1
|
Li C, Luo Y, Huang L, Bin Y, Liang J, Zhao S. A hydrogen sulfide-activated Pd@Cu 2O nanoprobe for NIR-II photoacoustic imaging of colon cancer and photothermal-enhanced ferroptosis therapy. Biosens Bioelectron 2025; 268:116906. [PMID: 39504882 DOI: 10.1016/j.bios.2024.116906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 10/24/2024] [Accepted: 11/01/2024] [Indexed: 11/08/2024]
Abstract
Imaging guided cancer therapy is a comprehensive strategy that combines the diagnosis and treatment to eradicate tumors. Ferroptosis is a distinct programmed cell death and holds great potential in cancer therapy. In this study, a hydrogen sulfide (H2S)-activated PEGylated Pd@Cu2O core-shell nanocomposite (termed PCO) that in situ transformed into Pd@Cu2-xS (termed PCS) at colorectal tumor tissues is developed for colorectal cancer photoacoustic (PA) imaging and photothermal-enhanced ferroptosis therapy in NIR-II window. The Cu+ on the surface of PCS can catalyze the Fenton-like reaction with overexpressed H2O2 in the colon tumor tissues, yielding hydroxyl radicals (·OH) and Cu2+. Moreover, the PCS accelerates the Fenton-like reaction to generate more ·OH. The PCS displays dual peroxidase- and glutathione oxidase-mimic enzymatic activity in weakly acidic tumor microenvironment (TME). Additionally, the glutathione depletion by Cu2+ results in the production of Cu+ and glutathione disulfide as well as the down-regulation of glutathione peroxidase 4. The interaction of polyunsaturated fatty acids with ·OH induces the up-regulation of lipid peroxides on cellular membrane, thereby causing ferroptosis. Hence, this study has developed the H2S-activated PCO that in situ transforms into PCS, as a novel colon cancer diagnosis-treatment nanoprobe, for PA imaging guided precise diagnosis and efficient therapy of colon cancer.
Collapse
Affiliation(s)
- Caiying Li
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China
| | - Yanni Luo
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China
| | - Lixian Huang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China
| | - Yidong Bin
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China
| | - Jinzhe Liang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, PR China.
| | - Shulin Zhao
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China.
| |
Collapse
|
2
|
Jiang C, Chen Y, Li X, Li Y. An intelligent NIR-IIb-responsive lanthanide@metal-organic framework core-shell nanocatalyst for combined deep-tumor therapy. J Mater Chem B 2024; 12:8626-8632. [PMID: 39189804 DOI: 10.1039/d4tb01321b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
The ground-breaking combination of photodynamic therapy (PDT) and photothermal therapy (PTT) has attracted much attention in medical fields as an effective method for fighting cancer. However, evidence suggests that the therapy efficiency is still limited by shallow light penetration depth and poor photosensitizer loading capacity. Herein, we constructed an upconversion nanoparticle@Zr-based metal-organic framework@indocyanine green molecule (UCNPs@ZrMOF@ICG) nanocomposite to integrate 1532 nm light-triggered PDT and 808 nm light-mediated PTT. NaLnF4 nanoparticles are designed to emit upconversion luminescence (UCL) under 1532 nm laser excitation, which is consistent with the absorption spectra of the ZrMOF. Benefiting from the excellent energy transfer efficiency, the ZrMOF can absorb visible light from the UCNPs and then catalyze O2 into 1O2 for deep tissue PDT. To achieve combination therapy, the clinically approved ICG nanocomposite was introduced as a photothermal agent for PTT under 808 nm laser irradiation, and the photothermal conversion efficiency was calculated to be ∼28%. The designed nanosystems facilitate efficient deep-tissue tumor treatment by integrating PDT with PTT. Ultimately, this study creates a multifunctional nanocomposite by combining 1532 nm light-triggered deep tissue PDT and near-infrared (NIR) light-driven PTT for personalized cancer therapy.
Collapse
Affiliation(s)
- Chaoqun Jiang
- School of Physics and Electronic Sciences, Hunan Provincial Key Laboratory of Flexible Electronic Materials Genome Engineering, Changsha University of Science and Technology, Changsha 410114, People's Republic of China
| | - Yu Chen
- School of Physics and Electronic Sciences, Hunan Provincial Key Laboratory of Flexible Electronic Materials Genome Engineering, Changsha University of Science and Technology, Changsha 410114, People's Republic of China
| | - Xiaolong Li
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education & School of Chemistry and Materials Science of Shanxi Normal University, Taiyuan 030032, China.
| | - Youbin Li
- School of Physics and Electronic Sciences, Hunan Provincial Key Laboratory of Flexible Electronic Materials Genome Engineering, Changsha University of Science and Technology, Changsha 410114, People's Republic of China
| |
Collapse
|
3
|
Gong Q, Zhang X, Liang A, Huang S, Tian G, Yuan M, Ke Q, Cai Y, Yan B, Wang J, Wang J. Proteomic screening of potential N-glycoprotein biomarkers for colorectal cancer by TMT labeling combined with LC-MS/MS. Clin Chim Acta 2021; 521:122-130. [PMID: 34242638 DOI: 10.1016/j.cca.2021.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 06/29/2021] [Accepted: 07/02/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND AIMS Colorectal cancer (CRC) is part of the most widespread malignant tumors. At present, colonoscopy is a routine procedure in the diagnosis of CRC, but it is traumatic. Carcinoembryonic antigen, CA199, and CA242 are common serum markers for the diagnosis of CRC; however, they do not demonstrate satisfactory specificity and sensitivity for the diagnosis of CRC. Hence, Now it is necessary to screen many valuable serum biomarkers for CRC, proteomics methods have been used to investigate PTMs such as glycosylation of proteins with prominent roles in the occurrence and development of tumors. METHODS This study screens altering glycosylated proteins of CRC tissues using LC-MS/MS quantitative glycoproteomics, and then these candidate biomarkers for CRC are further validated by serum glycoproteomics. RESULTS The results of glycoproteomics in CRC tissues show that the abundance of 160 and 79 glycerogelatin proteins was obviously upregulated and downregulated compared with their adjacent tissues(P < 0.05). Bioinformatics analysis suggests that these molecules are mainly involved in many biological processes, including skeletal system development, collagen fibril organization, and receptor-mediated endocytosis. Results of serum glycoproteomics show that the changing trends of 2 protein glycosylation were consistent with MS results of CRC tissues, including ICAM1and APMAP. Areas under the ROC curve (AUC) results confirm that ICAM1and APMAP as early immune diagnosis markers of CRC has excellent sensitivity and specificity. CONCLUSION The ICAM1 and APMAP may serve as a potential tumor marker for CRC.
Collapse
Affiliation(s)
- Qian Gong
- Department of Clinical Laboratory, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai 201700, PR China
| | - Xiuming Zhang
- Medical Laboratory of Shenzhen Luohu People's Hospital, Shenzhen, PR China
| | - Aifeng Liang
- Department of Clinical Laboratory, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai 201700, PR China
| | - Sinian Huang
- Department of Clinical Laboratory, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai 201700, PR China
| | - Guangang Tian
- Department of Clinical Laboratory, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai 201700, PR China
| | - Mengjiao Yuan
- Department of Clinical Laboratory, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai 201700, PR China
| | - Qing Ke
- Department of Clinical Laboratory, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai 201700, PR China
| | - Yijun Cai
- Department of Clinical Laboratory, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai 201700, PR China
| | - Bin Yan
- Department of Clinical Laboratory, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai 201700, PR China
| | - Jin Wang
- Department of Clinical Laboratory, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai 201700, PR China; Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, PR China.
| | - Jinjin Wang
- Department of Clinical Laboratory, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai 201700, PR China.
| |
Collapse
|
4
|
Zhu Y, Chen C, Wu Q, Yang G, Liu Z, Hao E, Cao H, Gao Y, Zhang W. Single-wavelength phototheranostics for colon cancer via the thiolytic reaction. NANOSCALE 2020; 12:12165-12171. [PMID: 32490457 DOI: 10.1039/d0nr02393k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
It's a huge challenge to develop effective nanosystems that combine the capabilities of diagnoses and therapies together for colon cancer in the clinic. Herein, we constructed a far-red absorbing phototheranostic nanosystem (FR-H2S) based on the thiolytic reaction of a dinitrophenyl modified phototheranostic prodrug and over-expressed H2S in colon cancer sites for precise imaging-guided phototherapy. FR-H2S with a BODIPY core not only could work as an imaging probe for diagnosis but also act as a phototherapeutic agent for cancer treatment under a single FR laser source (650 nm). FR-H2S exhibited a gradually enhanced fluorescence emission for precise diagnosis of H2S-rich colon tumor sites. After entering tumor cells, FR-H2S could generate abundant 1O2 and heat for phototherapies timely by using the same laser source (650 nm). We believe that this precise imaging-guided phototheranostic nanosystem could provide a promising approach to colon cancer with minimal damage.
Collapse
Affiliation(s)
- Yucheng Zhu
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Chao Chen
- State Key Laboratory of Bioreactor Engineering Center, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Qinghua Wu
- Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule Based Materials (State Key Laboratory Cultivation Base) and School of Chemistry and Materials Science, Anhui Normal University, No. 1 East Beijing Road, Wuhu, 241000, Anhui, China
| | - Guoliang Yang
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Zhiyong Liu
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Erhong Hao
- Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule Based Materials (State Key Laboratory Cultivation Base) and School of Chemistry and Materials Science, Anhui Normal University, No. 1 East Beijing Road, Wuhu, 241000, Anhui, China
| | - Hongliang Cao
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Yun Gao
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Weian Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| |
Collapse
|
5
|
Du Z, Tang CH, Li LJ, Kang L, Zhao J, Jin L, Wang CQ, Su CM. Angiopoietin-2 gene polymorphisms are biomarkers for the development and progression of colorectal cancer in Han Chinese. Int J Med Sci 2020; 17:97-102. [PMID: 31929743 PMCID: PMC6945552 DOI: 10.7150/ijms.37675] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 10/29/2019] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common cancers in Han Chinese and is characterized by low rates of early diagnosis and poor survival rates. Angiopoietin-2 (Ang2), an endothelial tyrosine kinase, is involved in CRC progression, but little is known about the association between single nucleotide polymorphisms (SNPs) and diagnosis or prognosis of CRC. This study reports on the association between 5 SNPs of the Angpt2 gene (rs2442598, rs734701, rs1823375, 11137037, and rs12674822) and CRC susceptibility as well as clinical outcomes in 379 patients with CRC and in 1,043 cancer-free healthy controls. Carriers of the CG allele at rs1823375 and those with the GT+TT allele of the variant rs12674822 were at greater risk of CRC than their respective wild-type counterparts. Moreover, carriers of the GT or GT+TT allele in rs12674822 were significantly more likely to have tumor involvement in both the colon and rectum compared with wild-type (GG) carriers, while 5-year progression-free survival was also significantly worse in those carrying the GT+TT allele in rs12674822 compared with wild-type carriers. Our study is the first to describe correlations between Angpt2 polymorphisms and CRC development and progression in people of Chinese Han ethnicity.
Collapse
Affiliation(s)
- Zhang Du
- Department of Anorectal Surgery, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, China
| | - Chih-Hsin Tang
- School of Medicine, China Medical University, Taichung, Taiwan.,Chinese Medicine Research Center, China Medical University, Taichung, Taiwan.,Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan
| | - Li-Jun Li
- Department of Anorectal Surgery, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, China
| | - Le Kang
- Department of Biomedical Sciences Laboratory, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, China
| | - Jin Zhao
- Department of Biomedical Sciences Laboratory, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, China
| | - Lulu Jin
- Department of Biomedical Sciences Laboratory, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, China
| | - Chao-Qun Wang
- Department of Pathology, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, China
| | - Chen-Ming Su
- Department of Sports Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
6
|
Deng Z, Jiang M, Li Y, Liu H, Zeng S, Hao J. Endogenous H 2S-Triggered In Situ Synthesis of NIR-II-Emitting Nanoprobe for In Vivo Intelligently Lighting Up Colorectal Cancer. iScience 2019; 17:217-224. [PMID: 31301632 PMCID: PMC6625970 DOI: 10.1016/j.isci.2019.06.034] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/28/2019] [Accepted: 06/22/2019] [Indexed: 12/30/2022] Open
Abstract
Overexpression of endogenous H2S is one of the key characteristic in colon cancer. However, developing endogenous H2S-activated optical probes for specific diagnosis of colorectal cancer is rarely explored. Herein, an in situ H2S-activatable second near-infrared (NIR-II)-emitting nanoprobe based on Ag-chicken egg white (Ag-CEW) complex for intelligently lighting up colorectal cancer was explored. The designed Ag-CEW complex holds efficient NIR-II emission of 1,000-1,400 nm via endogenous H2S-induced in situ chemical reaction to form Ag2S quantum dots (QDs). After reaction, the designed Ag-CEW complex with high photo-stability and biocompatibility was successfully used for NIR-II imaging-guided specific visualization and precise location of colorectal cancer via endogenous H2S activation. Therefore, our findings provide a new route for specifically targeting diagnosis of colon cancer based on the in situ-activatable NIR-II probe.
Collapse
Affiliation(s)
- Zhiming Deng
- School of Physics and Electronics and Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of the Ministry of Education, Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha, Hunan 410081, China
| | - Mingyang Jiang
- School of Physics and Electronics and Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of the Ministry of Education, Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha, Hunan 410081, China
| | - Youbin Li
- School of Physics and Electronics and Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of the Ministry of Education, Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha, Hunan 410081, China
| | - Hongrong Liu
- School of Physics and Electronics and Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of the Ministry of Education, Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha, Hunan 410081, China
| | - Songjun Zeng
- School of Physics and Electronics and Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of the Ministry of Education, Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha, Hunan 410081, China.
| | - Jianhua Hao
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, China.
| |
Collapse
|
7
|
Li Y, An L, Lin J, Tian Q, Yang S. Smart nanomedicine agents for cancer, triggered by pH, glutathione, H 2O 2, or H 2S. Int J Nanomedicine 2019; 14:5729-5749. [PMID: 31440046 PMCID: PMC6664425 DOI: 10.2147/ijn.s210116] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 05/23/2019] [Indexed: 12/11/2022] Open
Abstract
Effective tumor diagnosis and therapy have always been a significant but challenging issue. Although nanomedicine has shown great potential for improving the outcomes of tumor diagnosis and therapy, the nonspecial targeted distribution of nanomedicine agents in the whole body causes a low diagnosis signal-to-noise ratio and a potential risk of systemic toxicity. Recently, the development of smart nanomedicine agents with diagnosis and therapy functions that can only be activated by the tumor microenvironment (TME) is regarded as an effective strategy to improve the theranostic sensitivity and selectivity, as well as reduce the potential side effects during treatment. This article will introduce and summarize the latest achievements in the design and fabrication of TME-responsive smart nanomedicine agents, and highlight their prospects for enhancing tumor diagnosis and therapy.
Collapse
Affiliation(s)
- Yaping Li
- Key Laboratory of Resource Chemistry of the Ministry of Education
- The Shanghai Key Laboratory of Rare Earth Functional Materials
- The Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Shanghai Normal University, Shanghai200234, People's Republic of China
| | - Lu An
- Key Laboratory of Resource Chemistry of the Ministry of Education
- The Shanghai Key Laboratory of Rare Earth Functional Materials
- The Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Shanghai Normal University, Shanghai200234, People's Republic of China
| | - Jiaomin Lin
- Key Laboratory of Resource Chemistry of the Ministry of Education
- The Shanghai Key Laboratory of Rare Earth Functional Materials
- The Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Shanghai Normal University, Shanghai200234, People's Republic of China
| | - Qiwei Tian
- Key Laboratory of Resource Chemistry of the Ministry of Education
- The Shanghai Key Laboratory of Rare Earth Functional Materials
- The Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Shanghai Normal University, Shanghai200234, People's Republic of China
| | - Shiping Yang
- Key Laboratory of Resource Chemistry of the Ministry of Education
- The Shanghai Key Laboratory of Rare Earth Functional Materials
- The Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Shanghai Normal University, Shanghai200234, People's Republic of China
| |
Collapse
|
8
|
An L, Wang X, Rui X, Lin J, Yang H, Tian Q, Tao C, Yang S. The In Situ Sulfidation of Cu2
O by Endogenous H2
S for Colon Cancer Theranostics. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201810082] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Lu An
- The Key Laboratory of Resource Chemistry of Ministry of Education; Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors; Shanghai Normal University; Shanghai 200234 China
| | - Xiaodong Wang
- The Key Laboratory of Resource Chemistry of Ministry of Education; Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors; Shanghai Normal University; Shanghai 200234 China
| | - Xichuan Rui
- The Key Laboratory of Resource Chemistry of Ministry of Education; Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors; Shanghai Normal University; Shanghai 200234 China
| | - Jiaomin Lin
- The Key Laboratory of Resource Chemistry of Ministry of Education; Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors; Shanghai Normal University; Shanghai 200234 China
| | - Hong Yang
- The Key Laboratory of Resource Chemistry of Ministry of Education; Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors; Shanghai Normal University; Shanghai 200234 China
| | - Qiwei Tian
- The Key Laboratory of Resource Chemistry of Ministry of Education; Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors; Shanghai Normal University; Shanghai 200234 China
| | - Cheng Tao
- The Key Laboratory of Resource Chemistry of Ministry of Education; Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors; Shanghai Normal University; Shanghai 200234 China
| | - Shiping Yang
- The Key Laboratory of Resource Chemistry of Ministry of Education; Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors; Shanghai Normal University; Shanghai 200234 China
| |
Collapse
|
9
|
An L, Wang X, Rui X, Lin J, Yang H, Tian Q, Tao C, Yang S. The In Situ Sulfidation of Cu2
O by Endogenous H2
S for Colon Cancer Theranostics. Angew Chem Int Ed Engl 2018; 57:15782-15786. [DOI: 10.1002/anie.201810082] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/07/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Lu An
- The Key Laboratory of Resource Chemistry of Ministry of Education; Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors; Shanghai Normal University; Shanghai 200234 China
| | - Xiaodong Wang
- The Key Laboratory of Resource Chemistry of Ministry of Education; Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors; Shanghai Normal University; Shanghai 200234 China
| | - Xichuan Rui
- The Key Laboratory of Resource Chemistry of Ministry of Education; Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors; Shanghai Normal University; Shanghai 200234 China
| | - Jiaomin Lin
- The Key Laboratory of Resource Chemistry of Ministry of Education; Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors; Shanghai Normal University; Shanghai 200234 China
| | - Hong Yang
- The Key Laboratory of Resource Chemistry of Ministry of Education; Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors; Shanghai Normal University; Shanghai 200234 China
| | - Qiwei Tian
- The Key Laboratory of Resource Chemistry of Ministry of Education; Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors; Shanghai Normal University; Shanghai 200234 China
| | - Cheng Tao
- The Key Laboratory of Resource Chemistry of Ministry of Education; Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors; Shanghai Normal University; Shanghai 200234 China
| | - Shiping Yang
- The Key Laboratory of Resource Chemistry of Ministry of Education; Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors; Shanghai Normal University; Shanghai 200234 China
| |
Collapse
|
10
|
Pickhardt PJ, Pooler BD, Kim DH, Hassan C, Matkowskyj KA, Halberg RB. The Natural History of Colorectal Polyps: Overview of Predictive Static and Dynamic Features. Gastroenterol Clin North Am 2018; 47:515-536. [PMID: 30115435 PMCID: PMC6100796 DOI: 10.1016/j.gtc.2018.04.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
For decades, colorectal screening strategies have been largely driven by static features, particularly polyp size. Although cross-sectional features of polyp size, morphology, and location are important determinants of clinical relevance before histology, they lack any dynamic information on polyp growth rates. Computed tomography colonography allows for in vivo surveillance of colorectal polyps, providing volumetric growth rates that are providing new insights into tumorigenesis. In this article, existing cross-sectional and longitudinal data on colorectal polyps are reviewed, with an emphasis on how these features may affect clinical relevance and patient management.
Collapse
Affiliation(s)
| | | | | | - Cesare Hassan
- Digestive Endoscopy Unit, Nuovo Regina Margherita Hospital, Rome, Italy
| | | | | |
Collapse
|
11
|
Propofol in Screening Colonoscopy: Point of Strength or Weakness? AJR Am J Roentgenol 2017; 209:W407. [PMID: 29161147 DOI: 10.2214/ajr.17.18732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
12
|
|