.J.); (M.H.); (C.W.); (C.S.-M.); (J.A.D.); (S.B.)
| | - Laura-Marie Feitelson
- Clinic for Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Augsburg, Stenglinstr. 2, 86156 Augsburg, Germany; (J.B.); (L.-M.F.); (F.R.); (L.C.); (D.K.); (R.W.); (B.J.); (M.H.); (C.W.); (C.S.-M.); (J.A.D.); (S.B.)
| | - Franka Risch
- Clinic for Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Augsburg, Stenglinstr. 2, 86156 Augsburg, Germany; (J.B.); (L.-M.F.); (F.R.); (L.C.); (D.K.); (R.W.); (B.J.); (M.H.); (C.W.); (C.S.-M.); (J.A.D.); (S.B.)
| | - Luca Canalini
- Clinic for Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Augsburg, Stenglinstr. 2, 86156 Augsburg, Germany; (J.B.); (L.-M.F.); (F.R.); (L.C.); (D.K.); (R.W.); (B.J.); (M.H.); (C.W.); (C.S.-M.); (J.A.D.); (S.B.)
| | - David Kaufmann
- Clinic for Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Augsburg, Stenglinstr. 2, 86156 Augsburg, Germany; (J.B.); (L.-M.F.); (F.R.); (L.C.); (D.K.); (R.W.); (B.J.); (M.H.); (C.W.); (C.S.-M.); (J.A.D.); (S.B.)
| | - Ramona Wudy
- Clinic for Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Augsburg, Stenglinstr. 2, 86156 Augsburg, Germany; (J.B.); (L.-M.F.); (F.R.); (L.C.); (D.K.); (R.W.); (B.J.); (M.H.); (C.W.); (C.S.-M.); (J.A.D.); (S.B.)
| | - Bertram Jehs
- Clinic for Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Augsburg, Stenglinstr. 2, 86156 Augsburg, Germany; (J.B.); (L.-M.F.); (F.R.); (L.C.); (D.K.); (R.W.); (B.J.); (M.H.); (C.W.); (C.S.-M.); (J.A.D.); (S.B.)
| | - Mark Haerting
- Clinic for Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Augsburg, Stenglinstr. 2, 86156 Augsburg, Germany; (J.B.); (L.-M.F.); (F.R.); (L.C.); (D.K.); (R.W.); (B.J.); (M.H.); (C.W.); (C.S.-M.); (J.A.D.); (S.B.)
| | - Claudia Wollny
- Clinic for Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Augsburg, Stenglinstr. 2, 86156 Augsburg, Germany; (J.B.); (L.-M.F.); (F.R.); (L.C.); (D.K.); (R.W.); (B.J.); (M.H.); (C.W.); (C.S.-M.); (J.A.D.); (S.B.)
| | - Christian Scheurig-Muenkler
- Clinic for Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Augsburg, Stenglinstr. 2, 86156 Augsburg, Germany; (J.B.); (L.-M.F.); (F.R.); (L.C.); (D.K.); (R.W.); (B.J.); (M.H.); (C.W.); (C.S.-M.); (J.A.D.); (S.B.)
| | - Thomas Kroencke
- Clinic for Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Augsburg, Stenglinstr. 2, 86156 Augsburg, Germany; (J.B.); (L.-M.F.); (F.R.); (L.C.); (D.K.); (R.W.); (B.J.); (M.H.); (C.W.); (C.S.-M.); (J.A.D.); (S.B.)
- Centre for Advanced Analytics and Predictive Sciences (CAAPS), University of Augsburg, Universitätsstr. 2, 86159 Augsburg, Germany
| | - Florian Schwarz
- Centre for Diagnostic Imaging and Interventional Therapy, Donau-Isar-Klinikum, Perlasberger Straße 41, 94469 Deggendorf, Germany;
| | - Josua A. Decker
- Clinic for Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Augsburg, Stenglinstr. 2, 86156 Augsburg, Germany; (J.B.); (L.-M.F.); (F.R.); (L.C.); (D.K.); (R.W.); (B.J.); (M.H.); (C.W.); (C.S.-M.); (J.A.D.); (S.B.)
| | - Stefanie Bette
- Clinic for Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Augsburg, Stenglinstr. 2, 86156 Augsburg, Germany; (J.B.); (L.-M.F.); (F.R.); (L.C.); (D.K.); (R.W.); (B.J.); (M.H.); (C.W.); (C.S.-M.); (J.A.D.); (S.B.)
| |
Collapse
|
2
|
Chakravarti S, Uyeda JW. Expanding Role of Dual-Energy CT for Genitourinary Tract Assessment in the Emergency Department, From the AJR Special Series on Emergency Radiology. AJR Am J Roentgenol 2023; 221:720-730. [PMID: 37073900 DOI: 10.2214/ajr.22.27864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
Among explored applications of dual-energy CT (DECT) in the abdomen and pelvis, the genitourinary (GU) tract represents an area where accumulated evidence has established the role of DECT to provide useful information that may change management. This review discusses established applications of DECT for GU tract assessment in the emergency department (ED) setting, including characterization of renal stones, evaluation of traumatic injuries and hemorrhage, and characterization of incidental renal and adrenal findings. Use of DECT for such applications can reduce the need for additional multiphase CT or MRI examinations and reduce follow-up imaging recommendations. Emerging applications are also highlighted, including use of low-energy virtual monoenergetic images (VMIs) to improve image quality and potentially reduce contrast media doses and use of high-energy VMIs to mitigate renal mass pseudoenhancement. Finally, implementation of DECT into busy ED radiology practices is presented, weighing the trade-off of additional image acquisition, processing time, and interpretation time against potential additional useful clinical information. Automatic generation of DECT-derived images with direct PACS transfer can facilitate radiologists' adoption of DECT in busy ED environments and minimize impact on interpretation times. Using the described approaches, radiologists can apply DECT technology to improve the quality and efficiency of care in the ED.
Collapse
Affiliation(s)
| | - Jennifer W Uyeda
- Department of Emergency Radiology, Brigham and Women's Hospital/Harvard Medical School, 75 Francis St, Boston, MA 02115
| |
Collapse
|
3
|
Ananthakrishnan L, Kulkarni N, Toshav A. Dual-Energy Computed Tomography: Integration Into Clinical Practice and Cost Considerations. Radiol Clin North Am 2023; 61:963-971. [PMID: 37758363 DOI: 10.1016/j.rcl.2023.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Optimization of dual-energy CT (DECT) workflow is critical for successful integration of DECT into practice. Patient selection strategies differ by scanner type and may be based on patient size, exam indication, or both. All stakeholders involved in patient scheduling and scan acquisition should be involved in patient triage to DECT. Automation of DECT postprocessing frees up technologist and radiologist time, but care must be taken to avoid sending unnecessary reconstructions to PACS. DECT use in the Emergency Department aids in incidentaloma characterization and improves reader diagnostic confidence, and results in quantifiable cost savings by eliminating the need for follow-up exams.
Collapse
Affiliation(s)
- Lakshmi Ananthakrishnan
- Department of Radiology, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA.
| | - Naveen Kulkarni
- Department of Radiology, Medical College of Wisconsin, 9200 West Wisconsin Avenue, Milwaukee, WI 53226, USA
| | - Aran Toshav
- Department of Radiology, Southeast Louisiana Veterans Healthcare System, LSUHSC, New Orleans, LA 70119, USA
| |
Collapse
|
4
|
May C, Sodickson A. Leveraging Dual-Energy Computed Tomography to Improve Emergency Radiology Practice. Radiol Clin North Am 2023; 61:1085-1096. [PMID: 37758358 DOI: 10.1016/j.rcl.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Dual-energy computed tomography affords emergency radiologists with important tools to aid in the detection and discrimination of commonly encountered ED pathologies. In doing so, it can increase the speed of diagnosis and diagnostic certainty while sparing patients potentially unnecessary downsteam workups and radiation exposure. This article demonstrates these clinical benefits through a case-based approach.
Collapse
Affiliation(s)
- Craig May
- Department of Radiology, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA.
| | - Aaron Sodickson
- Department of Radiology, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA
| |
Collapse
|
5
|
Loonis AST, Yu H, Glazer DI, Bay CP, Sodickson AD. Dual Energy-Derived Metrics for Differentiating Adrenal Adenomas From Nonadenomas on Single-Phase Contrast-Enhanced CT. AJR Am J Roentgenol 2023; 220:693-704. [PMID: 36416399 DOI: 10.2214/ajr.22.28323] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
BACKGROUND. Adrenal masses are often indeterminate on single-phase postcontrast CT. Dual-energy CT (DECT) with three-material decomposition algorithms may aid characterization. OBJECTIVE. The purpose of this study was to compare the diagnostic performance of metrics derived from portal venous phase DECT, including virtual noncontrast (VNC) attenuation, fat fraction, iodine density, and relative enhancement ratio, for characterizing adrenal masses. METHODS. This retrospective study included 128 patients (82 women, 46 men; mean age, 64.6 ± 12.7 [SD] years) who between January 2016 and December 2019 underwent portal venous phase abdominopelvic DECT that showed a total of 139 adrenal lesions with an available reference standard based on all imaging, clinical, and pathologic records (87 adenomas, 52 nonadenomas [48 metastases, two adrenal cortical carcinomas, one ganglioneuroma, one hematoma]). Two radiologists placed ROIs to determine the following characteristics of the masses: VNC attenuation, fat fraction, iodine density normalized to portal vein, and for masses with VNC greater than 10 HU, relative enhancement ratio (ratio of portal venous phase attenuation to VNC attenuation). Readers' mean measurements were used for ROC analyses, and clinically optimal thresholds were derived as thresholds yielding the highest sensitivity at 100% specificity. RESULTS. Adenomas and nonadenomas were significantly different (all p < .001) in VNC attenuation (mean ± SD, 18.5 ± 12.9 vs 34.1 ± 8.9 HU), fat fraction (mean ± SD, 24.3% ± 8.2% vs 14.2% ± 5.6%), normalized iodine density (mean ± SD, 0.34 ± 0.15 vs 0.17 ± 0.17), and relative enhancement ratio (mean ± SD, 186% ± 96% vs 58% ± 59%). AUCs for all metrics ranged from 0.81 through 0.91. The metric with highest sensitivity for adenoma at the clinically optimal threshold (i.e., 100% specificity) was fat fraction (threshold, ≥ 23.8%; sensitivity, 59% [95% CI, 48-69%]) followed by VNC attenuation (≤ 15.2 HU; sensitivity, 39% [95% CI, 29-50%]), relative enhancement ratio (≥ 214%; sensitivity, 37% [95% CI, 25-50%]), and normalized iodine density (≥ 0.90; sensitivity, 1% (95% CI, 0-60%]). VNC attenuation at the traditional true noncontrast attenuation threshold of 10 HU or lower had sensitivity of 28% (95% CI, 19-38%) and 100% specificity. Presence of fat fraction 23.8% or greater or relative enhancement ratio 214% or greater yielded sensitivity of 68% (95% CI, 57-77%) with 100% specificity. CONCLUSION. For adrenal lesions evaluated with single-phase DECT, fat fraction had higher sensitivity than VNC attenuation at both the clinically optimal threshold and the traditional threshold of 10 HU or lower. CLINICAL IMPACT. By helping to definitively diagnose adenomas, DECT-derived metrics can help avoid downstream imaging for incidental adrenal lesions.
Collapse
Affiliation(s)
- Anne-Sophie T Loonis
- Department of Radiology, Brigham and Women's Hospital, 75 Francis St, Boston, MA 02115
| | - HeiShun Yu
- Department of Radiology, Brigham and Women's Hospital, 75 Francis St, Boston, MA 02115
| | - Daniel I Glazer
- Department of Radiology, Brigham and Women's Hospital, 75 Francis St, Boston, MA 02115
| | - Camden P Bay
- Department of Radiology, Brigham and Women's Hospital, 75 Francis St, Boston, MA 02115
| | - Aaron D Sodickson
- Department of Radiology, Brigham and Women's Hospital, 75 Francis St, Boston, MA 02115
| |
Collapse
|
6
|
Xu JJ, Lönn L, Budtz-Jørgensen E, Jawad S, Ulriksen PS, Hansen KL. Evaluation of thin-slice abdominal DECT using deep-learning image reconstruction in 74 keV virtual monoenergetic images: an image quality comparison. Abdom Radiol (NY) 2023; 48:1536-1544. [PMID: 36810705 DOI: 10.1007/s00261-023-03845-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/23/2023]
Abstract
PURPOSE To compare noise, contrast-to-noise ratio (CNR), signal-to-noise ratio (SNR) and image quality using deep-learning image reconstruction (DLIR) vs. adaptive statistical iterative reconstruction (ASIR-V) in 0.625 and 2.5 mm slice thickness gray scale 74 keV virtual monoenergetic (VM) abdominal dual-energy CT (DECT). METHODS This retrospective study was approved by the institutional review board and regional ethics committee. We analysed 30 portal-venous phase abdominal fast kV-switching DECT (80/140kVp) scans. Data were reconstructed to ASIR-V 60% and DLIR-High at 74 keV in 0.625 and 2.5 mm slice thickness. Quantitative HU and noise assessment were measured within liver, aorta, adipose tissue and muscle. Two board-certified radiologists evaluated image noise, sharpness, texture and overall quality based on a five-point Likert scale. RESULTS DLIR significantly reduced image noise and increased CNR as well as SNR compared to ASIR-V, when slice thickness was maintained (p < 0.001). Slightly higher noise of 5.5-16.2% was measured (p < 0.01) in liver, aorta and muscle tissue at 0.625 mm DLIR compared to 2.5 mm ASIR-V, while noise in adipose tissue was 4.3% lower with 0.625 mm DLIR compared to 2.5 mm ASIR-V (p = 0.08). Qualitative assessments demonstrated significantly improved image quality for DLIR particularly in 0.625 mm images. CONCLUSIONS DLIR significantly reduced image noise, increased CNR and SNR and improved image quality in 0.625 mm slice images, when compared to ASIR-V. DLIR may facilitate thinner image slice reconstructions for routine contrast-enhanced abdominal DECT.
Collapse
Affiliation(s)
- Jack J Xu
- Department of Diagnostic Radiology, Copenhagen University Hospital, Rigshospitalet, 2100, Copenhagen, Denmark. .,Department of Clinical Medicine, University of Copenhagen, 2100, Copenhagen, Denmark.
| | - Lars Lönn
- Department of Diagnostic Radiology, Copenhagen University Hospital, Rigshospitalet, 2100, Copenhagen, Denmark.,Department of Clinical Medicine, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Esben Budtz-Jørgensen
- Section of Biostatistics, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Samir Jawad
- Department of Diagnostic Radiology, Copenhagen University Hospital, Rigshospitalet, 2100, Copenhagen, Denmark
| | - Peter S Ulriksen
- Department of Diagnostic Radiology, Copenhagen University Hospital, Rigshospitalet, 2100, Copenhagen, Denmark
| | - Kristoffer L Hansen
- Department of Diagnostic Radiology, Copenhagen University Hospital, Rigshospitalet, 2100, Copenhagen, Denmark.,Department of Clinical Medicine, University of Copenhagen, 2100, Copenhagen, Denmark
| |
Collapse
|
7
|
Ding Y, Meyer M, Lyu P, Rigiroli F, Ramirez-Giraldo JC, Lafata K, Yang S, Marin D. Can radiomic analysis of a single-phase dual-energy CT improve the diagnostic accuracy of differentiating enhancing from non-enhancing small renal lesions? Acta Radiol 2022; 63:828-838. [PMID: 33878931 DOI: 10.1177/02841851211010396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The value of dual-energy computed tomography (DECT)-based radiomics in renal lesions is unknown. PURPOSE To develop DECT-based radiomic models and assess their incremental values in comparison to conventional measurements for differentiating enhancing from non-enhancing small renal lesions. MATERIAL AND METHODS A total of 349 patients with 519 small renal lesions (390 non-enhancing, 129 enhancing) who underwent contrast-enhanced nephrographic phase DECT examinations between June 2013 and January 2020 on multiple DECT platforms were retrospectively recruited. Cohort A included all lesions, while cohort B included Bosniak II-IV and solid enhancing renal lesions. Radiomic models were built with features selected by the least absolute shrinkage and selection operator regression (LASSO). ROC analyses were performed to compare the diagnostic accuracy among conventional and radiomic models for predicting enhancing renal lesions. RESULTS The individual iodine concentration (IC), normalized IC, mean attenuation on 75-keV images, radiomic model of iodine images, 75-keV images and a combined model integrating all the above-mentioned features all demonstrated high AUCs for predicting renal lesion enhancement in cohort A (AUCs = 0.934-0.979) as well as in the test dataset (AUCs = 0.892-0.962) of cohort B (P values with Bonferroni correction >0.003). The AUC (0.864) of mean attenuation on 75-keV images was significantly lower than those of other models (all P values ≤0.001) except the radiomic model of 75-keV images (P = 0.038) in the training dataset of cohort B. CONCLUSION No incremental value was found by adding radiomic and machine learning analyses to iodine images for differentiating enhancing from non-enhancing renal lesions.
Collapse
Affiliation(s)
- Yuqin Ding
- Department of Radiology, Duke University Medical Center, Durham, NC, USA
- Department of Radiology, Zhongshan Hospital, Fudan University; Shanghai Institute of Medical Imaging, Shanghai, PR China
| | - Mathias Meyer
- Department of Radiology, Duke University Medical Center, Durham, NC, USA
| | - Peijie Lyu
- Department of Radiology, Duke University Medical Center, Durham, NC, USA
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, PR China
| | - Francesca Rigiroli
- Department of Radiology, Duke University Medical Center, Durham, NC, USA
| | | | - Kyle Lafata
- Department of Radiology, Duke University Medical Center, Durham, NC, USA
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| | - Siyun Yang
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, USA
| | - Daniele Marin
- Department of Radiology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
8
|
Majeed NF, Braschi Amirfarzan M, Wald C, Wortman JR. Spectral detector CT applications in advanced liver imaging. Br J Radiol 2021; 94:20201290. [PMID: 34048285 PMCID: PMC8248211 DOI: 10.1259/bjr.20201290] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 04/16/2021] [Accepted: 05/13/2021] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE Spectral detector CT (SDCT) has many applications in advanced liver imaging. If appropriately utilized, this technology has the potential to improve image quality, provide new diagnostic information, and allow for decreased radiation dose. The purpose of this review is to familiarize radiologists with the uses of SDCT in liver imaging. CONCLUSION SDCT has a variety of post-processing techniques, which can be used in advanced liver imaging and can significantly add value in clinical practice.
Collapse
Affiliation(s)
- Noor Fatima Majeed
- Department of Radiology, Lahey Hospital and Medical Center, 41 Burlington Mall Road, Burlington, United States
| | - Marta Braschi Amirfarzan
- Department of Radiology, Lahey Hospital and Medical Center, 41 Burlington Mall Road, Burlington, United States
| | - Christoph Wald
- Department of Radiology, Lahey Hospital and Medical Center, 41 Burlington Mall Road, Burlington, United States
| | - Jeremy R Wortman
- Department of Radiology, Lahey Hospital and Medical Center, 41 Burlington Mall Road, Burlington, United States
| |
Collapse
|
9
|
Hsieh SS, Leng S, Rajendran K, Tao S, McCollough CH. Photon Counting CT: Clinical Applications and Future Developments. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2021; 5:441-452. [PMID: 34485784 PMCID: PMC8409241 DOI: 10.1109/trpms.2020.3020212] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The use of a photon counting detector in CT (PCD CT) is currently the subject of intense investigation and development. In this review article, we will describe potential clinical applications of this technology with a particular focus on the experience of our own institution with a prototype PCD CT scanner. PCDs have three primary advantages over conventional, energy integrating detectors (EIDs): they provide spectral information without need for a dedicated dual energy protocol; they are immune to electronic noise; and they can be made very high resolution without significant compromises to quantum efficiency. These advantages translate into several clinical applications. Metal artifacts, beam hardening artifacts, and noise streaks from photon starvation can be better mitigated using PCD CT. Certain incidental findings can be better characterized using the spectral information from PCD CT. High-contrast, high-resolution structures such as the temporal bone can be better visualized using PCD CT and at greatly reduced dose. We also discuss new possibilities on the horizon, including new contrast agents, and how anticipated improvements in PCD CT will translate to performance in these applications.
Collapse
Affiliation(s)
- Scott S Hsieh
- Department of Radiology at the Mayo Clinic, Rochester MN 55905 USA
| | - Shuai Leng
- Department of Radiology at the Mayo Clinic, Rochester MN 55905 USA
| | | | - Shengzhen Tao
- Department of Radiology at the Mayo Clinic, Rochester MN 55905 USA
| | | |
Collapse
|
10
|
Gupta A, Kikano EG, Bera K, Baruah D, Saboo SS, Lennartz S, Hokamp NG, Gholamrezanezhad A, Gilkeson RC, Laukamp KR. Dual energy imaging in cardiothoracic pathologies: A primer for radiologists and clinicians. Eur J Radiol Open 2021; 8:100324. [PMID: 33532519 PMCID: PMC7822965 DOI: 10.1016/j.ejro.2021.100324] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 12/12/2022] Open
Abstract
Recent advances in dual-energy imaging techniques, dual-energy subtraction radiography (DESR) and dual-energy CT (DECT), offer new and useful additional information to conventional imaging, thus improving assessment of cardiothoracic abnormalities. DESR facilitates detection and characterization of pulmonary nodules. Other advantages of DESR include better depiction of pleural, lung parenchymal, airway and chest wall abnormalities, detection of foreign bodies and indwelling devices, improved visualization of cardiac and coronary artery calcifications helping in risk stratification of coronary artery disease, and diagnosing conditions like constrictive pericarditis and valvular stenosis. Commercially available DECT approaches are classified into emission based (dual rotation/spin, dual source, rapid kilovoltage switching and split beam) and detector-based (dual layer) systems. DECT provide several specialized image reconstructions. Virtual non-contrast images (VNC) allow for radiation dose reduction by obviating need for true non contrast images, low energy virtual mono-energetic images (VMI) boost contrast enhancement and help in salvaging otherwise non-diagnostic vascular studies, high energy VMI reduce beam hardening artifacts from metallic hardware or dense contrast material, and iodine density images allow quantitative and qualitative assessment of enhancement/iodine distribution. The large amount of data generated by DECT can affect interpreting physician efficiency but also limit clinical adoption of the technology. Optimization of the existing workflow and streamlining the integration between post-processing software and picture archiving and communication system (PACS) is therefore warranted.
Collapse
Key Words
- AI, artificial intelligence
- BT, blalock-taussig
- CAD, computer-aided detection
- CR, computed radiography
- DECT, dual-energy computed tomography
- DESR, dual-energy subtraction radiography
- Dual energy CT
- Dual energy radiography
- NIH, national institute of health
- NPV, negative predictive value
- PACS, picture archiving and communication system
- PCD, photon-counting detector
- PET, positron emission tomography
- PPV, positive predictive value
- Photoelectric effect
- SNR, signal to noise ratio
- SPECT, single photon emission computed tomography
- SVC, superior vena cava
- TAVI, transcatheter aortic valve implantation
- TNC, true non contrast
- VMI, virtual mono-energetic images
- VNC, virtual non-contrast images
- eGFR, estimated glomerular filtration rate
- kV, kilo volt
- keV, kilo electron volt
Collapse
Affiliation(s)
- Amit Gupta
- Department of Radiology, University Hospitals Cleveland Medical Center/Case Western Reserve University, 11100 Euclid Ave, Cleveland, OH, 44106, USA
| | - Elias G Kikano
- Department of Radiology, University Hospitals Cleveland Medical Center/Case Western Reserve University, 11100 Euclid Ave, Cleveland, OH, 44106, USA
| | - Kaustav Bera
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Dhiraj Baruah
- Department of Radiology, Medical University of South Carolina, Charleston, SC, USA
| | - Sachin S Saboo
- Department of Radiology, University Of Texas Health Science Center, San Antonio, TX, USA
| | - Simon Lennartz
- Institute for Diagnostic and Interventional Radiology, University Hospital Cologne, Cologne, Germany
| | - Nils Große Hokamp
- Institute for Diagnostic and Interventional Radiology, University Hospital Cologne, Cologne, Germany
| | - Ali Gholamrezanezhad
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Robert C Gilkeson
- Department of Radiology, University Hospitals Cleveland Medical Center/Case Western Reserve University, 11100 Euclid Ave, Cleveland, OH, 44106, USA
| | - Kai R Laukamp
- Institute for Diagnostic and Interventional Radiology, University Hospital Cologne, Cologne, Germany
| |
Collapse
|
11
|
Impact of Dual-Energy CT in the Emergency Department: Increased Radiologist Confidence, Reduced Need for Follow-Up Imaging, and Projected Cost Benefit. AJR Am J Roentgenol 2020; 215:1528-1538. [DOI: 10.2214/ajr.19.22357] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
12
|
Rajiah P, Parakh A, Kay F, Baruah D, Kambadakone AR, Leng S. Update on Multienergy CT: Physics, Principles, and Applications. Radiographics 2020; 40:1284-1308. [DOI: 10.1148/rg.2020200038] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Prabhakar Rajiah
- From the Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905 (P.R., S.L.); Department of Radiology, Massachusetts General Hospital, Boston, Mass (A.P., A.R.K.); Department of Radiology, UT Southwestern Medical Center, Dallas, Tex (F.K.); and Department of Radiology, Medical University of South Carolina, Charleston, SC (D.B.)
| | - Anushri Parakh
- From the Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905 (P.R., S.L.); Department of Radiology, Massachusetts General Hospital, Boston, Mass (A.P., A.R.K.); Department of Radiology, UT Southwestern Medical Center, Dallas, Tex (F.K.); and Department of Radiology, Medical University of South Carolina, Charleston, SC (D.B.)
| | - Fernando Kay
- From the Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905 (P.R., S.L.); Department of Radiology, Massachusetts General Hospital, Boston, Mass (A.P., A.R.K.); Department of Radiology, UT Southwestern Medical Center, Dallas, Tex (F.K.); and Department of Radiology, Medical University of South Carolina, Charleston, SC (D.B.)
| | - Dhiraj Baruah
- From the Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905 (P.R., S.L.); Department of Radiology, Massachusetts General Hospital, Boston, Mass (A.P., A.R.K.); Department of Radiology, UT Southwestern Medical Center, Dallas, Tex (F.K.); and Department of Radiology, Medical University of South Carolina, Charleston, SC (D.B.)
| | - Avinash R. Kambadakone
- From the Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905 (P.R., S.L.); Department of Radiology, Massachusetts General Hospital, Boston, Mass (A.P., A.R.K.); Department of Radiology, UT Southwestern Medical Center, Dallas, Tex (F.K.); and Department of Radiology, Medical University of South Carolina, Charleston, SC (D.B.)
| | - Shuai Leng
- From the Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905 (P.R., S.L.); Department of Radiology, Massachusetts General Hospital, Boston, Mass (A.P., A.R.K.); Department of Radiology, UT Southwestern Medical Center, Dallas, Tex (F.K.); and Department of Radiology, Medical University of South Carolina, Charleston, SC (D.B.)
| |
Collapse
|
13
|
O'Connor SD. Dual-Energy CT: Benefits and Barriers to Adoption. J Am Coll Radiol 2020; 17:938-939. [PMID: 32454023 DOI: 10.1016/j.jacr.2020.04.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/24/2020] [Accepted: 04/25/2020] [Indexed: 01/17/2023]
Affiliation(s)
- Stacy D O'Connor
- Medical Director of IT Operations, Department of Radiology, the Patient Safety and Quality Officer for Radiology, and the Medical Director of the Quantitative Imaging Lab for Medical College of Wisconsin, Milwaukee, Wisconsin.
| |
Collapse
|
14
|
Bird JR, Brahm GL, Fung C, Sebastian S, Kirkpatrick IDC. Recommendations for the Management of Incidental Hepatobiliary Findings in Adults: Endorsement and Adaptation of the 2017 and 2013 ACR Incidental Findings Committee White Papers by the Canadian Association of Radiologists Incidental Findings Working Group. Can Assoc Radiol J 2020; 71:437-447. [DOI: 10.1177/0846537120928349] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The Canadian Association of Radiologists Incidental Findings Working Group consists of both academic subspecialty and general radiologists and is tasked with adapting and expanding upon the American College of Radiology incidental findings white papers to more closely apply to Canadian practice patterns, particularly more comprehensively dealing with the role of ultrasound and pursuing more cost-effective approaches to the workup of incidental findings without compromising patient care. Presented here are the 2020 Canadian guidelines for the management of hepatobiliary incidental findings. Topics covered include initial assessment of hepatic steatosis and cirrhosis, the workup of incidental liver masses identified on ultrasound and computed tomography (with algorithms presented), incidental gallbladder findings (wall thickening, calcification, and polyps), and management of incidental biliary dilatation.
Collapse
Affiliation(s)
- Jeffery R. Bird
- Department of Medical Imaging, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Gary L. Brahm
- Department of Medical Imaging, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Christopher Fung
- Department of Radiology and Diagnostic Imaging, University of Alberta, Edmonton, Alberta, Canada
| | - Sunit Sebastian
- Department of Radiology, Baylor College of Medicine, Houston, TX, USA
| | | |
Collapse
|
15
|
Dual energy CT in clinical routine: how it works and how it adds value. Emerg Radiol 2020; 28:103-117. [PMID: 32483665 DOI: 10.1007/s10140-020-01785-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 05/04/2020] [Indexed: 02/06/2023]
Abstract
Dual energy computed tomography (DECT), also known as spectral CT, refers to advanced CT technology that separately acquires high and low energy X-ray data to enable material characterization applications for substances that exhibit different energy-dependent x-ray absorption behavior. DECT supports a variety of post-processing applications that add value in routine clinical CT imaging, including material selective and virtual non-contrast images using two- and three-material decomposition algorithms, virtual monoenergetic imaging, and other material characterization techniques. Following a review of acquisition and post-processing techniques, we present a case-based approach to highlight the added value of DECT in common clinical scenarios. These scenarios include improved lesion detection, improved lesion characterization, improved ease of interpretation, improved prognostication, inherently more robust imaging protocols to account for unexpected pathology or suboptimal contrast opacification, length of stay reduction, reduced utilization by avoiding unnecessary follow-up examinations, and radiation dose reduction. A brief discussion of post-processing workflow approaches, challenges, and solutions is also included.
Collapse
|
16
|
McCollough CH, Boedeker K, Cody D, Duan X, Flohr T, Halliburton SS, Hsieh J, Layman RR, Pelc NJ. Principles and applications of multienergy CT: Report of AAPM Task Group 291. Med Phys 2020; 47:e881-e912. [DOI: 10.1002/mp.14157] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 02/11/2020] [Accepted: 03/10/2020] [Indexed: 12/14/2022] Open
Affiliation(s)
| | - Kirsten Boedeker
- Canon (formerly Toshiba) Medical Systems Corporation 1440 Warnall Ave Los Angeles CA 90024 USA
| | - Dianna Cody
- University of Texas, M.D. Anderson Cancer Center 7163 Spanish Grant Galveston TX 77554‐7756 USA
| | - Xinhui Duan
- Southwestern Medical Center University of Texas 5323 Harry Hines Blvd Dallas TX 75390‐9071 USA
| | - Thomas Flohr
- Siemens Healthcare GmbH Siemensstr. 3 Forchheim BY 91031 Germany
| | | | - Jiang Hsieh
- GE Healthcare Technologies 3000 N. Grandview Blvd. W-1190 Waukesha WI 53188 USA
| | - Rick R. Layman
- University of Texas, M.D. Anderson Cancer Center 7163 Spanish Grant Galveston TX 77554‐7756 USA
| | - Norbert J. Pelc
- Stanford University 443 Via Ortega, Room 203 Stanford CA 94305‐4125 USA
| |
Collapse
|
17
|
Abstract
OBJECTIVE To review the current evidence and guidelines for diagnosis and management of incidental adrenal masses with a focus on the recent changes made by the American College of Radiology (ACR) Incidental Findings Committee. CONCLUSION Incidentally detected adrenal nodules are a commonly encountered finding estimated to occur in 5-7% of the adult population. By following current recommendations, radiologists can improve patient care by efficiently determining which masses require further diagnostic testing and which masses can be considered benign and not require further follow-up.
Collapse
Affiliation(s)
- Daniel I Glazer
- Division of Abdominal Imaging and Intervention, Department of Radiology, Harvard Medical School, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, 02115, USA.
| | - William W Mayo-Smith
- Division of Abdominal Imaging and Intervention, Department of Radiology, Harvard Medical School, Brigham and Women's Hospital, 1620 Tremont Street, Boston, MA, 02120, USA
| |
Collapse
|
18
|
Hamid S, Nicolaou S, Khosa F, Andrews G, Murray N, Abdellatif W, Qamar SR. Dual-Energy CT: A Paradigm Shift in Acute Traumatic Abdomen. Can Assoc Radiol J 2020; 71:371-387. [DOI: 10.1177/0846537120905301] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Abdominal trauma, one of the leading causes of death under the age of 45, can be broadly classified into blunt and penetrating trauma, based on the mechanism of injury. Blunt abdominal trauma usually results from motor vehicle collisions, fall from heights, assaults, and sports and is more common than penetrating abdominal trauma, which is usually seen in firearm injuries and stab wounds. In both blunt and penetrating abdominal trauma, an optimized imaging approach is mandatory to exclude life-threatening injuries. Easy availability of the portable ultrasound in the emergency department and trauma bay makes it one of the most commonly used screening imaging modalities in the abdominal trauma, especially to exclude hemoperitoneum. Evaluation of the visceral and vascular injuries in a hemodynamically stable patient, however, warrants intravenous contrast-enhanced multidetector computed tomography scan. Dual-energy computed tomography with its postprocessing applications such as iodine selective imaging and virtual monoenergetic imaging can reliably depict the conspicuity of traumatic solid and hollow visceral and vascular injuries.
Collapse
Affiliation(s)
- Saira Hamid
- Emergency and Trauma Radiology, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Savvas Nicolaou
- Emergency and Trauma Radiology, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Faisal Khosa
- Emergency and Trauma Radiology, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Gordon Andrews
- Emergency and Trauma Radiology, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Nicolas Murray
- Emergency and Trauma Radiology, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Waleed Abdellatif
- Emergency and Trauma Radiology, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sadia Raheez Qamar
- Emergency and Trauma Radiology, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
19
|
Atwi NE, Sabottke CF, Pitre DM, Smith DL, Danrad R, Dharaiya E, Kambadakone A, Pandharipande PV, Toshav AM. Follow-up Recommendation Rates Associated With Spectral Detector Dual-Energy CT of the Abdomen and Pelvis: A Retrospective Comparison to Single-Energy CT. J Am Coll Radiol 2020; 17:940-950. [PMID: 32032553 DOI: 10.1016/j.jacr.2019.12.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 12/28/2019] [Accepted: 12/30/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND Dual-energy CT image sets have many applications in abdominopelvic imaging but no demonstrated clinical effect. PURPOSE To determine the effect of dual-energy CT iodine maps on abdominopelvic imaging follow-up recommendation rates. MATERIALS AND METHODS Retrospective study of abdominopelvic CTs acquired from April 2017 through June 2018. CT reports were analyzed for radiologic follow-up recommendation and follow-up recommendation reason. Follow-up MRI reports were analyzed for benign or nonbenign diagnosis. CT scans with iodine maps (CTIMs) and conventional CT scans (CCTs) subgroups were compared using χ2 testing. RESULTS In all, 3,221 abdominopelvic CT scans of 2,401 patients (1,326 men, 1,075 women, mean age 54.1 years) were analyzed; 1,423 were CTIMs and 1,798 were CCTs. Follow-up recommendation rates were not significantly different for CTIMs and CCTs (19.5% and 21.4%, respectively, P = .19). Follow-up recommendations because of incomplete diagnosis were significantly lower in CTIMs (9.1%) than in CCTs (11.9%, P = .01). Follow-up recommendations for MRI and PET/CT were significantly lower in CTIMs (9.6%) than CCTs (13.0%, P = .003). Follow-up MRI outcomes (n = 111) were not different between CTIMs (61.2% benign) and CCTs (59.6%, P = .87). CONCLUSION Dual-energy CT iodine maps are associated with decreased follow-up examinations because of incomplete diagnosis and decreased recommendations for follow-up MRI, suggesting that abdominopelvic iodine maps may benefit patient care and decrease institutional cost.
Collapse
Affiliation(s)
- Noah E Atwi
- Department of Radiology, LSU Health Sciences Center New Orleans, New Orleans, Louisiana
| | - Carl F Sabottke
- School of Medicine, LSU Health Sciences Center New Orleans, New Orleans, Louisiana
| | - David M Pitre
- School of Medicine, LSU Health Sciences Center New Orleans, New Orleans, Louisiana
| | - David L Smith
- Department of Radiology, LSU Health Sciences Center New Orleans, New Orleans, Louisiana
| | - Raman Danrad
- Clinical Director of MRI, Academic Director of Cardiac Imaging, Department of Radiology, LSU Health Sciences Center New Orleans, New Orleans, Louisiana
| | - Ekta Dharaiya
- Head of CT Clinical Marketing, Philips Healthcare, Cleveland, Ohio
| | - Avinash Kambadakone
- Medical Director, Martha's Vineyard Hospital Imaging, Chief of CT, Massachusetts General Hospital, Boston, Massachusetts
| | - Pari V Pandharipande
- Director, MGH Institute for Technology Assessment; Associate Chair, Integrated Imaging & Imaging Sciences, MGH Radiology; Executive Director, Clinical Enterprise Integration, Mass General Brigham (MGB) Radiology; Associate Professor of Radiology Harvard Medical School; Radiologist, Abdominal Imaging, Massachusetts General Hospital, Boston, Massachusetts
| | - Aran M Toshav
- Program Director of the diagnostic residency, Department of Radiology, LSU Health Sciences Center, New Orleans, Louisiana.
| |
Collapse
|
20
|
Wortman JR, Shyu JY, Dileo J, Uyeda JW, Sodickson AD. Dual-energy CT for routine imaging of the abdomen and pelvis: radiation dose and image quality. Emerg Radiol 2019; 27:45-50. [PMID: 31673838 DOI: 10.1007/s10140-019-01733-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/18/2019] [Accepted: 09/24/2019] [Indexed: 11/28/2022]
Abstract
PURPOSE To assess the radiation dose and image quality of routine dual energy CT (DECT) of the abdomen and pelvis performed in the emergency department setting, compared with single energy CT (SECT). MATERIALS AND METHODS Seventy-five consecutive routine contrast-enhanced SECT scans of the abdomen and pelvis meeting inclusion criteria were compared with 75 routine contrast-enhanced DECT scans matched by size and patient weight (within 10 lbs), performed on the same dual-source DECT scanner. Cohorts were compared in terms of radiation dose metrics of CT dose index (CTDIvol) and dose length product (DLP), objective measurements of image quality (signal, noise, and signal-to-noise ratio of a variety of anatomical landmarks), and subjective measurements of image quality scored by two emergency radiologists. RESULTS Demographics and patient size were not statistically different between DECT and SECT cohorts. Both average scans CTDIvol and DLP were significantly lower with DECT than with SECT. Average scan CTDIvol for SECT was 14.7 mGy (± 6.6) and for DECT was 10.9 mGy (± 3.8) (p < 0.0001). Average scan DLP for SECT was 681.5 mGy cm (± 339.3) and for DECT was 534.8 mGy cm (± 201.9) (p < 0.0001). For objective image quality metrics, for all structures measured, noise was significantly lower and SNR was significantly higher with DECT compared with SECT. For subjective image quality, for both readers, there was no significant difference between SECT and DECT in subjective image quality for soft tissues and vascular structures, or for subjective image noise. CONCLUSIONS DECT was performed with decreased radiation dose when compared with SECT, demonstrated improved objective measurements of image quality, and equivalent subjective image quality.
Collapse
Affiliation(s)
- Jeremy R Wortman
- Department of Radiology, Section of Emergency Radiology, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, 02115, USA. .,Harvard Medical School, Boston, MA, USA. .,Lahey Hospital and Medical Center, Burlington, MA, USA.
| | - Jeffrey Y Shyu
- Department of Radiology, Section of Emergency Radiology, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, 02115, USA.,Harvard Medical School, Boston, MA, USA
| | - Jeffrey Dileo
- Department of Radiology, Section of Emergency Radiology, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, 02115, USA.,Harvard Medical School, Boston, MA, USA
| | - Jennifer W Uyeda
- Department of Radiology, Section of Emergency Radiology, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, 02115, USA.,Harvard Medical School, Boston, MA, USA
| | - Aaron D Sodickson
- Department of Radiology, Section of Emergency Radiology, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, 02115, USA.,Harvard Medical School, Boston, MA, USA
| |
Collapse
|
21
|
Correlation Between Dual-Energy Computed Tomography Single Scan and Computed Tomography Perfusion for Pancreatic Cancer Patients: Initial Experience. J Comput Assist Tomogr 2019; 43:599-604. [PMID: 31162238 DOI: 10.1097/rct.0000000000000878] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE The objective of this study was to evaluate the role and limit of iodine maps by dual-energy computed tomography (CT) single scan for pancreatic cancer. METHODS Thirty patients with suspected solitary pancreatic cancer were enrolled in this study and underwent CT perfusion and iodine maps. The parameters of pancreatic cancer and normal pancreatic tissue were calculated. Pearson correlation and paired t test were used for evaluating 2 techniques. RESULTS Iodine concentration had a moderate positive correlation with blood flow or blood volume (P < 0.05 for both). All values of iodine concentration and blood flow, iodine concentration, and blood volume had significant positive correlations (P < 0.001 for both). The mean effective dose for CT perfusion and iodine maps had significant difference (8.61 ± 0.00 mSv vs 1.13 ± 0.14 mSv, P < 0.001). CONCLUSIONS Iodine maps had the potential to replace routine CT perfusion for pancreatic cancer with low radiation dose.
Collapse
|
22
|
Clinical and Payer-Based Analysis of Value of Dual-Energy Computed Tomography for Workup of Incidental Abdominal Findings. J Comput Assist Tomogr 2019; 43:605-611. [PMID: 31162230 DOI: 10.1097/rct.0000000000000886] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE To perform a clinical and payer-based analysis of the value of dual-energy computed tomography (DECT) for workup of incidental abdominal findings. METHODS This was a single-center, retrospectively designed, Health Insurance Portability and Accountability Act-compliant study approved by our institutional review board. Sixty-nine examinations in 69 patients (45 men, 24 women; mean age, 57.7 years) who underwent single-phase postcontrast abdominal DECT studies between January 1, 2011, and December 31, 2017, were included. Two radiologists, blinded to study objective and design, reviewed all cases and identified incidental abdominal findings needing further imaging. All incidental findings were reviewed by 2 other investigators, who determined whether an imaging-based diagnosis could be made using DECT virtual noncontrast images and iodine maps. Additional studies and associated payer-reimbursement amounts avoided by use of DECT were estimated. All imaging costs were estimated based on the US Centers for Medicare & Medicaid Services reimbursement amounts. RESULTS Thirty-four incidental findings (renal mass, n = 20; adrenal nodule, n = 8; pancreatic cystic lesions, n = 3; others, n = 3) were identified in 19 (27.5%) of 69 patients. Dual-energy computed tomography characterized 27 incidental findings in 15 patients and accounted for cost savings of 15 additional imaging examinations (abdominal magnetic resonance imaging, n = 11; abdominal computed tomography, n = 4). Based on Centers for Medicare & Medicaid Services reimbursement amounts, we estimated that, by abolishing the need for additional imaging use, DECT saved US $84.95 per patient. CONCLUSIONS Dual-energy computed tomography can provide an imaging-based diagnosis of incidental abdominal findings, otherwise incompletely characterized on routine abdominal computed tomography, in approximately 21% of patients. In select patients, the monetary savings from abolishing additional imaging may reduce payer costs associated with use of DECT.
Collapse
|
23
|
Meyer M, Nelson RC, Vernuccio F, González F, Farjat AE, Patel BN, Samei E, Henzler T, Schoenberg SO, Marin D. Virtual Unenhanced Images at Dual-Energy CT: Influence on Renal Lesion Characterization. Radiology 2019; 291:381-390. [DOI: 10.1148/radiol.2019181100] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
24
|
Systematic Review and Meta-Analysis Investigating the Diagnostic Yield of Dual-Energy CT for Renal Mass Assessment. AJR Am J Roentgenol 2019; 212:1044-1053. [PMID: 30835518 DOI: 10.2214/ajr.18.20625] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
OBJECTIVE. The objective of our study was to perform a systematic review and meta-analysis to evaluate the diagnostic accuracy of dual-energy CT (DECT) for renal mass evaluation. MATERIALS AND METHODS. In March 2018, we searched MEDLINE, Cochrane Database of Systematic Reviews, Embase, and Web of Science databases. Analytic methods were based on Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). Pooled estimates for sensitivity, specificity, and diagnostic odds ratios were calculated for DECT-based virtual monochromatic imaging (VMI) and iodine quantification techniques as well as for conventional attenuation measurements from renal mass CT protocols. I2 was used to evaluate heterogeneity. The methodologic quality of the included studies and potential bias were assessed using items from the Quality Assessment Tool for Diagnostic Accuracy Studies 2 (QUADAS-2). RESULTS. Of the 1043 articles initially identified, 13 were selected for inclusion (969 patients, 1193 renal masses). Cumulative data of sensitivity, specificity, and summary diagnostic odds ratio for VMI were 87% (95% CI, 80-92%; I2, 92.0%), 93% (95% CI, 90-96%; I2, 18.0%), and 183.4 (95% CI, 30.7-1093.4; I2, 61.6%), respectively. Cumulative data of sensitivity, specificity, and summary diagnostic odds ratio for iodine quantification were 99% (95% CI, 97-100%; I2, 17.6%), 91% (95% CI, 89-94%; I2, 84.2%), and 511.5 (95% CI, 217-1201; I2, 0%). No significant differences in AUCs were found when comparing iodine quantification to conventional attenuation measurements (p = 0.79). CONCLUSION. DECT yields high accuracy for renal mass evaluation. Determination of iodine content with the iodine quantification technique shows diagnostic accuracy similar to conventional attenuation measurements from renal mass CT protocols. The iodine quantification technique may be used to characterize incidental renal masses when a dedicated renal mass protocol is not available.
Collapse
|
25
|
Recommendations for the Management of the Incidental Renal Mass in Adults: Endorsement and Adaptation of the 2017 ACR Incidental Findings Committee White Paper by the Canadian Association of Radiologists Incidental Findings Working Group. Can Assoc Radiol J 2019; 70:125-133. [DOI: 10.1016/j.carj.2019.03.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 02/26/2019] [Accepted: 03/02/2019] [Indexed: 12/14/2022] Open
|
26
|
Dual-Energy CT Material Density Iodine Quantification for Distinguishing Vascular From Nonvascular Renal Lesions: Normalization Reduces Intermanufacturer Threshold Variability. AJR Am J Roentgenol 2019; 212:366-376. [DOI: 10.2214/ajr.18.20115] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
27
|
Dual energy CT for evaluation of polycystic kidneys: a multi reader study of interpretation time and diagnostic confidence. Abdom Radiol (NY) 2018; 43:3418-3424. [PMID: 29926138 DOI: 10.1007/s00261-018-1674-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
PURPOSE To compare dual-energy CT (DECT) iodine overlay images with renal mass protocol CT in the evaluation of polycystic kidneys with respect to reading time, diagnostic confidence, and detection of renal lesions that are not definitively benign. METHODS Following IRB approval, portal venous phase dual-source DECT scans performed between September 2013 and February 2016 from 55 patients (mean age 67 ± 15 years, 31 male, 24 female) with polycystic kidneys (4 or more cysts) were included. For each patient, two image sets were created: (1) DECT post-processed iodine overlay images and (2) simulated renal mass protocol CT images (virtual noncontrast and mixed images). Two radiologists independently retrospectively reviewed both sets at separate time points, evaluating for the presence of lesions that were not definitively benign (enhancing lesions or Bosniak IIF cysts), as well as reading times and Likert scale diagnostic confidence ratings (scaled 1-5) for the presence of non-benign lesions. Reading times were compared with a t test, diagnostic confidence with a McNemar test, and lesion number detection with Cohen's kappa test. RESULTS Iodine overlay images were read faster (mean 55 ± 26 s) than renal mass protocol (mean 105 ± 51 s) (p < 0.001). Readers assigned the highest diagnostic confidence rating in 64% using iodine overlay series, compared to 17% using renal mass protocol (p < 0.0001). The proportion of patients with recorded lesions was not significantly different between methods (p = 0.62). CONCLUSIONS DECT improves lesion assessment in polycystic kidneys by decreasing reading times and increasing diagnostic confidence, without affecting lesion detection rates.
Collapse
|
28
|
Dual-Energy Imaging of the Pancreas. CURRENT RADIOLOGY REPORTS 2018. [DOI: 10.1007/s40134-018-0308-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
29
|
Dual-Energy CT in Differentiating Nonperforated Gangrenous Appendicitis From Uncomplicated Appendicitis. AJR Am J Roentgenol 2018; 211:776-782. [DOI: 10.2214/ajr.17.19274] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
30
|
Characterization of Small Incidental Indeterminate Hypoattenuating Hepatic Lesions: Added Value of Single-Phase Contrast-Enhanced Dual-Energy CT Material Attenuation Analysis. AJR Am J Roentgenol 2018; 211:571-579. [DOI: 10.2214/ajr.17.19170] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
31
|
Schabel C, Patel B, Harring S, Duvnjak P, Ramírez-Giraldo JC, Nikolaou K, Nelson RC, Farjat AE, Marin D. Renal Lesion Characterization with Spectral CT: Determining the Optimal Energy for Virtual Monoenergetic Reconstruction. Radiology 2018; 287:874-883. [DOI: 10.1148/radiol.2018171657] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Christoph Schabel
- From the Departments of Radiology (C.S., B.P., S.H., P.D., R.C.N., D.M.) and Biostatistics and Bioinformatics (A.E.F.), Duke University Medical Center, Box 3808 Erwin Rd, Durham, NC 27710; Department of Diagnostic and Interventional Radiology, University Hospital of Tuebingen, Tuebingen, Germany (C.S., K.N.); and Department of Computed Tomography, Siemens Medical Solutions USA, Malvern, Pa (J.C.R.)
| | - Bhavik Patel
- From the Departments of Radiology (C.S., B.P., S.H., P.D., R.C.N., D.M.) and Biostatistics and Bioinformatics (A.E.F.), Duke University Medical Center, Box 3808 Erwin Rd, Durham, NC 27710; Department of Diagnostic and Interventional Radiology, University Hospital of Tuebingen, Tuebingen, Germany (C.S., K.N.); and Department of Computed Tomography, Siemens Medical Solutions USA, Malvern, Pa (J.C.R.)
| | - Scott Harring
- From the Departments of Radiology (C.S., B.P., S.H., P.D., R.C.N., D.M.) and Biostatistics and Bioinformatics (A.E.F.), Duke University Medical Center, Box 3808 Erwin Rd, Durham, NC 27710; Department of Diagnostic and Interventional Radiology, University Hospital of Tuebingen, Tuebingen, Germany (C.S., K.N.); and Department of Computed Tomography, Siemens Medical Solutions USA, Malvern, Pa (J.C.R.)
| | - Petar Duvnjak
- From the Departments of Radiology (C.S., B.P., S.H., P.D., R.C.N., D.M.) and Biostatistics and Bioinformatics (A.E.F.), Duke University Medical Center, Box 3808 Erwin Rd, Durham, NC 27710; Department of Diagnostic and Interventional Radiology, University Hospital of Tuebingen, Tuebingen, Germany (C.S., K.N.); and Department of Computed Tomography, Siemens Medical Solutions USA, Malvern, Pa (J.C.R.)
| | - Juan Carlos Ramírez-Giraldo
- From the Departments of Radiology (C.S., B.P., S.H., P.D., R.C.N., D.M.) and Biostatistics and Bioinformatics (A.E.F.), Duke University Medical Center, Box 3808 Erwin Rd, Durham, NC 27710; Department of Diagnostic and Interventional Radiology, University Hospital of Tuebingen, Tuebingen, Germany (C.S., K.N.); and Department of Computed Tomography, Siemens Medical Solutions USA, Malvern, Pa (J.C.R.)
| | - Konstantin Nikolaou
- From the Departments of Radiology (C.S., B.P., S.H., P.D., R.C.N., D.M.) and Biostatistics and Bioinformatics (A.E.F.), Duke University Medical Center, Box 3808 Erwin Rd, Durham, NC 27710; Department of Diagnostic and Interventional Radiology, University Hospital of Tuebingen, Tuebingen, Germany (C.S., K.N.); and Department of Computed Tomography, Siemens Medical Solutions USA, Malvern, Pa (J.C.R.)
| | - Rendon C. Nelson
- From the Departments of Radiology (C.S., B.P., S.H., P.D., R.C.N., D.M.) and Biostatistics and Bioinformatics (A.E.F.), Duke University Medical Center, Box 3808 Erwin Rd, Durham, NC 27710; Department of Diagnostic and Interventional Radiology, University Hospital of Tuebingen, Tuebingen, Germany (C.S., K.N.); and Department of Computed Tomography, Siemens Medical Solutions USA, Malvern, Pa (J.C.R.)
| | - Alfredo E. Farjat
- From the Departments of Radiology (C.S., B.P., S.H., P.D., R.C.N., D.M.) and Biostatistics and Bioinformatics (A.E.F.), Duke University Medical Center, Box 3808 Erwin Rd, Durham, NC 27710; Department of Diagnostic and Interventional Radiology, University Hospital of Tuebingen, Tuebingen, Germany (C.S., K.N.); and Department of Computed Tomography, Siemens Medical Solutions USA, Malvern, Pa (J.C.R.)
| | - Daniele Marin
- From the Departments of Radiology (C.S., B.P., S.H., P.D., R.C.N., D.M.) and Biostatistics and Bioinformatics (A.E.F.), Duke University Medical Center, Box 3808 Erwin Rd, Durham, NC 27710; Department of Diagnostic and Interventional Radiology, University Hospital of Tuebingen, Tuebingen, Germany (C.S., K.N.); and Department of Computed Tomography, Siemens Medical Solutions USA, Malvern, Pa (J.C.R.)
| |
Collapse
|
32
|
Energy-Specific Optimization of Attenuation Thresholds for Low-Energy Virtual Monoenergetic Images in Renal Lesion Evaluation. AJR Am J Roentgenol 2018; 210:W205-W217. [PMID: 29547057 DOI: 10.2214/ajr.17.18641] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
OBJECTIVE The purpose of this study was to determine in vitro and in vivo the optimal threshold for renal lesion vascularity at low-energy (40-60 keV) virtual monoenergetic imaging. MATERIALS AND METHODS A rod simulating unenhanced renal parenchymal attenuation (35 HU) was fitted with a syringe containing water. Three iodinated solutions (0.38, 0.57, and 0.76 mg I/mL) were inserted into another rod that simulated enhanced renal parenchyma (180 HU). Rods were inserted into cylindric phantoms of three different body sizes and scanned with single- and dual-energy MDCT. In addition, 102 patients (32 men, 70 women; mean age, 66.8 ± 12.9 [SD] years) with 112 renal lesions (67 nonvascular, 45 vascular) measuring 1.1-8.9 cm underwent single-energy unenhanced and contrast-enhanced dual-energy CT. Optimal threshold attenuation values that differentiated vascular from nonvascular lesions at 40-60 keV were determined. RESULTS Mean optimal threshold values were 30.2 ± 3.6 (standard error), 20.9 ± 1.3, and 16.1 ± 1.0 HU in the phantom, and 35.9 ± 3.6, 25.4 ± 1.8, and 17.8 ± 1.8 HU in the patients at 40, 50, and 60 keV. Sensitivity and specificity for the thresholds did not change significantly between low-energy and 70-keV virtual monoenergetic imaging (sensitivity, 87-98%; specificity, 90-91%). The AUC from 40 to 70 keV was 0.96 (95% CI, 0.93-0.99) to 0.98 (95% CI, 0.95-1.00). CONCLUSION Low-energy virtual monoenergetic imaging at energy-specific optimized attenuation thresholds can be used for reliable characterization of renal lesions.
Collapse
|
33
|
Toia GV, Kim S, Dighe MK, Mileto A. Dual-Energy Computed Tomography in Body Imaging. Semin Roentgenol 2018; 53:132-146. [PMID: 29861005 DOI: 10.1053/j.ro.2018.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Giuseppe V Toia
- Body Imaging Section, Department of Radiology, University of Washington School of Medicine, Seattle, WA 98195
| | - Sooah Kim
- Body Imaging Section, Department of Radiology, University of Washington School of Medicine, Seattle, WA 98195
| | - Manjiri K Dighe
- Body Imaging Section, Department of Radiology, University of Washington School of Medicine, Seattle, WA 98195
| | - Achille Mileto
- Body Imaging Section, Department of Radiology, University of Washington School of Medicine, Seattle, WA 98195.
| |
Collapse
|
34
|
Ratanaprasatporn L, Uyeda JW, Wortman JR, Richardson I, Sodickson AD. Multimodality Imaging, including Dual-Energy CT, in the Evaluation of Gallbladder Disease. Radiographics 2018; 38:75-89. [DOI: 10.1148/rg.2018170076] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Lisa Ratanaprasatporn
- From the Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis St, Boston, MA 02115
| | - Jennifer W. Uyeda
- From the Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis St, Boston, MA 02115
| | - Jeremy R. Wortman
- From the Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis St, Boston, MA 02115
| | - Ian Richardson
- From the Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis St, Boston, MA 02115
| | - Aaron D. Sodickson
- From the Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis St, Boston, MA 02115
| |
Collapse
|
35
|
George E, Wortman JR, Fulwadhva UP, Uyeda JW, Sodickson AD. Dual energy CT applications in pancreatic pathologies. Br J Radiol 2017; 90:20170411. [PMID: 28936888 PMCID: PMC6047640 DOI: 10.1259/bjr.20170411] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 09/05/2017] [Accepted: 09/13/2017] [Indexed: 02/06/2023] Open
Abstract
Dual energy CT (DECT) is a technology that is gaining widespread acceptance, particularly for its abdominopelvic applications. Pancreatic pathologies are an ideal application for the many advantages offered by dual energy post-processing. This article reviews the current literature on dual energy CT pancreatic imaging, specifically in the evaluation of pancreatic adenocarcinoma, other solid and cystic pancreatic neoplasms, and pancreatitis. The advantages in characterization and quantification of enhancement, detection of subtle lesions, and potential reduction of imaging phases and contrast usage are reviewed. We also discuss directions for future research, and the ideal use of dual energy CT in routine clinical practice.
Collapse
Affiliation(s)
- Elizabeth George
- Department of Radiology, Division of Emergency Radiology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Jeremy R Wortman
- Department of Radiology, Division of Emergency Radiology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Urvi P Fulwadhva
- Department of Radiology, Division of Emergency Radiology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Jennifer W Uyeda
- Department of Radiology, Division of Emergency Radiology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Aaron D Sodickson
- Department of Radiology, Division of Emergency Radiology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
36
|
Making the invisible visible: improving conspicuity of noncalcified gallstones using dual-energy CT. Abdom Radiol (NY) 2017; 42:2933-2939. [PMID: 28660332 DOI: 10.1007/s00261-017-1229-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE To determine whether virtual monochromatic imaging (VMI) increases detectability of noncalcified gallstones on dual-energy CT (DECT) compared with conventional CT imaging. MATERIALS AND METHODS This retrospective IRB-approved, HIPAA-compliant study included consecutive patients who underwent DECT of the abdomen in the Emergency Department during a 30-month period (July 1, 2013-December 31, 2015), with a comparison US or MR within 1-year. 51 patients (36F, 15M; mean age 52 years) fulfilled the inclusion criteria. All DECT were acquired on a dual-source 128 × 2 slice scanner using either 80/Sn140 or 100/Sn140 kVp pairs. Source images at high and low kVp were used for DE post-processing with VMI. Within 3 mm reconstructed images, regions of interest of 0.5 cm2 were placed on noncalcified gallstones and bile to record hounsfield units (HU) at VMI energy levels ranging between 40 and 190 keV. RESULTS Noncalcified gallstones uniformly demonstrated lowest HU at 40 keV and increase at higher keV; the HU of bile varied at higher keV. Few of the noncalcified stones are visible at 70 keV (simulating a conventional 120 kVp scan), with measured contrast (bile-stone HU difference) <10 HU in 78%, 10-20 HU in 20%, and >20 HU in 2%. Contrast was maximal at 40 keV, where 100% demonstrated >20 HU difference from surrounding bile, 75% >44 HU difference, and 50% >60 HU difference. A paired t test demonstrated a significant difference (p < 0.0001) between this stone-bile contrast at 40 vs. 70 keV and 70 vs. 190 keV. CONCLUSION Low keV virtual monochromatic imaging increased conspicuity of noncalcified gallstones, improving their detectability.
Collapse
|
37
|
Punjabi GV. Multi-energy spectral CT: adding value in emergency body imaging. Emerg Radiol 2017; 25:197-204. [PMID: 29185082 DOI: 10.1007/s10140-017-1569-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 11/20/2017] [Indexed: 12/21/2022]
Abstract
Most vendors offer scanners capable of dual- or multi-energy computed tomography (CT) imaging. Advantages of multi-energy CT scanning include superior tissue characterization, detection of subtle iodine uptake differences, and opportunities to reduce contrast dose. However, utilization of this technology in the emergency department (ED) remains low. The purpose of this pictorial essay is to illustrate the value of multi-energy CT scanning in emergency body imaging.
Collapse
Affiliation(s)
- Gopal V Punjabi
- Hennepin County Medical Center, 701, Park Ave, Minneapolis, MN, 55455, USA.
| |
Collapse
|
38
|
Gore RM, Pickhardt PJ, Mortele KJ, Fishman EK, Horowitz JM, Fimmel CJ, Talamonti MS, Berland LL, Pandharipande PV. Management of Incidental Liver Lesions on CT: A White Paper of the ACR Incidental Findings Committee. J Am Coll Radiol 2017; 14:1429-1437. [DOI: 10.1016/j.jacr.2017.07.018] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 07/19/2017] [Indexed: 02/06/2023]
|
39
|
Borhani AA, Kulzer M, Iranpour N, Ghodadra A, Sparrow M, Furlan A, Tublin ME. Comparison of true unenhanced and virtual unenhanced (VUE) attenuation values in abdominopelvic single-source rapid kilovoltage-switching spectral CT. Abdom Radiol (NY) 2017; 42:710-717. [PMID: 27864600 DOI: 10.1007/s00261-016-0991-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVE To assess the agreement between the true non-contrast (TNC) attenuation values of intra-abdominal structures and attenuation values obtained on virtual-unenhanced (VUE) images based on rapid kVp-switching dual-energy CT. The effects of contrast phase and patient characteristics (e.g., BMI, hematocrit, hemoglobin content) on VUE values were also investigated. METHODS Ninety four patients who underwent triphasic abdominal CT (liver mass protocol, n = 47; pancreas mass protocol, n = 47) between August 2014 and May 2015 were retrospectively reviewed. Unenhanced series was performed using conventional single-energy mode at 120 kVp. Late arterial and venous phase post-contrast series were obtained utilizing rapid kVp-switching dual-energy CT technique. VUE images were processed off of arterial (VUE-art) and venous (VUE-ven) phase series. Attenuation values of liver, pancreas, kidneys, adrenal glands, muscle, subcutaneous fat, aorta, IVC, and main portal vein were recorded on TNC and VUE sets of images. Attenuation values were compared using univariate linear regression and Student two-tailed paired t test. RESULTS There was excellent correlation between TNC, VUE-art, and VUE-ven attenuation values across all organs (p < 0.0001). Paired Student t test, however, showed significant difference between TNC and VUE-art attenuation of kidneys, right adrenal gland, paraspinal muscle, and aorta. There was also significant difference between TNC and VUE-ven attenuation of left kidney. Percentage of cases which had >10 HU difference between VUE and TNC for an individual was calculated which ranged between 13% (right kidney) and 42% (right adrenal gland). CONCLUSION Although the correlation between VUE and TNC attenuation values was excellent and mean difference between TNC and VUE attenuation values was negligible (ranging between -5.94 HU for paraspinal muscles to 6.2 HU in aorta), intra-patient analysis showed a considerable number of cases which had >10 HU difference between VUE and TNC. VUE-ven generally offered a better approximation of TNC values. Further optimization of post-processing algorithms might be necessary before complete replacement of TNC with VUE images.
Collapse
Affiliation(s)
- Amir A Borhani
- Division of Abdominal Imaging, University of Pittsburgh School of Medicine, UPMC Presbyterian, Radiology Suite 200 East Wing, 200 Lothrop Street, Pittsburgh, PA, 15213, USA.
| | - Matthew Kulzer
- Department of Radiology, University of Pittsburgh Medical Center, UPMC Presbyterian, 200 Lothrop Street, Pittsburgh, PA, 15213, USA
| | - Negaur Iranpour
- Department of Radiology, University of Pittsburgh Medical Center, UPMC Presbyterian, 200 Lothrop Street, Pittsburgh, PA, 15213, USA
| | - Anish Ghodadra
- Department of Radiology, University of Pittsburgh Medical Center, UPMC Presbyterian, 200 Lothrop Street, Pittsburgh, PA, 15213, USA
| | - Mark Sparrow
- Department of Radiology, University of Pittsburgh Medical Center, UPMC Presbyterian, 200 Lothrop Street, Pittsburgh, PA, 15213, USA
| | - Alessandro Furlan
- Division of Abdominal Imaging, University of Pittsburgh School of Medicine, UPMC Presbyterian, Radiology Suite 200 East Wing, 200 Lothrop Street, Pittsburgh, PA, 15213, USA
| | - Mitchell E Tublin
- Division of Abdominal Imaging, University of Pittsburgh School of Medicine, UPMC Presbyterian, Radiology Suite 200 East Wing, 200 Lothrop Street, Pittsburgh, PA, 15213, USA
| |
Collapse
|