1
|
Marth T, Kajdi GW, Stern C, Sutter R. Implementing tin-prefiltration in routine clinical CT scans of the lower extremity: impact on radiation dose. Skeletal Radiol 2025:10.1007/s00256-025-04897-3. [PMID: 40011260 DOI: 10.1007/s00256-025-04897-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/12/2025] [Accepted: 02/13/2025] [Indexed: 02/28/2025]
Abstract
OBJECTIVES Several studies have demonstrated the potential of tin-prefiltration to reduce radiation dose while maintaining diagnostic image quality for musculoskeletal imaging. Still, no study has reported data on the impact of tin-prefiltration on radiation dose reduction for clinical routine scanning. MATERIALS AND METHODS Retrospective inclusion of 300 clinically indicated CT scans of the pelvis, knee, and ankle before January 2020 (without tin filter) and after December 2020 (with tin filter). For each joint, 50 examinations with tin-prefiltration and 50 examinations without tin-prefiltration were selected. Dose parameters were extracted, calculated, and compared. Subjective and quantitative parameters for image quality were assessed. RESULTS The CTDIvol, DLP, and effective dose were reduced significantly in all tin-prefiltered examinations compared to the non-tin-prefiltered examinations (p < 0.001): CTDIvol was 65% lower in the pelvis, 73% lower in the knee, and 54% lower in the ankle. This reduced the effective dose of 61%, 71%, and 60%, respectively. In absolute numbers, the reduction of the median effective dose delivered in a single CT scan of the pelvis was - 2.29 mSv, - 0.15 mSv for the knee, and - 0.03 mSv for the ankle. No difference in diagnostic image quality, depiction of bone anatomy and soft tissues, and image artifacts was observed (p > 0.05). Subjective and objective image noise was higher in tin-prefiltered pelvis CT (p < 0.001). CONCLUSION The implementation of tin-prefiltration in clinical routine scan protocols significantly reduced the effective radiation dose for unenhanced CT scans of the lower extremities between 60 and 70%.
Collapse
Affiliation(s)
- Thomas Marth
- Swiss Center for Musculoskeletal Imaging, Balgrist Campus AG, Zurich, Switzerland.
- Department of Radiology, Balgrist University Hospital, Zurich, Switzerland.
- Medical Faculty, University of Zurich, Zurich, Switzerland.
| | - Georg Wilhelm Kajdi
- Department of Radiology, Balgrist University Hospital, Zurich, Switzerland
- Medical Faculty, University of Zurich, Zurich, Switzerland
| | - Christoph Stern
- Department of Radiology, Balgrist University Hospital, Zurich, Switzerland
| | - Reto Sutter
- Department of Radiology, Balgrist University Hospital, Zurich, Switzerland
- Medical Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
2
|
Wong J, Kutschera P, Lau KK. Spectral Shaping Computed Tomography Applications. J Comput Assist Tomogr 2025:00004728-990000000-00426. [PMID: 40008966 DOI: 10.1097/rct.0000000000001738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/14/2025] [Indexed: 02/27/2025]
Abstract
Spectral shaping (also known as spectral filtration) has been utilized in some of the latest computed tomography (CT) systems. This technique involves using tin (Sn) or silver (Ag) filters, which selectively absorb low-energy photons. This review aims to demonstrate the utility of spectral shaping across a wide range of protocols and clinical situations. Spectral-shaped CT protocols using tin filters allow for the acquisition of diagnostic images and greatly reduce the radiation dose, metal artifacts, and photon starvation. These features make spectral shaping suitable for various clinical situations in diagnostic and interventional CT imaging.
Collapse
Affiliation(s)
| | - Peter Kutschera
- Monash Imaging, Monash Health, Melbourne
- Faculty of Medicine, Nursing & Health Sciences, Monash University, Melbourne, VIC, Australia
| | - Kenneth K Lau
- Monash Imaging, Monash Health, Melbourne
- Faculty of Medicine, Nursing & Health Sciences, Monash University, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, VIC, Australia
| |
Collapse
|
3
|
Bebbington NA, Østergård LL, Christensen KB, Holdgaard PC. CT radiation dose reduction with tin filter for localisation/characterisation level image quality in PET-CT: a phantom study. EJNMMI Phys 2024; 11:100. [PMID: 39585489 PMCID: PMC11589033 DOI: 10.1186/s40658-024-00703-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 11/06/2024] [Indexed: 11/26/2024] Open
Abstract
BACKGROUND The tin filter has allowed radiation dose reduction in some standalone diagnostic computed tomography (CT) applications. Yet, 'low-dose' CT scans are commonly used in positron emission tomography (PET)-CT for lesion localisation/characterisation (L/C), with higher noise tolerated. Thus, dose reductions permissible with the tin filter at this image quality level may differ. The aim was to determine the level of CT dose reduction permitted with the tin filter in PET-CT, for comparable image quality to the clinical reference standard (CRS) L/C CT images acquired with standard filtration. MATERIALS AND METHODS A whole-body CT phantom was scanned with standard filtration in CRS protocols, using 120 kV with 20mAs-ref for bone L/C (used in 18F-Sodium Fluoride (NaF) PET-CT) and 40mAs-ref for soft tissue L/C (used in 18F-Fluorodeoxyglucose (FDG) PET-CT), followed by tin filter scans at 100 kV (Sn100kV) and 140 kV (Sn140kV) with a range of mAs settings. For each scan, effective dose (ED) in an equivalent-sized patient was calculated, and image quality determined in 5 different tissues through quantitative (contrast-to-noise ratio) and qualitative (visual) analyses. The relative dose reductions which could be achieved with the tin filter for comparable image quality to CRS images were calculated. RESULTS Quantitative analysis demonstrated dose savings of 50-76% in bone, 27-51% in lung and 8-61% in soft tissue with use of the tin filter at Sn100kV. Qualitative analysis demonstrated dose reductions using Sn100kV in general agreement with the dose reductions indicated by quantitative analysis. Overall, CT dose reductions of around 85% were indicated for NaF bone PET-CT, allowing whole-body CT at just 0.2mSv ED, and a 30-40% CT dose reduction for FDG PET-CT using Sn100kV (1.7-2.0mSv), providing comparable image quality to current CRS images with standard filtration. Sn140kV demonstrated limited value in CT dose reduction. CONCLUSIONS Large CT dose reductions can be made using the tin filter at Sn100kV, when imaging bone, lung and soft tissue at L/C level CT image quality in PET-CT. As well as reducing the risk of inducing a cancer in later life, such dose reductions may also impact PET-CT practice, such as justifying cross-sectional over planar imaging or justifying PET-CT in younger patients.
Collapse
Affiliation(s)
| | - Lone Lange Østergård
- Department of Nuclear Medicine, Lillebaelt University Hospital, Beriderbakken 4, Vejle, 7100, Denmark
| | - Kenneth Boye Christensen
- Department of Nuclear Medicine, Lillebaelt University Hospital, Beriderbakken 4, Vejle, 7100, Denmark
| | - Paw Christian Holdgaard
- Department of Nuclear Medicine, Lillebaelt University Hospital, Beriderbakken 4, Vejle, 7100, Denmark
| |
Collapse
|
4
|
Sayed IS, Mohd Yusof MI. Techniques and Strategies to Minimize Radiation Exposure in Pediatric Computed Tomography (CT) Abdominal Examinations: A Review. Cureus 2024; 16:e67494. [PMID: 39310635 PMCID: PMC11416189 DOI: 10.7759/cureus.67494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2024] [Indexed: 09/25/2024] Open
Abstract
As children are more vulnerable to radiation-induced cancers and have longer life expectancies, it is essential to implement strict radiation protection measures in pediatric imaging. This study aimed to review radiation dose-minimizing measures in pediatric abdominal computed tomography (CT) examinations. A systematic search across various databases, including Web of Science, PubMed, SpringerLink, ScienceDirect, and Google Scholar, yielded a total of 7,314 articles. The search used keywords that aligned with the objectives of the study. This study included 77 publications after applying the criteria for inclusion and exclusion. We carefully reviewed these selected articles for compliance with the inclusion criteria and excluded them if they did not meet the specified criteria. Only 12 articles fulfilled the strict criteria. An in-depth review of 12 selected articles demonstrated the radiation dose reduction techniques and strategies, which include prefiltering and post-processing algorithms, careful adjustment of exposure parameters such as tube voltage (kVp) and current (mAs), and the establishment of diagnostic reference levels (DRL). Reduction of radiation exposure in pediatric CT imaging demands multifaceted approaches. To reduce the ionizing radiation dose while still obtaining high-quality diagnostic images, healthcare practitioners should adhere to DRL, adjust exposure factors, implement prefiltration, employ AI, and use post-processing algorithms.
Collapse
Affiliation(s)
- Inayatullah Shah Sayed
- Department of Diagnostic Imaging and Radiotherapy, Kulliyyah of Allied Health Sciences, International Islamic University Malaysia, Kuantan, MYS
| | - Muhammad Irfan Mohd Yusof
- Department of Diagnostic Imaging and Radiotherapy, Kulliyyah of Allied Health Sciences, International Islamic University Malaysia, Kuantan, MYS
| |
Collapse
|
5
|
Huflage H, Kunz AS, Patzer TS, Pichlmeier S, Westhofen T, Gruschwitz P, Heidenreich JF, Lennartz S, Bley TA, Grunz JP. Submillisievert Abdominal Photon-Counting CT versus Energy-integrating Detector CT for Urinary Calculi Detection: Impact on Diagnostic Confidence. Radiology 2024; 312:e232453. [PMID: 39078296 DOI: 10.1148/radiol.232453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Background Contrast-unenhanced abdominal CT is the imaging standard for urinary calculi detection; however, studies comparing photon-counting detector (PCD) CT and energy-integrating detector (EID) CT dose-reduction potentials are lacking. Purpose To compare the radiation dose and image quality of optimized EID CT with those of an experimental PCD CT scan protocol including tin prefiltration in patients suspected of having urinary calculi. Materials and Methods This retrospective single-center study included patients who underwent unenhanced abdominal PCD CT or EID CT for suspected urinary caliculi between February 2022 and March 2023. Signal and noise measurements were performed at three anatomic levels (kidney, psoas, and obturator muscle). Nephrolithiasis and/or urolithiasis presence was independently assessed by three radiologists, and diagnostic confidence was recorded on a five-point scale (1, little to no confidence; 5, complete confidence). Reader agreement was determined by calculating Krippendorff α. Results A total of 507 patients (mean age, 51.7 years ± 17.4 [SD]; 317 male patients) were included (PCD CT group, 229 patients; EID CT group, 278 patients). Readers 1, 2, and 3 detected nephrolithiasis in 129, 127, and 129 patients and 94, 94, and 94 patients, whereas the readers detected urolithiasis in 113, 114, and 114 patients and 152, 153, and 152 patients in the PCD CT and EID CT groups, respectively. Regardless of protocol (PCD CT or EID CT) or calculus localization, near perfect interreader agreement was found (α ≥ 0.99; 95% CI: 0.99, 1). There was no evidence of a difference in reader confidence between PCD CT and EID CT (median confidence, 5; IQR, 5-5; P ≥ .57). The effective doses were 0.79 mSv (IQR, 0.63-0.99 mSv) and 1.39 mSv (IQR, 1.01-1.87 mSv) for PCD CT and EID CT, respectively. Despite the lower radiation exposure, the signal-to-noise ratios at the kidney, psoas, and obturator levels were 30%, 23%, and 17% higher, respectively, in the PCD CT group (P < .001). Conclusion Submillisievert abdominal PCD CT provided high-quality images for the diagnosis of urinary calculi; radiation exposure was reduced by 44% with a higher signal-to-noise ratio than with EID CT and with no evidence of a difference in reader confidence. Published under a CC BY 4.0 license. Supplemental material is available for this article. See also the editorial by Nezami and Malayeri in this issue.
Collapse
Affiliation(s)
- Henner Huflage
- From the Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Strasse 6, 97080 Würzburg, Germany (H.H., A.S.K., T.S.P., S.P., P.G., J.F.H., T.A.B., J.P.G.); Department of Urology, Ludwig-Maximilians-University of Munich, Munich, Germany (T.W.); and Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, Cologne, Germany (S.L.)
| | - Andreas Steven Kunz
- From the Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Strasse 6, 97080 Würzburg, Germany (H.H., A.S.K., T.S.P., S.P., P.G., J.F.H., T.A.B., J.P.G.); Department of Urology, Ludwig-Maximilians-University of Munich, Munich, Germany (T.W.); and Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, Cologne, Germany (S.L.)
| | - Theresa Sophie Patzer
- From the Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Strasse 6, 97080 Würzburg, Germany (H.H., A.S.K., T.S.P., S.P., P.G., J.F.H., T.A.B., J.P.G.); Department of Urology, Ludwig-Maximilians-University of Munich, Munich, Germany (T.W.); and Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, Cologne, Germany (S.L.)
| | - Svenja Pichlmeier
- From the Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Strasse 6, 97080 Würzburg, Germany (H.H., A.S.K., T.S.P., S.P., P.G., J.F.H., T.A.B., J.P.G.); Department of Urology, Ludwig-Maximilians-University of Munich, Munich, Germany (T.W.); and Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, Cologne, Germany (S.L.)
| | - Thilo Westhofen
- From the Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Strasse 6, 97080 Würzburg, Germany (H.H., A.S.K., T.S.P., S.P., P.G., J.F.H., T.A.B., J.P.G.); Department of Urology, Ludwig-Maximilians-University of Munich, Munich, Germany (T.W.); and Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, Cologne, Germany (S.L.)
| | - Philipp Gruschwitz
- From the Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Strasse 6, 97080 Würzburg, Germany (H.H., A.S.K., T.S.P., S.P., P.G., J.F.H., T.A.B., J.P.G.); Department of Urology, Ludwig-Maximilians-University of Munich, Munich, Germany (T.W.); and Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, Cologne, Germany (S.L.)
| | - Julius Frederik Heidenreich
- From the Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Strasse 6, 97080 Würzburg, Germany (H.H., A.S.K., T.S.P., S.P., P.G., J.F.H., T.A.B., J.P.G.); Department of Urology, Ludwig-Maximilians-University of Munich, Munich, Germany (T.W.); and Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, Cologne, Germany (S.L.)
| | - Simon Lennartz
- From the Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Strasse 6, 97080 Würzburg, Germany (H.H., A.S.K., T.S.P., S.P., P.G., J.F.H., T.A.B., J.P.G.); Department of Urology, Ludwig-Maximilians-University of Munich, Munich, Germany (T.W.); and Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, Cologne, Germany (S.L.)
| | - Thorsten Alexander Bley
- From the Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Strasse 6, 97080 Würzburg, Germany (H.H., A.S.K., T.S.P., S.P., P.G., J.F.H., T.A.B., J.P.G.); Department of Urology, Ludwig-Maximilians-University of Munich, Munich, Germany (T.W.); and Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, Cologne, Germany (S.L.)
| | - Jan-Peter Grunz
- From the Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Strasse 6, 97080 Würzburg, Germany (H.H., A.S.K., T.S.P., S.P., P.G., J.F.H., T.A.B., J.P.G.); Department of Urology, Ludwig-Maximilians-University of Munich, Munich, Germany (T.W.); and Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, Cologne, Germany (S.L.)
| |
Collapse
|
6
|
Fukuda A, Ichikawa N, Hayashi T, Hirosawa A, Matsubara K. Half-value layer measurements using solid-state detectors and single-rotation technique with lead apertures in spiral computed tomography with and without a tin filter. Radiol Phys Technol 2024; 17:207-218. [PMID: 38127219 DOI: 10.1007/s12194-023-00767-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/08/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023]
Abstract
Solid-state detectors (SSDs) may be used along with a lead collimator for half-value layer (HVL) measurement using computed tomography (CT) with or without a tin filter. We aimed to compare HVL measurements obtained using three SSDs (AGMS-DM+ , X2 R/F sensor, and Black Piranha) with those obtained using the single-rotation technique with lead apertures (SRTLA). HVL measurements were performed using spiral CT at tube voltages of 70-140 kV without a tin filter and 100-140 kV (Sn 100-140 kV) with a tin filter in increments of 10 kV. For SRTLA, a 0.6-cc ionization chamber was suspended at the isocenter to measure the free-in-air kerma rate (K ˙ air ) values. Five apertures were made on the gantry cover using lead sheets, and four aluminum plates were placed on these apertures. HVLs in SRTLA were obtained fromK ˙ air decline curves. Subsequently, SSDs inserted into the lead collimator were placed on the gantry cover and used to measure HVLs. Maximum HVL differences of AGMS-DM+ , X2 R/F sensor, and Black Piranha with respect to SRTLA without/with a tin filter were - 0.09/0.6 (only two Sn 100-110 kV) mm, - 0.50/ - 0.6 mm, and - 0.17/(no data available) mm, respectively. These values were within the specification limit. SSDs inserted into the lead collimator could be used to measure HVL using spiral CT without a tin filter. HVLs could be measured with a tin filter using only the X2 R/F sensor, and further improvement of its calibration accuracy with respect to other SSDs is warranted.
Collapse
Affiliation(s)
- Atsushi Fukuda
- Department of Radiological Sciences, School of Health Sciences, Fukushima Medical University, 10-6 Sakaemachi, Fukushima, Fukushima, 960-1295, Japan.
| | - Nao Ichikawa
- Department of Radiological Technology, Faculty of Health Science, Kobe Tokiwa University, 2-6-2 Otani-cho, Kobe, Hyogo, 653-0838, Japan
| | - Takuma Hayashi
- Department of Radiation Oncology, Shiga General Hospital, 5-4-30 Moriyama, Moriyama, Shiga, 524-8524, Japan
| | - Ayaka Hirosawa
- Department of Medical Technology, Toyama Prefectural Central Hospital, 2-2-78 Nishinagae, Toyama, 930-8550, Japan
| | - Kosuke Matsubara
- Department of Quantum Medical Technology, Faculty of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, Ishikawa, 920-0942, Japan
| |
Collapse
|
7
|
Feldle P, Grunz JP, Kunz AS, Pannenbecker P, Patzer TS, Pichlmeier S, Sauer ST, Hendel R, Ergün S, Bley TA, Huflage H. Influence of spectral shaping and tube voltage modulation in ultralow-dose computed tomography of the abdomen. BMC Med Imaging 2024; 24:49. [PMID: 38395772 PMCID: PMC10893640 DOI: 10.1186/s12880-024-01228-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
PURPOSE Unenhanced abdominal CT constitutes the diagnostic standard of care in suspected urolithiasis. Aiming to identify potential for radiation dose reduction in this frequent imaging task, this experimental study compares the effect of spectral shaping and tube voltage modulation on image quality. METHODS Using a third-generation dual-source CT, eight cadaveric specimens were scanned with varying tube voltage settings with and without tin filter application (Sn 150, Sn 100, 120, 100, and 80 kVp) at three dose levels (3 mGy: standard; 1 mGy: low; 0.5 mGy: ultralow). Image quality was assessed quantitatively by calculation of signal-to-noise ratios (SNR) for various tissues (spleen, kidney, trabecular bone, fat) and subjectively by three independent radiologists based on a seven-point rating scale (7 = excellent; 1 = very poor). RESULTS Irrespective of dose level, Sn 100 kVp resulted in the highest SNR of all tube voltage settings. In direct comparison to Sn 150 kVp, superior SNR was ascertained for spleen (p ≤ 0.004) and kidney tissue (p ≤ 0.009). In ultralow-dose scans, subjective image quality of Sn 100 kVp (median score 3; interquartile range 3-3) was higher compared with conventional imaging at 120 kVp (2; 2-2), 100 kVp (1; 1-2), and 80 kVp (1; 1-1) (all p < 0.001). Indicated by an intraclass correlation coefficient of 0.945 (95% confidence interval: 0.927-0.960), interrater reliability was excellent. CONCLUSIONS In abdominal CT with maximised dose reduction, tin prefiltration at 100 kVp allows for superior image quality over Sn 150 kVp and conventional imaging without spectral shaping.
Collapse
Affiliation(s)
- Philipp Feldle
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080, Würzburg, Germany
| | - Jan-Peter Grunz
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080, Würzburg, Germany
| | - Andreas Steven Kunz
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080, Würzburg, Germany
| | - Pauline Pannenbecker
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080, Würzburg, Germany
| | - Theresa Sophie Patzer
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080, Würzburg, Germany
| | - Svenja Pichlmeier
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080, Würzburg, Germany
| | - Stephanie Tina Sauer
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080, Würzburg, Germany
| | - Robin Hendel
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080, Würzburg, Germany
| | - Süleyman Ergün
- Institute of Anatomy and Cell Biology, University of Würzburg, Koellikerstraße 6, 97070, Würzburg, Germany
| | - Thorsten Alexander Bley
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080, Würzburg, Germany
| | - Henner Huflage
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080, Würzburg, Germany.
| |
Collapse
|
8
|
Oh CH, Cho SB, Kwon H. Evaluating Image Quality and Radiation Dose in Low-Dose Thoraco-Abdominal CT Angiography with a Tin Filter for Patients with Aortic Disease. J Clin Med 2024; 13:996. [PMID: 38398309 PMCID: PMC10889810 DOI: 10.3390/jcm13040996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/31/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Background: We aimed to compared radiation exposure and image quality between tin-filter-based and standard dose thoraco-abdominal computed tomography angiography (TACTA) protocols, aiming to address a gap in the existing literature. Methods: In this retrospective study, ninety consecutive patients undergoing TACTA were included. Of these, 45 followed a routine standard-dose protocol (ST100kV), and 45 underwent a low-dose protocol with a tin filter (TF100kV). Radiation metrics were compared. The signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and figure of merit (FOM) were calculated for the thoracic and abdominal aorta and right common iliac artery. Two independent readers assessed the image noise, image contrast, sharpness, and subjective image quality. Results: The mean dose for the TF100kV group was significantly lower (DLP 128.25 ± 18.18 mGy*cm vs. 662.75 ± 181.29, p < 0.001; CTDIvol 1.83 ± 0.25 mGy vs. 9.28 ± 2.17, p = 0.001), with an effective dose close to 2.3 mSv (2.31 ± 0.33 mSv; p < 0.001). The TF100kV group demonstrated greater dose efficiency (FOM, thoracic aorta: 36.70 ± 22.77 vs. 13.96 ± 13.18 mSv-1, p < 0.001) compared to the ST100kV group. Conclusions: Dedicated low-dose TACTA using a tin filter can significantly reduce the radiation dose while maintaining sufficient diagnostic image quality.
Collapse
Affiliation(s)
- Chang Hoon Oh
- Department of Radiology, Ewha Womans Mokdong Hospital, College of Medicine, Ewha Womans University, Seoul 07985, Republic of Korea;
| | - Soo Buem Cho
- Department of Radiology, Ewha Womans Seoul Hospital, College of Medicine, Ewha Womans University, Seoul 07804, Republic of Korea
| | - Hyeyoung Kwon
- Department of Radiology, Chungnam University Hospital, School of Medicine, Chungnam University, Daejeon 35015, Republic of Korea;
| |
Collapse
|
9
|
Mostafapour S, Greuter M, van Snick JH, Brouwers AH, Dierckx RAJO, van Sluis J, Lammertsma AA, Tsoumpas C. Ultra-low dose CT scanning for PET/CT. Med Phys 2024; 51:139-155. [PMID: 38047554 DOI: 10.1002/mp.16862] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 11/07/2023] [Accepted: 11/13/2023] [Indexed: 12/05/2023] Open
Abstract
BACKGROUND The use of computed tomography (CT) for attenuation correction (AC) in whole-body PET/CT can result in a significant contribution to radiation exposure. This can become a limiting factor for reducing considerably the overall radiation exposure of the patient when using the new long axial field of view (LAFOV) PET scanners. However, recent CT technology have introduced features such as the tin (Sn) filter, which can substantially reduce the CT radiation dose. PURPOSE The purpose of this study was to investigate the ultra-low dose CT for attenuation correction using the Sn filter together with other dose reduction options such as tube current (mAs) reduction. We explore the impact of dose reduction in the context of AC-CT and how it affects PET image quality. METHODS The study evaluated a range of ultra-low dose CT protocols using five physical phantoms that represented a broad collection of tissue electron densities. A long axial field of view (LAFOV) PET/CT scanner was used to scan all phantoms, applying various CT dose reduction parameters such as reducing tube current (mAs), increasing the pitch value, and applying the Sn filter. The effective dose resulting from the CT scans was determined using the CTDIVol reported by the scanner. Several voxel-based and volumes of interest (VOI)-based comparisons were performed to compare the ultra-low dose CT images, the generated attenuation maps, and corresponding PET images against those images acquired with the standard low dose CT protocol. Finally, two patient datasets were acquired using one of the suggested ultra-low dose CT settings. RESULTS By incorporating the Sn filter and adjusting mAs to the lowest available value, the radiation dose in CT images of PBU-60 phantom was significantly reduced; resulting in an effective dose of nearly 2% compared to the routine low dose CT protocols currently in clinical use. The assessment of PET images using VOI and voxel-based comparisons indicated relative differences (RD%) of under 6% for mean activity concentration (AC) in the torso phantom and patient dataset and under 8% for a source point in the CIRS phantom. The maximum RD% value of AC was 14% for the point source in the CIRS phantom. Increasing the tube current from 6 mAs to 30 mAs in patients with high BMI, or with arms down, can suppress the photon starvation artifact, whilst still preserving a dose reduction of 90%. CONCLUSIONS Introducing a Sn filter in CT imaging lowers radiation dose by more than 90%. This reduction has minimal effect on PET image quantification at least for patients without Body Mass Index (BMI) higher than 30. Notably, this study results need validation using a larger clinical PET/CT dataset in the future, including patients with higher BMI.
Collapse
Affiliation(s)
- Samaneh Mostafapour
- Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Marcel Greuter
- Department of Radiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Johannes H van Snick
- Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Adrienne H Brouwers
- Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Rudi A J O Dierckx
- Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Joyce van Sluis
- Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Adriaan A Lammertsma
- Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Charalampos Tsoumpas
- Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
10
|
Fong G, Herts B, Primak A, Segars P, Li X. Effect of tin spectral filtration on organ and effective dose in CT colonography and CT lung cancer screening. Med Phys 2024; 51:103-112. [PMID: 37962008 DOI: 10.1002/mp.16836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 10/07/2023] [Accepted: 10/29/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND Studies of tin spectral filtration have demonstrated potential in reducing radiation dose while maintaining image quality for unenhanced computed tomography (CT) scans. The extent of dose reduction, however, was commonly measured using the change in the scanner's reported CTDIvol . This method does not account for how tin filtration affects patient organ and effective dose. PURPOSE To investigate the effect of tin filtration on patient organ and effective dose for CT Lung Cancer Screening (LCS) and CT Colonography (CTC). METHODS A previously-developed Monte Carlo program was adapted to model a 96-row CT scanner (Somatom Force, Siemens Healthineers) with tin filtration capabilities at 100 kV (100Sn) and 150 kV (150Sn). The program was then validated using experimental CTDIvol measurements at all available kV (70-150 kV) and tin-filtered kV options (100Sn and 150Sn). After validation, the program simulated LCS scans of the chest and CTC scan of the abdomen-pelvis for a population of 53 computational patient models from the extended cardiac-torso family. Each scan was performed using three different spectra: 120 kV, 100Sn, and 150Sn. CTDIvol -normalized organ doses and DLP-normalized effective doses, commonly referred to as dose conversion factors, were compared between the different spectra. RESULTS For all LCS and CTC scans, CTDIvol -normalized organ doses and DLP-normalized effective doses increased with increasing beam hardness (120 kV, 100Sn, 150 Sn). For LCS, relative for 120 kV, conversion factors for 100Sn produced a median increase in effective dose of 9%, with organ dose increases of 8% to lung, 5% to breast, 15% to thyroid, and 3% to skin. Conversion factors for 150Sn produced a median increase in effective dose of 20%, with organ dose increases of 16%, 18%, 26%, and 12% to these same organs, respectively. For CTC, relative for 120 kV, conversion factors for 100Sn produced a median increase in effective dose of 12%, with organ dose increases of 9% to colon, 10% to liver, 11% to stomach, and 4% to skin. Conversion factors for 150Sn produced a median increase in effective dose of 21%, with organ dose increases of 16%, 17%, 19%, and 10% to these same organs, respectively. CONCLUSIONS Results show that dose conversion factors are greater when using tin filtration and should be considered when evaluating tin's potential for dose reduction.
Collapse
Affiliation(s)
- Grant Fong
- Cleveland Clinic, Imaging Institute, Cleveland, Ohio, USA
| | - Brian Herts
- Cleveland Clinic, Imaging Institute, Cleveland, Ohio, USA
| | - Andrew Primak
- Siemens Medical Solutions USA Inc., Malvern, Pennsylvania, USA
| | - Paul Segars
- Duke University, Durham, North Carolina, USA
| | - Xiang Li
- Cleveland Clinic, Imaging Institute, Cleveland, Ohio, USA
| |
Collapse
|
11
|
Zhou W, Malave MN, Maloney JA, White C, Weinman JP, Huo D, Neuberger I. Radiation dose reduction using spectral shaping in pediatric non-contrast sinus CT. Pediatr Radiol 2023; 53:2069-2078. [PMID: 37341726 DOI: 10.1007/s00247-023-05699-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 06/22/2023]
Abstract
BACKGROUND CT is the standard imaging technique to evaluate pediatric sinuses. Given the potential risks of radiation exposure in children, it is important to reduce pediatric CT dose and maintain image quality. OBJECTIVE To study the utility of spectral shaping with tin filtration to improve dose efficiency for pediatric sinus CT exams. MATERIALS AND METHODS A head phantom was scanned on a commercial dual-source CT using a conventional protocol (120 kV) and a proposed 100 kV with a 0.4-mm tin filter (Sn100 kV) protocol for comparison. Entrance point dose (EPD) of eye and parotid gland region was measured by an ion chamber. Sixty pediatric sinus CT exams (33 acquired with 120 kV, 27 acquired with Sn100 kV) were retrospectively collected. All patient images were objectively measured for image quality and blindly reviewed by 4 pediatric neuroradiologists for overall noise, overall diagnostic quality, and delineation of 4 critical paranasal sinus structures, using a 5-point Likert scale. RESULTS Phantom CTDIvol from Sn100 kV is 4.35 mGy, compared to CTDIvol of 5.73 mGy from 120 kV at an identical noise level. EPD of sensitive organs decreases in Sn100 kV (e.g., right eye EPD 3.83±0.42 mGy), compared to 120 kV (5.26±0.24 mGy). Patients in the 2 protocol groups were age and weight (unpaired T test P>0.05) matched. The patient CTDIvol of Sn100 kV (4.45±0.47 mGy) is significantly lower than 120 kV (5.56±0.48 mGy, unpaired T test P<0.001). No statistically significant difference for any subjective readers' score (Wilcoxon test P>0.05) was found between the two groups, indicating proposed spectral shaping provides equivalent diagnostic image quality. CONCLUSION Phantom and patient results demonstrate that spectral shaping can significantly reduce radiation dose for non-contrast pediatric sinus CT without compromising diagnostic quality.
Collapse
Affiliation(s)
- Wei Zhou
- Radiology, University of Colorado, Anschutz Medical Campus, 13001 E 17Th Pl, Aurora, CO, USA
| | - Maricarmen Nazario Malave
- Radiology, University of Colorado, Anschutz Medical Campus, 13001 E 17Th Pl, Aurora, CO, USA
- Radiology, Children's Hospital Colorado, 13123 E 16Th Ave, Aurora, CO, USA
| | - John A Maloney
- Radiology, University of Colorado, Anschutz Medical Campus, 13001 E 17Th Pl, Aurora, CO, USA
- Radiology, Children's Hospital Colorado, 13123 E 16Th Ave, Aurora, CO, USA
| | - Christina White
- Radiology, University of Colorado, Anschutz Medical Campus, 13001 E 17Th Pl, Aurora, CO, USA
- Radiology, Children's Hospital Colorado, 13123 E 16Th Ave, Aurora, CO, USA
| | - Jason P Weinman
- Radiology, University of Colorado, Anschutz Medical Campus, 13001 E 17Th Pl, Aurora, CO, USA
- Radiology, Children's Hospital Colorado, 13123 E 16Th Ave, Aurora, CO, USA
| | - Donglai Huo
- Radiology, University of Colorado, Anschutz Medical Campus, 13001 E 17Th Pl, Aurora, CO, USA
| | - Ilana Neuberger
- Radiology, University of Colorado, Anschutz Medical Campus, 13001 E 17Th Pl, Aurora, CO, USA.
- Radiology, Children's Hospital Colorado, 13123 E 16Th Ave, Aurora, CO, USA.
| |
Collapse
|
12
|
Rehan S, Kutschera P, Paul E, Lau T, Lau KK. High-pitched tin-filtered CT pulmonary angiography in radiation dose reduction for pulmonary embolism investigations in young females. Emerg Radiol 2023; 30:425-433. [PMID: 37289287 PMCID: PMC10248322 DOI: 10.1007/s10140-023-02142-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/16/2023] [Indexed: 06/09/2023]
Abstract
INTRODUCTION Computed tomography pulmonary angiography (CTPA) is the gold standard test to investigate pulmonary embolism (PE). This technique carries significant radiation risk in young females because of radiosensitive breast and thyroid tissues. A high-pitched CT technique offers significant radiation dose reduction (RDR) and minimises breathing artefact. The addition of CT tube tin-filtration may offer further RDR. The aim of this retrospective study was to assess RDR and image quality (IQ) of high-pitch tin-filtered (HPTF)-CTPA against conventional-CTPA. METHODS Retrospective review of consecutive adult females age < 50 years undergoing high pitch tin filtration (HPTF) and standard pitch no tin filtration (SPNF) during a 3-year period beginning in November 2017. CTs in both groups were compared for radiation dose, pulmonary arteries contrast density (Hounsfield units (HU)) and movement artefact. Findings of both groups were compared with the Student's T-test and Mann-Whitney U test, where p < 0.05 being considered significant. Diagnostic quality was also recorded. RESULTS Ten female patients (mean age 33, 6/10 pregnant) in HPTF group and 10 female patients (mean age 36, 1/10 pregnant) in SPNF group were included. The HPTF group achieved 93% RDR (dose length product: 25.15 mGy.cm vs 337.10 mGy.cm, p < 0.01). There was significant contrast density difference between the two groups in the main, left or right pulmonary arteries (322.72 HU, 311.85 HU and 319.41 HU in HPTF group vs 418.60 HU, 405.10 HU and 415.96 HU in SPNF group respectively, p = 0.03, p = 0.03 and p = 0.04). 8/10 HPTF group and 10/10 in the control group were > 250 HU in all three vessels; the remaining 2 HPTF CTPA were > 210HU. All CT scans in both groups were of diagnostic quality and none exhibited movement artefact. CONCLUSION This study was the first to demonstrate significant RDR with the HPTF technique whilst maintaining IQ in patients undergoing chest CTPA. This technique is particularly beneficial in young females and pregnant females with suspected PE.
Collapse
Affiliation(s)
- Saad Rehan
- Monash Department of Surgery, Monash Health, Melbourne, VIC Australia
| | | | - Eldho Paul
- Monash Health Research Precinct, Monash Medical Centre, Melbourne, VIC Australia
| | - Theodore Lau
- Qscan Radiology Clinics, Southport, 123 Nerang Street, QLD Gold Coast, Australia
| | - Kenneth K. Lau
- Monash Imaging, Monash Health, Melbourne, VIC Australia
- School of Clinical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC Australia
- Department of Oncology, Sir Peter MacCallum, University of Melbourne, Melbourne, VIC Australia
| |
Collapse
|
13
|
Yuan Z, Liu T, Zhang B, Wu J, He Y, Chen T, Zhang Z, Li C, Liu Y. Comparison of selected photon shield and organ-based tube current modulation for radiation dose reduction in head computed tomography: A phantom study. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY 2023:XST230018. [PMID: 37092211 DOI: 10.3233/xst-230018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
OBJECTIVE The aim of this study is to investigate the radiation dose and image quality of head CT using SPS and OBTCM techniques. METHODS Three anthropomorphic head phantoms (1-yr-old, 5-yr-old, and adult) were used. Images were acquired using four modes (Default protocol, OBTCM, SPS, and SPS+OBTCM). Absorbed dose to the lens, anterior brain (brain_A), and posterior brain (brain_P) was measured and compared. Image noise and CNR were assessed in the selected regions of interest (ROIs). RESULTS Compared with that in the Default protocol, the absorbed dose to the lens reduced by up to 28.33%,71.38%, and 71.12% in OBTCM, SPS, and SPS+OBTCM, respectively. The noise level in OBTCM slightly (≤1.45HU) increased than that in Default protocol, and the SPS or SPS+OBTCM mode resulted in a quantitatively small increase (≤2.58HU) in three phantoms. There was no significant difference in CNR of different phantoms under varies scanning modes (p > 0.05). CONCLUSIONS During head CT examinations, the SPS mode can reduce the radiation dose while maintaining image quality. SPS+OBTCM couldn't further effectively reduce the absorbed dose to the lens for 1-yr and 5-yr-old phantoms. Thus, SPS mode in pediatric and SPS+OBTCM mode in adult are better than other modes, and should be used in clinical practice.
Collapse
Affiliation(s)
- Zilong Yuan
- Department of Radiology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Liu
- Department of Radiology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Biao Zhang
- Department of Radiology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | - Yaoyao He
- Department of Radiology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tiao Chen
- Department of Radiology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhaoxi Zhang
- Department of Radiology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cuiling Li
- Department of Radiological Health, Wuhan Prevention and Treatment for Occupational Disease, Wuhan, China
| | - Yulin Liu
- Department of Radiology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
14
|
Grunz JP, Halt D, Schüle S, Beer M, Hackenbroch C. Thermoluminescence Dosimetry in Abdominal CT for Urinary Stone Detection: Effective Radiation Dose Reduction With Tin Prefiltration at 100 kVp. Invest Radiol 2023; 58:231-238. [PMID: 36070523 DOI: 10.1097/rli.0000000000000924] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVES Spectral shaping via tin prefiltration has gained recognition for dose saving in high-contrast imaging tasks. The aim of this phantom dosimetry study was to investigate whether the use of tin filters can also reduce the effective radiation dose in 100 kVp abdominal computed tomography (CT) compared with standard low-dose scans for suspected urolithiasis. METHODS Using a third-generation dual-source CT scanner, 4 scan protocols each were used on a standard (P1-P4) and a modified obese Alderson-Rando phantom (P5-P8), in which 11 urinary stones of different compositions were placed. Hereby 1 scan protocol represented standard low-dose settings (P1/P5: 110 kVp/120 kVp), whereas 3 experimental protocols used low-kilovoltage spectral shaping (P2/P3/P4 and P6/P7/P8: 100 kVp with tin prefiltration). Radiation dose was recorded by thermoluminescent dosimeters at 24 measurement sites. For objective assessment of image quality, dose-weighted contrast-to-noise ratios were calculated and compared between scan protocols. Additional subjective image quality analysis was performed by 2 radiologists using equidistant 5-point scales for estimation image noise, artifacts, kidney stone detectability, and delineation of bone and soft tissue. RESULTS Both conventional low-dose protocols without tin prefiltration were associated with the highest individual equivalent doses and the highest effective radiation dose in the experimental setup (P1: 0.29-6.43 mGy, 1.45-1.83 mSv; P5: 0.50-9.35 mGy, 2.33-2.79 mSv). With no false-positive diagnoses, both readers correctly detected each of the 11 urinary calculi irrespective of scan protocol and phantom configuration. Protocols using spectral shaping via tin prefiltration allowed for effective radiation dose reduction of up to 38% on the standard phantom and 18% on the modified obese phantom, while maintaining overall diagnostic image quality. Effective dose was approximately 10% lower in a male versus female anatomy and could be reduced by another 10% if gonadal protection was used ( P < 0.001). CONCLUSIONS Spectral shaping via tin prefiltration at 100 kVp is a suitable means to reduce the effective radiation dose in abdominal CT imaging of patients with suspected urolithiasis. The dose reduction potential is slightly less pronounced in a modified phantom emulating an obese body composition compared with a standard phantom.
Collapse
Affiliation(s)
| | - Daniel Halt
- From the Department of Radiology, German Armed Forces Hospital Ulm, Ulm
| | - Simone Schüle
- From the Department of Radiology, German Armed Forces Hospital Ulm, Ulm
| | - Meinrad Beer
- Department of Radiology, University Hospital Ulm, Ulm, Germany
| | | |
Collapse
|
15
|
Niehoff JH, Carmichael AF, Woeltjen MM, Boriesosdick J, Michael AE, Schmidt B, Panknin C, Flohr TG, Shahzadi I, Piechota H, Borggrefe J, Kroeger JR. Clinical Low-Dose Photon-Counting CT for the Detection of Urolithiasis: Radiation Dose Reduction Is Possible without Compromising Image Quality. Diagnostics (Basel) 2023; 13:diagnostics13030458. [PMID: 36766563 PMCID: PMC9914353 DOI: 10.3390/diagnostics13030458] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/18/2023] [Accepted: 01/23/2023] [Indexed: 01/28/2023] Open
Abstract
Background: This study evaluated the feasibility of reducing the radiation dose in abdominal imaging of urolithiasis with a clinical photon-counting CT (PCCT) by gradually lowering the image quality level (IQL) without compromising the image quality and diagnostic value. Methods: Ninety-eight PCCT examinations using either IQL70 (n = 31), IQL60 (n = 31) or IQL50 (n = 36) were retrospectively included. Parameters for the radiation dose and the quantitative image quality were analyzed. Qualitative image quality, presence of urolithiasis and diagnostic confidence were rated. Results: Lowering the IQL from 70 to 50 led to a significant decrease (22.8%) in the size-specific dose estimate (SSDE, IQL70 4.57 ± 0.84 mGy, IQL50 3.53 ± 0.70 mGy, p < 0.001). Simultaneously, lowering the IQL led to a minimal deterioration of the quantitative quality, e.g., image noise increased from 9.13 ± 1.99 (IQL70) to 9.91 ± 1.77 (IQL50, p = 0.248). Radiologists did not notice major changes in the image quality throughout the IQLs. Detection rates of urolithiasis (91.3-100%) did not differ markedly. Diagnostic confidence was high and not influenced by the IQL. Conclusions: Adjusting the PCCT scan protocol by lowering the IQL can significantly reduce the radiation dose without significant impairment of the image quality. The detection rate and diagnostic confidence are not impaired by using an ultra-low-dose PCCT scan protocol.
Collapse
Affiliation(s)
- Julius Henning Niehoff
- Department of Radiology, Neuroradiology and Nuclear Medicine, Johannes Wesling University Hospital, Ruhr University Bochum, 44801 Bochum, Germany
- Correspondence: ; Tel.: +49-571-790-4601; Fax: +49-571-790-294601
| | - Alexandra Fiona Carmichael
- Department of Urology, Johannes Wesling University Hospital, Ruhr University Bochum, 44801 Bochum, Germany
| | - Matthias Michael Woeltjen
- Department of Radiology, Neuroradiology and Nuclear Medicine, Johannes Wesling University Hospital, Ruhr University Bochum, 44801 Bochum, Germany
| | - Jan Boriesosdick
- Department of Radiology, Neuroradiology and Nuclear Medicine, Johannes Wesling University Hospital, Ruhr University Bochum, 44801 Bochum, Germany
| | - Arwed Elias Michael
- Department of Radiology, Neuroradiology and Nuclear Medicine, Johannes Wesling University Hospital, Ruhr University Bochum, 44801 Bochum, Germany
| | | | | | | | | | - Hansjuergen Piechota
- Department of Urology, Johannes Wesling University Hospital, Ruhr University Bochum, 44801 Bochum, Germany
| | - Jan Borggrefe
- Department of Radiology, Neuroradiology and Nuclear Medicine, Johannes Wesling University Hospital, Ruhr University Bochum, 44801 Bochum, Germany
| | - Jan Robert Kroeger
- Department of Radiology, Neuroradiology and Nuclear Medicine, Johannes Wesling University Hospital, Ruhr University Bochum, 44801 Bochum, Germany
| |
Collapse
|
16
|
Spectral Shaping Via Tin Prefiltration in Ultra-High-Resolution Photon-Counting and Energy-Integrating Detector CT of the Temporal Bone. Invest Radiol 2022; 57:819-825. [PMID: 35776435 DOI: 10.1097/rli.0000000000000901] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
OBJECTIVES Hardening the x-ray beam, tin prefiltration is established for imaging of high-contrast subjects in energy-integrating detector computed tomography (EID-CT). With this work, we aimed to investigate the dose-saving potential of spectral shaping via tin prefiltration in photon-counting detector CT (PCD-CT) of the temporal bone. METHODS Deploying dose-matched scan protocols with and without tin prefiltration on a PCD-CT and EID-CT system (low-/intermediate-/full-dose: 4.8/7.6-7.7/27.0-27.1 mGy), 12 ultra-high-resolution examinations were performed on each of 5 cadaveric heads. While 120 kVp was applied for standard imaging, the protocols with spectral shaping used the highest potential available with tin prefiltration (EID-CT: Sn 150 kVp, PCD-CT: Sn 140 kVp). Contrast-to-noise ratios and dose-saving potential by spectral shaping were computed for each scanner. Three radiologists independently assessed the image quality of each examination with the intraclass correlation coefficient being computed to measure interrater agreement. RESULTS Regardless of tin prefiltration, PCD-CT with low (171.2 ± 10.3 HU) and intermediate radiation dose (134.7 ± 4.5 HU) provided less image noise than full-dose EID-CT (177.0 ± 14.2 HU; P < 0.001). Targeting matched image noise to 120 kVp EID-CT, mean dose reduction of 79.3% ± 3.9% could be realized in 120 kVp PCD-CT. Subjective image quality of PCD-CT was better than of EID-CT on each dose level ( P < 0.050). While no distinction was found between dose-matched PCD-CT with and without tin prefiltration ( P ≥ 0.928), Sn 150 kVp EID-CT provided better image quality than 120 kVp EID-CT at high and intermediate dose levels ( P > 0.050). The majority of low-dose EID-CT examinations were considered not diagnostic, whereas PCD-CT scans of the same dose level received satisfactory or better ratings. Interrater reliability was excellent (intraclass correlation coefficient 0.903). CONCLUSIONS PCD-CT provides superior image quality and significant dose savings compared with EID-CT for ultra-high-resolution examinations of the temporal bone. Aiming for matched image noise, high-voltage scan protocols with tin prefiltration facilitate additional dose saving in EID-CT, whereas superior inherent denoising decreases the dose reduction potential of spectral shaping in PCD-CT.
Collapse
|
17
|
X-ray attenuation of bone, soft and adipose tissue in CT from 70 to 140 kV and comparison with 3D printable additive manufacturing materials. Sci Rep 2022; 12:14580. [PMID: 36028638 PMCID: PMC9418162 DOI: 10.1038/s41598-022-18741-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/18/2022] [Indexed: 11/17/2022] Open
Abstract
Additive manufacturing and 3D printing are widely used in medical imaging to produce phantoms for image quality optimization, imaging protocol definition, comparison of image quality between different imaging systems, dosimetry, and quality control. Anthropomorphic phantoms mimic tissues and contrasts in real patients with regard to X-ray attenuation, as well as dependence on X-ray spectra. If used with different X-ray energies, or to optimize the spectrum for a certain procedure, the energy dependence of the attenuation must replicate the corresponding energy dependence of the tissues mimicked, or at least be similar. In the latter case the materials’ Hounsfield values need to be known exactly to allow to correct contrast and contrast to noise ratios accordingly for different beam energies. Fresh bovine and porcine tissues including soft and adipose tissues, and hard tissues from soft spongious bone to cortical bone were scanned at different energies, and reference values of attenuation in Hounsfield units (HU) determined. Mathematical model equations describing CT number dependence on kV for bones of arbitrary density, and for adipose tissues are derived. These data can be used to select appropriate phantom constituents, compare CT values with arbitrary phantom materials, and calculate correction factors for phantoms consisting of materials with an energy dependence different to the tissues. Using data on a wide number of additive manufacturing and 3D printing materials, CT numbers and their energy dependence were compared to those of the tissues. Two commercially available printing filaments containing calcium carbonate powder imitate bone tissues with high accuracy at all kV values. Average adipose tissue can be duplicated by several off-the-shelf printing polymers. Since suitable printing materials typically exhibit a too high density for the desired attenuation of especially soft tissues, controlled density reduction by underfilling might improve tissue equivalence.
Collapse
|
18
|
Tin-filtered 100 kV Ultra-low-dose Abdominal CT for Calculi Detection in the Urinary Tract: A Comparative Study of 510 Cases. Acad Radiol 2022; 30:1033-1038. [PMID: 35963837 DOI: 10.1016/j.acra.2022.07.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/14/2022] [Accepted: 07/14/2022] [Indexed: 11/23/2022]
Abstract
OBJECTIVES For detection of urinary calculi, unenhanced low-dose computed tomography is the method of choice, outperforming radiography and ultrasound. This retrospective monocentric study aims to compare a clinically established, dedicated low-dose imaging protocol for detection of urinary calculi with an ultra-low-dose protocol employing tin prefiltration at a standardized tube voltage of 100 kVp. METHODS Two study arms included a total of 510 cases. The "low-dose group" was comprised of 290 individuals (96 women; age 49 ± 16 years; BMI 27.23 ± 5.60 kg/m2). The "ultra-low-dose group" with Sn100 kVp consisted of 220 patients (84 women; age 47 ± 17 years; BMI 26.82 ± 5.62 kg/m2). No significant difference was ascertained for comparison of age (p = 0.132) and BMI (p = 0.207) between cohorts. For quantitative assessment of image quality, image noise was assessed. RESULTS No significant difference regarding frequency of calculi detection was found between groups (p = 0.596). Compared to the low-dose protocol (3.08 mSv; IQR 2.22-4.02 mSv), effective dose was reduced by 62.35% with the ultra-low-dose protocol employing spectral shaping (1.16 mSv; IQR 0.89-1.54 mSv). Image noise was calculated at 18.90 (IQR 17.39-21.20) for the low-dose protocol and at 18.69 (IQR 17.30-21.62) for the ultra-low-dose spectral shaping protocol. No significant difference was ascertained for comparison between groups (p = 0.793). CONCLUSION For urinary calculi detection, ultra-low-dose scans utilizing spectral shaping by means of tin prefiltration at 100 kVp allow for considerable dose reduction of up to 62% over conventional low-dose CT without compromising image quality.
Collapse
|
19
|
Niehoff JH, Carmichael AF, Woeltjen MM, Boriesosdick J, Lopez Schmidt I, Michael AE, Große Hokamp N, Piechota H, Borggrefe J, Kroeger JR. Clinical Low Dose Photon Counting CT for the Detection of Urolithiasis: Evaluation of Image Quality and Radiation Dose. Tomography 2022; 8:1666-1675. [PMID: 35894003 PMCID: PMC9326560 DOI: 10.3390/tomography8040138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 11/18/2022] Open
Abstract
The purpose of this study was the evaluation of image quality and radiation dose parameters of the novel photon counting CT (PCCT, Naeotom Alpha, Siemens Healthineers) using low-dose scan protocols for the detection of urolithiasis. Standard CT scans were used as a reference (S40, Somatom Sensation 40, Siemens Healthineers). Sixty-three patients, who underwent CT scans between August and December 2021, were retrospectively enrolled. Thirty-one patients were examined with the PCCT and 32 patients were examined with the S40. Radiation dose parameters, as well as quantitative and qualitative image parameters, were analyzed. The presence of urolithiasis, image quality, and diagnostic certainty were rated on a 5-point-scale by 3 blinded readers. Both patient groups (PCCT and S40) did not differ significantly in terms of body mass index. Radiation dose was significantly lower for examinations with the PCCT compared to the S40 (2.4 ± 1.0 mSv vs. 3.4 ± 1.0 mSv; p < 0.001). The SNR was significantly better on images acquired with the PCCT (13.3 ± 3.3 vs. 8.2 ± 1.9; p < 0.001). The image quality of the PCCT was rated significantly better (4.3 ± 0.7 vs. 2.8 ± 0.6; p < 0.001). The detection rate of kidney or ureter calculi was excellent with both CT scanners (PCCT 97.8% and S40 99%, p = 0.611). In high contrast imaging, such as the depiction of stones of the kidney and the ureter, PCCT allows a significant reduction of radiation dose, while maintaining excellent diagnostic confidence and image quality. Given this image quality with our current protocol, further adjustments towards ultra-low-dose CT scans appear feasible.
Collapse
Affiliation(s)
- Julius Henning Niehoff
- Department of Radiology, Neuroradiology and Nuclear Medicine, Johannes Wesling University Hospital, Ruhr University Bochum, 44801 Bochum, Germany; (M.M.W.); (J.B.); (I.L.S.); (A.E.M.); (J.B.); (J.R.K.)
- Correspondence: ; Tel.: +49-571-790-4601
| | - Alexandra Fiona Carmichael
- Department of Urology, Johannes Wesling University Hospital, Ruhr University Bochum, 44801 Bochum, Germany; (A.F.C.); (H.P.)
| | - Matthias Michael Woeltjen
- Department of Radiology, Neuroradiology and Nuclear Medicine, Johannes Wesling University Hospital, Ruhr University Bochum, 44801 Bochum, Germany; (M.M.W.); (J.B.); (I.L.S.); (A.E.M.); (J.B.); (J.R.K.)
| | - Jan Boriesosdick
- Department of Radiology, Neuroradiology and Nuclear Medicine, Johannes Wesling University Hospital, Ruhr University Bochum, 44801 Bochum, Germany; (M.M.W.); (J.B.); (I.L.S.); (A.E.M.); (J.B.); (J.R.K.)
| | - Ingo Lopez Schmidt
- Department of Radiology, Neuroradiology and Nuclear Medicine, Johannes Wesling University Hospital, Ruhr University Bochum, 44801 Bochum, Germany; (M.M.W.); (J.B.); (I.L.S.); (A.E.M.); (J.B.); (J.R.K.)
| | - Arwed Elias Michael
- Department of Radiology, Neuroradiology and Nuclear Medicine, Johannes Wesling University Hospital, Ruhr University Bochum, 44801 Bochum, Germany; (M.M.W.); (J.B.); (I.L.S.); (A.E.M.); (J.B.); (J.R.K.)
| | - Nils Große Hokamp
- Faculty of Medicine and University Hospital Cologne, Institute for Diagnostic and Interventional Radiology, University of Cologne, 50937 Cologne, Germany;
| | - Hansjuergen Piechota
- Department of Urology, Johannes Wesling University Hospital, Ruhr University Bochum, 44801 Bochum, Germany; (A.F.C.); (H.P.)
| | - Jan Borggrefe
- Department of Radiology, Neuroradiology and Nuclear Medicine, Johannes Wesling University Hospital, Ruhr University Bochum, 44801 Bochum, Germany; (M.M.W.); (J.B.); (I.L.S.); (A.E.M.); (J.B.); (J.R.K.)
| | - Jan Robert Kroeger
- Department of Radiology, Neuroradiology and Nuclear Medicine, Johannes Wesling University Hospital, Ruhr University Bochum, 44801 Bochum, Germany; (M.M.W.); (J.B.); (I.L.S.); (A.E.M.); (J.B.); (J.R.K.)
| |
Collapse
|
20
|
Huflage H, Grunz JP, Hackenbroch C, Halt D, Luetkens KS, Alfred Schmidt AM, Patzer TS, Ergün S, Bley TA, Kunz AS. Metal artefact reduction in low-dose computed tomography: Benefits of tin prefiltration versus postprocessing of dual-energy datasets over conventional CT imaging. Radiography (Lond) 2022; 28:690-696. [PMID: 35728278 DOI: 10.1016/j.radi.2022.05.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/01/2022] [Accepted: 05/30/2022] [Indexed: 11/26/2022]
Abstract
INTRODUCTION The purpose of this study was to determine the potential for metal artefact reduction in low-dose multidetector CT as these pose a frequent challenge in clinical routine. Investigations focused on whether spectral shaping via tin prefiltration, virtual monoenergetic imaging or virtual blend imaging (VBI) offers superior image quality in comparison with conventional CT imaging. METHODS Using a third-generation dual-source CT scanner, two cadaveric specimens with different metal implants (dental, cervical spine, hip, knee) were examined with acquisition protocols matched for radiation dose with regards to tube voltage and current. In order to allow for precise comparison, and due to the relatively short scan lengths, automatic tube current modulation was disabled. Specifically, the following scan protocals were examined: conventional CT protocols (100/120 kVp), tin prefiltration (Sn 100/Sn 150 kVp), VBI and virtual monoenergetic imaging (VME 100/120/150 keV). Mean attenuation and image noise were measured in hyperdense and hypodense artefacts, in artefact-impaired and artefact-free soft tissue. Subjective image quality was rated independently by three radiologists. RESULTS Objectively, Sn 150 kVp allowed for the best reduction of hyperdense streak artefacts (p < 0.001), while VME 150 keV and Sn 150 kVp protocols facilitated equally good reduction of hypodense artefacts (p = 0.173). Artefact-impaired soft tissue attenuation was lowest in Sn 150 kVp protocols (p ≤ 0.011), whereas all VME showed significantly less image noise compared to conventional or tin-filtered protocols (p ≤ 0.001). Subjective assessment favoured Sn 150 kVp regarding hyperdense streak artefacts and delineation of cortical bone (p ≤ 0.005). The intraclass correlation coefficient was 0.776 (95% confidence interval: 0.712-0.831; p < 0.001) indicating good interrater reliability. CONCLUSION In the presence of metal implants in our cadaveric study, tin prefiltration with 150 kVp offers superior artefact reduction for low-dose CT imaging of osseous tissue compared with virtual monoenergetic images of dual-energy datasets. The delineation of cortical boundaries seems to benefit particularly from spectral shaping. IMPLICATIONS FOR PRACTICE Low-dose CT imaging of osseous tissue in combination with tin prefiltration allows for superior metal artefact reduction when compared to virtual monoenergetic images of dual-energy datasets. Employing this technique ought to be considered in daily routine when metal implants are present within the scan volume as findings suggest it allows for radiation dose reduction and facilitates diagnosis relevant to further treatment.
Collapse
Affiliation(s)
- H Huflage
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080 Würzburg, Germany.
| | - J-P Grunz
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080 Würzburg, Germany.
| | - C Hackenbroch
- Department of Diagnostic and Interventional Radiology and Neuroradiology, German Armed Forces Hospital Ulm, Oberer Eselsberg 40, 89081 Ulm, Germany; Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
| | - D Halt
- Department of Diagnostic and Interventional Radiology and Neuroradiology, German Armed Forces Hospital Ulm, Oberer Eselsberg 40, 89081 Ulm, Germany.
| | - K S Luetkens
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080 Würzburg, Germany.
| | - A M Alfred Schmidt
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080 Würzburg, Germany.
| | - T S Patzer
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080 Würzburg, Germany.
| | - S Ergün
- Institute of Anatomy and Cell Biology, University of Würzburg, Koellikerstraße 6, 97070 Würzburg, Germany.
| | - T A Bley
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080 Würzburg, Germany.
| | - A S Kunz
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080 Würzburg, Germany.
| |
Collapse
|
21
|
Kimura K, Fujioka T, Mori M, Adachi T, Hiraishi T, Hada H, Ishikawa T, Tateishi U. Dose Reduction and Diagnostic Performance of Tin Filter-Based Spectral Shaping CT in Patients with Colorectal Cancer. Tomography 2022; 8:1079-1089. [PMID: 35448722 PMCID: PMC9033029 DOI: 10.3390/tomography8020088] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/01/2022] [Accepted: 04/02/2022] [Indexed: 12/02/2022] Open
Abstract
Routine CT examinations are crucial in colorectal cancer patients (CCPs); however, the high frequency of radiation exposure is a significant concern. This study investigated the radiation dose, image quality, and diagnostic performance of tin filter-based spectral shaping chest−abdominal−pelvic (CAP) CT for CCPs. We reviewed 44 CCPs who underwent single-phase enhanced tin-filtered 100 kV (TF100kV) and standard 120 kV (ST120kV) CAP CT on separate days. Radiation metrics including the volume CT dose index (CTDIvol), dose-length product (DLP), and effective dose (ED) were calculated for both protocols. Two radiologists assessed the presence of the following lesions: lung metastasis, liver metastasis, lymph node metastasis, peritoneal dissemination, and bone metastasis. The area under the receiver operating characteristic curve (AUC) was calculated for the diagnostic performance of each protocol. Radiation metrics of the TF100kV protocol were significantly lower than those of the ST120kV protocol (CDTIvol 1.60 ± 0.31 mGy vs. 14.4 ± 2.50, p < 0.0001; DLP 107.1 (95.9−125.5) mGy·cm vs. 996.7 (886.2−1144.3), p < 0.0001; ED 1.93 (1.73−2.26) mSv vs. 17.9 (16.0−20.6), p < 0.0001, respectively). TF100kV protocol achieved comparable diagnostic performance to that of the ST120kV protocol (AUC for lung metastasis: 1.00 vs. 0.94; liver metastasis: 0.88 vs. 0.83, respectively). TF100kV protocol could substantially reduce the radiation dose by 89% compared to that with the ST120kV protocol while maintaining good diagnostic performance in CCPs.
Collapse
Affiliation(s)
- Koichiro Kimura
- Department of Diagnostic Radiology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo 113-8510, Japan; (K.K.); (M.M.); (T.A.); (U.T.)
| | - Tomoyuki Fujioka
- Department of Diagnostic Radiology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo 113-8510, Japan; (K.K.); (M.M.); (T.A.); (U.T.)
- Correspondence: ; Tel.: +81-3-5803-5311
| | - Mio Mori
- Department of Diagnostic Radiology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo 113-8510, Japan; (K.K.); (M.M.); (T.A.); (U.T.)
| | - Takuya Adachi
- Department of Diagnostic Radiology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo 113-8510, Japan; (K.K.); (M.M.); (T.A.); (U.T.)
| | - Takumi Hiraishi
- Department of Radiology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo 113-8510, Japan; (T.H.); (H.H.)
| | - Hiroto Hada
- Department of Radiology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo 113-8510, Japan; (T.H.); (H.H.)
| | - Toshiaki Ishikawa
- Department of Specialized Surgeries, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo 113-8510, Japan;
| | - Ukihide Tateishi
- Department of Diagnostic Radiology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo 113-8510, Japan; (K.K.); (M.M.); (T.A.); (U.T.)
| |
Collapse
|
22
|
Value of deep learning reconstruction at ultra-low-dose CT for evaluation of urolithiasis. Eur Radiol 2022; 32:5954-5963. [PMID: 35357541 DOI: 10.1007/s00330-022-08739-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 03/07/2022] [Accepted: 03/09/2022] [Indexed: 12/31/2022]
Abstract
OBJECTIVES To determine the diagnostic accuracy and image quality of ultra-low-dose computed tomography (ULDCT) with deep learning reconstruction (DLR) to evaluate patients with suspected urolithiasis, compared with ULDCT with hybrid iterative reconstruction (HIR) by using low-dose CT (LDCT) with HIR as the reference standard. METHODS Patients with suspected urolithiasis were prospectively enrolled and underwent abdominopelvic LDCT, followed by ULDCT if any urinary stone was observed. Radiation exposure, stone characteristics, image noise, signal-to-noise ratio (SNR), and subjective image quality on a 5-point Likert scale were evaluated and compared. RESULTS The average effective radiation dose of ULDCT was significantly lower than that of LDCT (1.28 ± 0.34 vs. 5.49 ± 1.00 mSv, p < 0.001). According to the reference standard (LDCT-HIR), 148 urinary stones were observed in 85.0% (51/60) of patients. ULDCT-DLR detected 143 stones with a rate of 96.6%, and ULDCT-HIR detected 142 stones with a rate of 95.9%. The urinary stones that were not observed with ULDCT-DLR or ULDCT-HIR were renal calculi smaller than 3 mm. There were no significant differences in the detection of clinically significant calculi (≥ 3 mm) or stone size estimation among ULDCT-DLR, ULDCT-HIR, and LDCT-HIR. The image quality of ULDCT-DLR was better than that of ULDCT-HIR and LDCT-HIR with lower image noise, higher SNR, and higher average subjective score. CONCLUSIONS ULDCT-DLR performed comparably to LDCT-HIR in urinary stone detection and size estimation with better image quality and decreased radiation exposure. ULDCT-DLR may have potential to be considered the first-line choice to evaluate urolithiasis in practice. KEY POINTS • Ultra-low-dose computed tomography (ULDCT) has been investigated for diagnosis of urolithiasis, but stone evaluation may be adversely impacted by compromised image quality. • This study evaluated the value of novel deep learning reconstruction (DLR) at ULDCT by comparing the stone evaluation and image quality of ULDCT-DLR to the reference standard of low-dose CT (LDCT) with hybrid iterative reconstruction (HIR). • ULDCT-DLR performed comparably to LDCT-HIR in urinary stone detection and size estimation with better image quality and reduced radiation exposure.
Collapse
|
23
|
Gassenmaier S, Winkelmann MT, Magnus JP, Brendlin AS, Walter SS, Afat S, Artzner C, Nikolaou K, Bongers MN. Low-Dose CT for Renal Calculi Detection Using Spectral Shaping of High Tube Voltage. ROFO-FORTSCHR RONTG 2022; 194:1012-1019. [PMID: 35272363 DOI: 10.1055/a-1752-0472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
PURPOSE To investigate reduction of radiation exposure in unenhanced CT in suspicion of renal calculi using a tin-filtered high tube voltage protocol compared to a standard low-dose protocol without spectral shaping. MATERIALS AND METHODS A phantom study using 7 human renal calculi was performed to test both protocols. 120 consecutive unenhanced CT examinations performed due to suspicion of renal calculi were included in this retrospective, monocentric study. 60 examinations were included with the standard-dose protocol (SP) (100 kV/130 mAs), whereas another 60 studies were included using a low-dose protocol (LD) applying spectral shaping with tin filtration of high tube voltages (Sn150 kV/80 mAs). Image quality was assessed by two radiologists in consensus blinded to technical parameters using an equidistant Likert scale ranging from 1-5 with 5 being the highest score. Quantitative image quality was assessed using regions of interest in abdominal organs, muscles, and adipose tissue to analyze image noise and signal-to-noise ratios (SNR). Commercially available dosimetry software was used to determine and compare effective dose (ED) and size-specific dose estimates (SSDEmean). RESULTS All seven renal calculi of the phantom could be detected with both protocols. There was no difference regarding calcluli size between the two protocols except for the smallest one. The smallest concretion measured 1.5 mm in LD and 1.0 mm in SP (ground truth 1.5 mm). CTDIvol was 3.36 mGy in LD (DLP: 119.3 mGycm) and 8.27 mGy in SP (DLP: 293.6 mGycm). The mean patient age in SP was 47 ± 17 years and in LD 49 ± 13 years. Ureterolithiasis was found in 33 cases in SP and 32 cases in LD. The median concretion size was 3 mm in SP and 4 mm in LD. The median ED in LD was 1.3 mSv (interquartile range (IQR) 0.3 mSv) compared to 2.3 mSv (IQR 0.9 mSv) in SP (p < 0.001). The SSDEmean of LD was also significantly lower compared to SP with 2.4 mGy (IQR 0.4 mGy) vs. 4.8 mGy (IQR 2.3 mGy) (p < 0.001). The SNR was significantly lower in LD compared to SP (p < 0.001). However, there was no significant difference between SP and LD regarding the qualitative assessment of image quality with a median of 4 (IQR 1) for both groups (p = 0.648). CONCLUSION Tin-filtered unenhanced abdominal CT for the detection of renal calculi using high tube voltages leads to a significant reduction of radiation exposure and yields high diagnostic image quality without a significant difference compared to the institution's standard of care low-dose protocol without tin filtration. KEY POINTS · Tin-filtered CT for the detection of renal calculi significantly reduces radiation dose.. · The application of tin filtration provides comparable diagnostic image quality to that of SP protocols.. · An increase in image noise does not hamper diagnostic image quality.. CITATION FORMAT · Gassenmaier S, Winkelmann MT, Magnus J et al. Low-Dose CT for Renal Calculi Detection Using Spectral Shaping of High Tube Voltage. Fortschr Röntgenstr 2022; DOI: 10.1055/a-1752-0472.
Collapse
Affiliation(s)
- Sebastian Gassenmaier
- Department of Diagnostic and Interventional Radiology, Eberhard Karls Universität Tübingen, Germany
| | - Moritz T Winkelmann
- Department of Diagnostic and Interventional Radiology, Eberhard Karls Universität Tübingen, Germany
| | - Jan-Philipp Magnus
- Department of Diagnostic and Interventional Radiology, Eberhard Karls Universität Tübingen, Germany
| | - Andreas Stefan Brendlin
- Department of Diagnostic and Interventional Radiology, Eberhard Karls Universität Tübingen, Germany
| | - Sven S Walter
- Department of Diagnostic and Interventional Radiology, Eberhard Karls Universität Tübingen, Germany.,Department of Radiology, Division of Musculoskeletal Radiology, NYU Grossman School of Medicine, New York
| | - Saif Afat
- Department of Diagnostic and Interventional Radiology, Eberhard Karls Universität Tübingen, Germany
| | - Christoph Artzner
- Department of Diagnostic and Interventional Radiology, Eberhard Karls Universität Tübingen, Germany
| | - Konstantin Nikolaou
- Department of Diagnostic and Interventional Radiology, Eberhard Karls Universität Tübingen, Germany
| | - Malte Niklas Bongers
- Department of Diagnostic and Interventional Radiology, Eberhard Karls Universität Tübingen, Germany
| |
Collapse
|
24
|
Steidel J, Maier J, Sawall S, Kachelrieß M. Dose reduction potential in diagnostic single energy CT through patient-specific prefilters and a wider range of tube voltages. Med Phys 2021; 49:93-106. [PMID: 34796532 DOI: 10.1002/mp.15355] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 10/07/2021] [Accepted: 10/14/2021] [Indexed: 12/13/2022] Open
Abstract
PURPOSE Various studies have demonstrated that additional prefilters and/or reduced tube voltages have the potential to significantly increase the contrast-to-noise ratios at unit dose (CNRDs) and thereby to significantly reduce patient dose in clinical CT. An exhaustive analysis, accounting for a wide range of filter thicknesses and a wide range of tube voltages extending beyond the 70 to 150 kV range of today's CT systems, including their specific choice depending on the patient size, is, however, missing. Therefore, this work analyzes the dose reduction potential for patient-specific selectable prefilters combined with a wider range of tube voltages. We do so for soft tissue and iodine contrast in single energy CT. The findings may be helpful to guide further developments of x-ray tubes and automatic filter changers. METHODS CT acquisitions were simulated for different patient sizes (semianthropomorphic phantoms for child, adult, and obese patients), tube voltages (35-150 kV), prefilter materials (tin and copper), and prefilter thicknesses (up to 5 mm). For each acquisition soft tissue and iodine CNRDs were determined. Dose was calculated using Monte Carlo simulations of a computed tomography dose index (CTDI) phantom. CNRD values of acquisitions with different parameters were used to evaluate dose reduction. RESULTS Dose reduction through patient-specific prefilters depends on patient size and available tube current among others. With an available tube current time product of 1000 mAs dose reductions of 17% for the child, 32% for the adult and 29% for the obese phantom were achieved for soft tissue contrast. For iodine contrast dose reductions were 57%, 49%, and 39% for child, adult, and obese phantoms, respectively. Here, a tube voltage range extended to lower kV is important. CONCLUSIONS Substantial dose reduction can be achieved by utilizing patient-specific prefilters. Tube voltages lower than 70 kV are beneficial for dose reduction with iodine contrast, especially for small patients. The optimal implementation of patient-specific prefilters benefits from higher tube power. Tin prefilters should be available in 0.1 mm steps or lower, copper prefilter in 0.3 mm steps or lower. At least 10 different prefilter thicknesses should be used to cover the dose optima of all investigated patient sizes and contrast mechanisms. In many cases it would be advantageous to adapt the prefilter thickness rather than the tube current to the patient size, that is, to always use the maximum available tube current and to control the exposure by adjusting the thickness of the prefilter.
Collapse
Affiliation(s)
- Jörg Steidel
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld, Heidelberg, Germany
| | - Joscha Maier
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld, Heidelberg, Germany
| | - Stefan Sawall
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld, Heidelberg, Germany
| | - Marc Kachelrieß
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld, Heidelberg, Germany
| |
Collapse
|
25
|
Parakh A, Cao J, Pierce TT, Blake MA, Savage CA, Kambadakone AR. Sinogram-based deep learning image reconstruction technique in abdominal CT: image quality considerations. Eur Radiol 2021; 31:8342-8353. [PMID: 33893535 DOI: 10.1007/s00330-021-07952-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 03/09/2021] [Accepted: 03/26/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVES To investigate the image quality and perception of a sinogram-based deep learning image reconstruction (DLIR) algorithm for single-energy abdominal CT compared to standard-of-care strength of ASIR-V. METHODS In this retrospective study, 50 patients (62% F; 56.74 ± 17.05 years) underwent portal venous phase. Four reconstructions (ASIR-V at 40%, and DLIR at three strengths: low (DLIR-L), medium (DLIR-M), and high (DLIR-H)) were generated. Qualitative and quantitative image quality analysis was performed on the 200 image datasets. Qualitative scores were obtained for image noise, contrast, small structure visibility, sharpness, and artifact by three blinded radiologists on a 5-point scale (1, excellent; 5, very poor). Radiologists also indicated image preference on a 3-point scale (1, most preferred; 3, least preferred). Quantitative assessment was performed by measuring image noise and contrast-to-noise ratio (CNR). RESULTS DLIR had better image quality scores compared to ASIR-V. Scores on DLIR-H for noise (1.40 ± 0.53), contrast (1.41 ± 0.55), small structure visibility (1.51 ± 0.61), and sharpness (1.60 ± 0.54) were the best (p < 0.05) followed by DLIR-M (1.85 ± 0.52, 1.66 ± 0.57, 1.69 ± 0.59, 1.68 ± 0.46), DLIR-L (2.29 ± 0.58, 1.96 ± 0.61, 1.90 ± 0.65, 1.86 ± 0.46), and ASIR-V (2.86 ± 0.67, 2.55 ± 0.58, 2.34 ± 0.66, 2.01 ± 0.36). Ratings for artifacts were similar for all reconstructions (p > 0.05). DLIRs did not influence subjective textural perceptions and were preferred over ASIR-V from the beginning. All DLIRs had a higher CNR (26.38-102.30%) and lower noise (20.64-48.77%) than ASIR-V. DLIR-H had the best objective scores. CONCLUSION Sinogram-based deep learning image reconstructions were preferred over iterative reconstruction subjectively and objectively due to improved image quality and lower noise, even in large patients. Use in clinical routine may allow for radiation dose reduction. KEY POINTS • Deep learning image reconstructions (DLIRs) have a higher contrast-to-noise ratio compared to medium-strength hybrid iterative reconstruction techniques. • DLIR may be advantageous in patients with large body habitus due to a lower image noise. • DLIR can enable further optimization of radiation doses used in abdominal CT.
Collapse
Affiliation(s)
- Anushri Parakh
- Department of Radiology, Massachusetts General Hospital, White 270, 55 Fruit Street, Boston, MA, 02114, USA
| | - Jinjin Cao
- Department of Radiology, Massachusetts General Hospital, White 270, 55 Fruit Street, Boston, MA, 02114, USA
| | - Theodore T Pierce
- Department of Radiology, Massachusetts General Hospital, White 270, 55 Fruit Street, Boston, MA, 02114, USA
| | - Michael A Blake
- Department of Radiology, Massachusetts General Hospital, White 270, 55 Fruit Street, Boston, MA, 02114, USA
| | - Cristy A Savage
- Department of Radiology, Massachusetts General Hospital, White 270, 55 Fruit Street, Boston, MA, 02114, USA
| | - Avinash R Kambadakone
- Department of Radiology, Massachusetts General Hospital, White 270, 55 Fruit Street, Boston, MA, 02114, USA.
| |
Collapse
|
26
|
Choi YS, Choo HJ, Lee SJ, Kim DW, Han JY, Kim DS. Computed tomography arthrography of the shoulder with tin filter-based spectral shaping at 100 kV and 140 kV. Acta Radiol 2021; 62:1349-1357. [PMID: 33070634 DOI: 10.1177/0284185120965551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Tin filter-based spectral shaping has been used for low-dose and ultra-low-dose computed tomography (CT) in several body parts. However, studies of shoulder CT arthrography with spectral shaping are limited. PURPOSE To investigate image quality and radiation dose of shoulder CT arthrography with tin filter-based spectral shaping at 100 kV (Sn 100 kV) and 140 kV (Sn 140 kV) in comparison with the conventional protocol. MATERIAL AND METHODS Ninety-nine shoulder CT arthrographies with protocols of Sn 100 kV (n = 32), Sn 140 kV (n = 25), and conventional 120 kV (n = 42) were retrospectively evaluated. Qualitative image quality, CT attenuations of intra-articular contrast mixture and tissues, background noise, contrast-to-noise ratios (CNRs), and figures of merit were assessed. Radiation doses were compared. RESULTS CT arthrographies with Sn 100 kV and Sn 140 kV yielded approximately 70% and 60% radiation dose reduction, respectively, compared with the conventional 120 kV (P < 0.001). Qualitative image noise and quantitative background noise of Sn 100 kV and Sn 140 kV were significantly less than those of the conventional protocol. Qualitative image contrast, CT attenuations of intra-articular contrast mixture and tissues, and CNRs for Sn 100 were similar to those of the conventional 120 kV. However, Sn 140 kV showed significantly lower qualitative contrast and CNRs than 120 kV. Sn 100 kV was the most dose efficient among the three protocols. CONCLUSION Shoulder CT arthrography with Sn 100 kV substantially reduced radiation dose and image noise and maintained image contrast, compared with the conventional protocol.
Collapse
Affiliation(s)
- Yun Seok Choi
- Department of Radiology, Inje University Busan Paik Hospital, Busan, Republic of Korea
| | - Hye Jung Choo
- Department of Radiology, Inje University Busan Paik Hospital, Busan, Republic of Korea
| | - Sun Joo Lee
- Department of Radiology, Inje University Busan Paik Hospital, Busan, Republic of Korea
| | - Dong Wook Kim
- Department of Radiology, Inje University Busan Paik Hospital, Busan, Republic of Korea
| | - Ji-yeon Han
- Department of Radiology, Inje University Busan Paik Hospital, Busan, Republic of Korea
| | - Da Som Kim
- Department of Radiology, Inje University Busan Paik Hospital, Busan, Republic of Korea
| |
Collapse
|
27
|
Ha JY, Baek HJ, Ryu KH, Cho E. Feasibility study of ultra-low-dose dedicated maxillofacial computed tomography using filter-based spectral shaping in patients with craniofacial trauma: assessment of image quality and radiation dose. Quant Imaging Med Surg 2021; 11:1292-1302. [PMID: 33816168 DOI: 10.21037/qims-20-800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background In the setting of multiple trauma, radiation exposure is considered a relevant issue because patients may require repeated imaging to evaluate injuries in different body parts. Recently, spectral shaping of the X-ray beam has been shown to be beneficial in reducing radiation exposure. We investigated the clinical feasibility of a tin-filtered 100 kV protocol for the diagnostic use, compared to routine dedicated maxillofacial CT at 120 kVp in patients with craniofacial trauma; we assessed the image quality, radiation dose, and interobserver agreement. Methods We retrospectively evaluated 100 consecutive patients who underwent dedicated maxillofacial CT for craniofacial trauma. Fifty patients were examined with a tin-filtered 100 kV protocol performed using a third-generation dual source CT. The other 50 patients were examined with a standard protocol on a different scanner. Two readers independently evaluated image quality subjectively and objectively, and the interobserver agreement was also assessed. CT dose index volume (CTDIvol) and dose-length product (DLP) were recorded to compare radiation exposure. A quality-control phantom was also scanned to prospectively assess the impact of tin filtration. Results All CT scans showed diagnostic image quality for evaluating craniofacial fractures. The tin-filtered 100 kV protocol showed sufficient-to-good image quality for diagnostic use; however, overall image quality and anatomic delineation from the tin-filtered 100 kV protocol were significantly lower than from the standard protocol. Interobserver agreement was moderate to almost perfect (k=0.56-0.85). Image noises in the air, eye globe, and retrobulbar fat were comparable between the two protocols (P>0.05), whereas both signal-to-noise ratio and contrast-to-noise ratio in the eye globe and retrobulbar fat showed a significant difference (P<0.05). The tin-filtered 100 kV protocol showed a significant reduction in radiation dose compared to the standard protocol: CTDIvol, 3.33 vs. 30.5 mGy (P<0.001); and DLP, 70.70 vs. 669.43 mGy*cm (P<0.001). The phantom study also demonstrated a lower radiation dose for the tin-filter 100 kV protocol compared to the standard protocol. Conclusions Dedicated maxillofacial CT using spectral shaping with tin filtration can allow a significant reduction in radiation dose while maintaining sufficient diagnostic image quality, when compared to the standard protocol.
Collapse
Affiliation(s)
- Ji Young Ha
- Department of Radiology, Gyeongsang National University School of Medicine and Gyeongsang National University Changwon Hospital, Changwon, Republic of Korea
| | - Hye Jin Baek
- Department of Radiology, Gyeongsang National University School of Medicine and Gyeongsang National University Changwon Hospital, Changwon, Republic of Korea.,Department of Radiology, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, Republic of Korea
| | - Kyeong Hwa Ryu
- Department of Radiology, Gyeongsang National University School of Medicine and Gyeongsang National University Changwon Hospital, Changwon, Republic of Korea
| | - Eun Cho
- Department of Radiology, Gyeongsang National University School of Medicine and Gyeongsang National University Changwon Hospital, Changwon, Republic of Korea
| |
Collapse
|
28
|
Radiation dose monitoring in computed tomography: Status, options and limitations. Phys Med 2020; 79:1-15. [DOI: 10.1016/j.ejmp.2020.08.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/21/2020] [Accepted: 08/19/2020] [Indexed: 02/02/2023] Open
|
29
|
Greffier J, Pereira F, Hamard A, Addala T, Beregi J, Frandon J. Effect of tin filter-based spectral shaping CT on image quality and radiation dose for routine use on ultralow-dose CT protocols: A phantom study. Diagn Interv Imaging 2020; 101:373-381. [DOI: 10.1016/j.diii.2020.01.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/19/2019] [Accepted: 01/05/2020] [Indexed: 12/29/2022]
|