1
|
Fintelmann FJ, Martin NA, Tahir I, Quinn EM, Allen TC, Joseph L, Nikolic B, Lee C. Optimizing molecular testing of lung cancer needle biopsy specimens: potential solutions from an interdisciplinary qualitative study. Respir Res 2023; 24:17. [PMID: 36650544 PMCID: PMC9847026 DOI: 10.1186/s12931-023-02321-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 01/09/2023] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Molecular testing can detect actionable genomic alterations and tumor cell surface proteins in patients with non-small cell lung cancer (NSCLC). However, utilization remains suboptimal, representing missed treatment opportunities. This study aimed to identify challenges and potential solutions to obtaining percutaneous lung needle biopsy specimens for successful molecular testing in patients with advanced NSCLC. METHODS This interdisciplinary qualitative study included ten radiologists and four pathologists from academic and community settings across the United States who routinely perform and analyze percutaneous lung needle biopsies. Participants underwent semi-structured one-on-one interviews (Phase 1). Interview questionnaires were constructed based on a literature review of key lines of inquiry and conducted by professional market researchers using the theoretical domains framework. Primary barriers to molecular testing were identified using thematic analysis. Subsequently, multidisciplinary focus groups were convened to identify potential solutions (Phase 2). RESULTS Four themes emerged as barriers to molecular testing and were matched to the clinical workflow: (1) biopsy request, (2) biopsy procedure, (3) specimen analysis, and (4) communication. The nineteen potential solutions included adding a "checkbox" to indicate molecular testing in the biopsy request, leveraging pre-procedural imaging to guide biopsies, conserving tissue through appropriate allocation strategies and next generation sequencing panels instead of sequential single-gene assays, instituting reflex-molecular testing upon NSCLC diagnosis, tracking and communicating biopsy outcomes at multidisciplinary tumor boards, and improving integration of radiologists and pathologists into oncology care teams. CONCLUSIONS Potential solutions exist to increase successful molecular testing of lung needle biopsy specimens in patients with advanced NSCLC.
Collapse
Affiliation(s)
- Florian J. Fintelmann
- grid.32224.350000 0004 0386 9924Department of Radiology, Division of Thoracic Imaging and Intervention, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114 USA
| | - Nikki A. Martin
- grid.443873.f0000 0004 0422 4933LUNGevity Foundation, Bethesda, MD USA
| | - Ismail Tahir
- grid.32224.350000 0004 0386 9924Department of Radiology, Division of Thoracic Imaging and Intervention, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114 USA
| | - Elissa M. Quinn
- grid.497611.c0000 0004 1794 1958Blueprint Medicines, Boston, MA USA
| | | | - Lija Joseph
- grid.461527.30000 0004 0383 4123Lowell General Hospital, Lowell, MA USA
| | - Boris Nikolic
- grid.439147.c0000 0004 0628 7583Wyoming Valley Radiology Associates, Wilkes-Barre General Hospital, Wilkes-Barre, PA USA
| | - Christopher Lee
- grid.50956.3f0000 0001 2152 9905Department of Imaging, Cedars-Sinai Medical Center, Los Angeles, CA USA
| |
Collapse
|
2
|
Padinharayil H, Alappat RR, Joy LM, Anilkumar KV, Wilson CM, George A, Valsala Gopalakrishnan A, Madhyastha H, Ramesh T, Sathiyamoorthi E, Lee J, Ganesan R. Advances in the Lung Cancer Immunotherapy Approaches. Vaccines (Basel) 2022; 10:1963. [PMID: 36423060 PMCID: PMC9693102 DOI: 10.3390/vaccines10111963] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/13/2022] [Accepted: 11/17/2022] [Indexed: 09/19/2023] Open
Abstract
Despite the progress in the comprehension of LC progression, risk, immunologic control, and treatment choices, it is still the primary cause of cancer-related death. LC cells possess a very low and heterogeneous antigenicity, which allows them to passively evade the anticancer defense of the immune system by educating cytotoxic lymphocytes (CTLs), tumor-infiltrating lymphocytes (TILs), regulatory T cells (Treg), immune checkpoint inhibitors (ICIs), and myeloid-derived suppressor cells (MDSCs). Though ICIs are an important candidate in first-line therapy, consolidation therapy, adjuvant therapy, and other combination therapies involving traditional therapies, the need for new predictive immunotherapy biomarkers remains. Furthermore, ICI-induced resistance after an initial response makes it vital to seek and exploit new targets to benefit greatly from immunotherapy. As ICIs, tumor mutation burden (TMB), and microsatellite instability (MSI) are not ideal LC predictive markers, a multi-parameter analysis of the immune system considering tumor, stroma, and beyond can be the future-oriented predictive marker. The optimal patient selection with a proper adjuvant agent in immunotherapy approaches needs to be still revised. Here, we summarize advances in LC immunotherapy approaches with their clinical and preclinical trials considering cancer models and vaccines and the potential of employing immunology to predict immunotherapy effectiveness in cancer patients and address the viewpoints on future directions. We conclude that the field of lung cancer therapeutics can benefit from the use of combination strategies but with comprehension of their limitations and improvements.
Collapse
Affiliation(s)
- Hafiza Padinharayil
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 680005, Kerala, India
| | - Reema Rose Alappat
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 680005, Kerala, India
| | - Liji Maria Joy
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 680005, Kerala, India
| | - Kavya V. Anilkumar
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 680005, Kerala, India
| | - Cornelia M. Wilson
- Life Sciences Industry Liaison Lab, School of Psychology and Life Sciences, Canterbury Christ Church University, Sandwich CT13 9ND, UK
| | - Alex George
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 680005, Kerala, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Harishkumar Madhyastha
- Department of Cardiovascular Physiology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Thiyagarajan Ramesh
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | | | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Raja Ganesan
- Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon 24253, Republic of Korea
| |
Collapse
|
3
|
Padinharayil H, Varghese J, John MC, Rajanikant GK, Wilson CM, Al-Yozbaki M, Renu K, Dewanjee S, Sanyal R, Dey A, Mukherjee AG, Wanjari UR, Gopalakrishnan AV, George A. Non-small cell lung carcinoma (NSCLC): Implications on molecular pathology and advances in early diagnostics and therapeutics. Genes Dis 2022. [DOI: 10.1016/j.gendis.2022.07.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
|
4
|
Yang Y, Lu J, Ma Y, Xi C, Kang J, Zhang Q, Jia X, Liu K, Du S, Kocher F, Seeber A, Gridelli C, Provencio M, Seki N, Tomita Y, Zhang X. Evaluation of the reporting quality of clinical practice guidelines on lung cancer using the RIGHT checklist. Transl Lung Cancer Res 2021; 10:2588-2602. [PMID: 34295664 PMCID: PMC8264321 DOI: 10.21037/tlcr-21-405] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 06/11/2021] [Indexed: 01/09/2023]
Abstract
BACKGROUND In recent years, the number of clinical practice guidelines (CPGs) for lung cancer has increased, but the quality of these guidelines has not been systematically assessed so far. Our aim was to assess the reporting quality of CPGs on lung cancer published since 2018 using the International Reporting Items for Practice Guidelines in Health Care (RIGHT) instrument. METHODS We systematically searched the major electronic literature databases, guideline databases and medical society websites from January 2018 to November 2020 to identify all CPGs for small cell and non-small cell lung cancer (NSCLC). The search and extraction were completed using standardized forms. The quality of included guidelines was evaluated using the RIGHT statement. We present the results descriptively, including a stratification by selected determinants. RESULTS A total of 49 CPGs were included. The mean proportion across the guidelines of the 22 items of the RIGHT checklist that were appropriately reported was 57.9%. The items most common to be poorly reported were quality assurance (item 17) and description of the role of funders (item 18b), both of which were reported in only one guideline. The proportions of items within each of the seven domains of the RIGHT checklist that were correctly reported were Basic information 75.9%; background 83.2%; evidence 44.5%; recommendations 55.4%; review and quality assurance 12.2%; funding and declaration and management of interests 42.9%; and other information 38.1%. The reporting quality of guidelines did not differ between publication years. CPGs published in journals with impact factor >30 tended to be best reported. CONCLUSIONS Our results revealed that reporting in CPGs for lung cancer is suboptimal. Particularly the declaration of funding and quality assurance are poorly reported in recent CPGs on lung cancer.
Collapse
Affiliation(s)
- Yongjie Yang
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China;,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Jingli Lu
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China;,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Yanfang Ma
- School of Chinese Medicine of Hong Kong Baptist University, Hong Kong, China
| | - Chen Xi
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China;,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Jian Kang
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China;,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Qiwen Zhang
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China;,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Xuedong Jia
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China;,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Kefeng Liu
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China;,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Shuzhang Du
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China;,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Florian Kocher
- Department of Hematology and Oncology, Comprehensive Cancer Center Innsbruck, Medical University Innsbruck, Innsbruck, Austria
| | - Andreas Seeber
- Department of Hematology and Oncology, Comprehensive Cancer Center Innsbruck, Medical University Innsbruck, Innsbruck, Austria
| | - Cesare Gridelli
- A.O.R.N. San Giuseppe Moscati, Contrada Amoretta, Avellino, AV, Italy
| | - Mariano Provencio
- Medical Oncology Department, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | - Nobuhiko Seki
- Division of Medical Oncology, Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Yusuke Tomita
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Xiaojian Zhang
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China;,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
5
|
Abstract
PURPOSE OF REVIEW Radiogenomics is a growing field that has garnered immense interest over the past decade, owing to its numerous applications in the field of oncology and its potential value in improving patient outcomes. Current applications have only begun to delve into the potential of radiogenomics, and particularly in interventional oncology, there is room for development and increased value of these applications. RECENT FINDINGS The field of interventional oncology (IO) has seen valuable radiogenomic applications, from prediction of response to locoregional therapies in hepatocellular carcinoma to identification of genetic mutations in non-small cell lung cancer. Future directions that can increase the value of radiogenomics include applications that address tumor heterogeneity, predict immune responsiveness of tumors, and differentiate between oligoprogression and early widespread progression, among others. Radiogenomics, whether in terms of methodologies or applications, is still in the early stages of development and far from maturation. Future applications, particularly in the field of interventional oncology, will allow realization of its full potential.
Collapse
|