1
|
Mørup SD, Mussmann B, Pedersen MRV, Rasumssen LM, Gaarde K, Jensen J. 3D wrist imaging - Is it time for superman to retire? J Clin Imaging Sci 2023; 13:39. [PMID: 38205276 PMCID: PMC10778063 DOI: 10.25259/jcis_64_2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 11/23/2023] [Indexed: 01/12/2024] Open
Abstract
Objectives Computed tomography (CT) of the wrist may be challenged, due to patients' inability to extend the arm for a "Superman pose" resulting in increased radiation dose due to scatter. Alternative positions and less dose administering modalities such as 3D Cone-beam CT (CBCT) and single-shot CT could be considered. This phantom study aimed to estimate scatter radiation dose in different phantom positions using helical and single-shot CT and 3D CBCT. Material and Methods Wireless electronic dosimeters attached to the head and chest of an anthropomorphic phantom in various clinically relevant positions were used to measure scatter radiation. In helical CT, the following positions were used: Superman pose, semi-superman pose, wrist on the abdomen, and single-shot CT with the patient sitting in front of and behind the gantry. In 3D CBCT, the phantom was in a supine position with the arm extended laterally. Results Helical CT using the Superman pose resulted in a total scattered radiation dose of 64.8 µGy. The highest total dose (269.7 µGy) was obtained with the wrist positioned on the abdomen while the lowest total dose was achieved in single-shot CT with the phantom sitting behind the gantry with the forearm placed inside the gantry (3.2 µGy). The total dose in 3D CBCT was 171.1 µGy. Conclusion The commonly used semi-superman and wrist-on-abdomen positions in CT administer the highest scattered doses and should be avoided when either single-shot CT or 3D CBCT is available. Radiographers should carefully consider alternatives when a patient referred for wrist CT cannot comply with the Superman position.
Collapse
Affiliation(s)
| | - Bo Mussmann
- Department of Radiology, Odense University Hospital, Odense, Denmark
| | - Malene Roland Vils Pedersen
- Department of Regional Health Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | | | - Katrine Gaarde
- Health Sciences Research Centre, University College Lilleaelt, Odense, Denmark
| | - Janni Jensen
- Research and Innovation Unit of Radiology, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
2
|
Kim K, Lim CY, Shin J, Chung MJ, Jung YG. Enhanced artificial intelligence-based diagnosis using CBCT with internal denoising: Clinical validation for discrimination of fungal ball, sinusitis, and normal cases in the maxillary sinus. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 240:107708. [PMID: 37473588 DOI: 10.1016/j.cmpb.2023.107708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 07/22/2023]
Abstract
BACKGROUND AND OBJECTIVE The cone-beam computed tomography (CBCT) provides three-dimensional volumetric imaging of a target with low radiation dose and cost compared with conventional computed tomography, and it is widely used in the detection of paranasal sinus disease. However, it lacks the sensitivity to detect soft tissue lesions owing to reconstruction constraints. Consequently, only physicians with expertise in CBCT reading can distinguish between inherent artifacts or noise and diseases, restricting the use of this imaging modality. The development of artificial intelligence (AI)-based computer-aided diagnosis methods for CBCT to overcome the shortage of experienced physicians has attracted substantial attention. However, advanced AI-based diagnosis addressing intrinsic noise in CBCT has not been devised, discouraging the practical use of AI solutions for CBCT. We introduce the development of AI-based computer-aided diagnosis for CBCT considering the intrinsic imaging noise and evaluate its efficacy and implications. METHODS We propose an AI-based computer-aided diagnosis method using CBCT with a denoising module. This module is implemented before diagnosis to reconstruct the internal ground-truth full-dose scan corresponding to an input CBCT image and thereby improve the diagnostic performance. The proposed method is model agnostic and compatible with various existing and future AI-based denoising or diagnosis models. RESULTS The external validation results for the unified diagnosis of sinus fungal ball, chronic rhinosinusitis, and normal cases show that the proposed method improves the micro-, macro-average area under the curve, and accuracy by 7.4, 5.6, and 9.6% (from 86.2, 87.0, and 73.4 to 93.6, 92.6, and 83.0%), respectively, compared with a baseline while improving human diagnosis accuracy by 11% (from 71.7 to 83.0%), demonstrating technical differentiation and clinical effectiveness. In addition, the physician's ability to evaluate the AI-derived diagnosis results may be enhanced compared with existing solutions. CONCLUSION This pioneering study on AI-based diagnosis using CBCT indicates that denoising can improve diagnostic performance and reader interpretability in images from the sinonasal area, thereby providing a new approach and direction to radiographic image reconstruction regarding the development of AI-based diagnostic solutions. Furthermore, we believe that the performance enhancement will expedite the adoption of automated diagnostic solutions using CBCT, especially in locations with a shortage of skilled clinicians and limited access to high-dose scanning.
Collapse
Affiliation(s)
- Kyungsu Kim
- Medical AI Research Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, Republic of Korea; Department of Data Convergence and Future Medicine, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea; Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Chae Yeon Lim
- Department of Medical Device Management and Research, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea
| | - Joongbo Shin
- Department of Otorhinolaryngology-Head and Neck Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Myung Jin Chung
- Medical AI Research Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, Republic of Korea; Department of Data Convergence and Future Medicine, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea; Department of Medical Device Management and Research, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea; Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Yong Gi Jung
- Medical AI Research Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, Republic of Korea; Department of Data Convergence and Future Medicine, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea; Department of Otorhinolaryngology-Head and Neck Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
3
|
Kanawati A, Constantinidis A, Williams Z, O'Brien R, Reynolds T. Generating patient-matched 3D-printed pedicle screw and laminectomy drill guides from Cone Beam CT images: Studies in ovine and porcine cadavers. Med Phys 2022; 49:4642-4652. [PMID: 35445429 PMCID: PMC9544846 DOI: 10.1002/mp.15681] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 04/05/2022] [Accepted: 04/17/2022] [Indexed: 11/22/2022] Open
Abstract
Background The emergence of robotic Cone Beam Computed Tomography (CBCT) imaging systems in trauma departments has enabled 3D anatomical assessment of musculoskeletal injuries, supplementing conventional 2D fluoroscopic imaging for examination, diagnosis, and treatment planning. To date, the primary focus has been on trauma sites in the extremities. Purpose To determine if CBCT images can be used during the treatment planning process in spinal instrumentation and laminectomy procedures, allowing accurate 3D‐printed pedicle screw and laminectomy drill guides to be generated for the cervical and thoracic spine. Methods The accuracy of drill guides generated from CBCT images was assessed using animal cadavers (ovine and porcine). Preoperative scans were acquired using a robotic CBCT C‐arm system, the Siemens ARTIS pheno (Siemens Healthcare, GmbH, Germany). The CBCT images were imported into 3D‐Slicer version 4.10.2 (www.slicer.org) where vertebral models and specific guides were developed and subsequently 3D‐printed. In the ovine cadaver, 11 pedicle screw guides from the T1–T5 and T7–T12 vertebra and six laminectomy guides from the C2–C7 vertebra were planned and printed. In the porcine cadaver, nine pedicle screw guides from the C3–T4 vertebra were planned and printed. For the pedicle screw guides, accuracy was assessed by three observers according to pedicle breach via the Gertzbein–Robbins grading system as well as measured mean axial and sagittal screw error via postoperative CBCT and CT scans. For the laminectomies, the guides were designed to leave 1 mm of lamina. The average thickness of the lamina at the mid‐point was used to assess the accuracy of the guides, measured via postoperative CBCT and CT scans from three observers. For all measurements, the intraclass correlation coefficient (ICC) was calculated to determine observer reliability. Results Compared with the planned screw angles for both the ovine and porcine procedures (n = 32), the mean axial and sagittal screw error measured on the postoperative CBCT scans from three observers were 3.9 ± 1.9° and 1.8 ± 0.8°, respectively. The ICC among the observes was 0.855 and 0.849 for the axial and sagittal measurements, respectively, indicating good reliability. In the ovine cadaver, directly comparing the measured axial and sagittal screw angle of the visible screws (n = 14) in the postoperative CBCT and conventional CT scans from three observers revealed an average difference 1.9 ± 1.0° in axial angle and 1.8 ± 1.0° in the sagittal angle. The average thickness of the lamina at the middle of each vertebra, as measured on‐screen in the postoperative CBCT scans by three observes was 1.6 ± 0.2 mm. The ICC among observers was 0.693, indicating moderate reliability. No lamina breaches were observed in the postoperative images. Conclusion Here, CBCT images have been used to generate accurate 3D‐printed pedicle screw and laminectomy drill guides for use in the cervical and thoracic spine. The results demonstrate sufficient precision compared with those previously reported, generated from standard preoperative CT and MRI scans, potentially expanding the treatment planning capabilities of robotic CBCT imaging systems in trauma departments and operating rooms.
Collapse
Affiliation(s)
| | | | - Zoe Williams
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, 2006, Australia
| | - Ricky O'Brien
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, 2006, Australia
| | - Tess Reynolds
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, 2006, Australia
| |
Collapse
|
4
|
Hwang JH, Kim SB, Choi MK, Lee KB, Park CK. Clinical application of the optimized X-ray parameter model through analysis of disease risk and image quality when combining the ion chamber of automatic exposure control of digital radiography. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY 2022; 30:1099-1114. [PMID: 36120755 DOI: 10.3233/xst-221254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
OBJECTIVE To present an optimized examination model by analyzing the risk of disease and image quality according to the combination of the ion chamber of automatic exposure control (AEC) with digital radiography (DR). METHODS The X-ray quality was analyzed by first calculating the percentage average error (PAE) of DR. After that, when using AEC, the combination of the ion chambers was the same as the left and centre and right, right and centre, left and centre, centre, right, and left, for a total of six. Accordingly, the entrance surface dose (ESD), risk of disease, and image quality were evaluated. ESD was obtained by attaching a semiconductor dosimeter to the L4 level of the lumbar spine, and then irradiating X-rays to dosimeter centre through average and standard deviation of radiation dose. The calculated ESD was input into the PCXMC 2.0 programme to evaluate disease risk caused by radiation. Meanwhile, image quality according to chamber combination was quantified as the signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) through Image J. RESULTS X-ray quality of DR used in the experiment was within the normal range of±10. ESD of six ion chamber combinations was 1.363mGy, 0.964mGy, 0.946mGy, 0.866mGy, 0.748mGy, 0.726mGy for lumbar anteroposterior (AP), and the lumbar lateral values were 1.126mGy, 0.209mGy, 0.830mGy, 0.662mGy, 0.111mGy, and 0.250mGy, respectively. Meanwhile, disease risk analyzed through PCXMC 2.0 was bone marrow, colon, liver, lung, stomach, urinary and other tissue cancer, and disease risk showed a tendency to increase in proportion to ESD. SNR and CNR recorded the lowest values when three chambers were combined and did not show proportionality with dose, while showed the highest values when two chambers were combined. CONCLUSION In this study, combination of three ion chambers showed the highest disease risk and lowest image quality. Using one ion chamber showed the lowest disease risk, but lower image quality than two ion chambers. Therefore, if considering all above factors, combination of two ion chambers can optimally maintain the disease risk and image quality. Thus, it is considered an optimal X-ray examination parameter.
Collapse
Affiliation(s)
- Jun-Ho Hwang
- Department of Neurosurgery, Kyung Hee University Medical Center, Seoul, Korea
| | - Sung-Bum Kim
- Department of Neurosurgery, Kyung Hee University Medical Center, Seoul, Korea
- Department of Neurosurgery, Kyung Hee University College of Medicine, Seoul, Korea
| | - Man-Kyu Choi
- Department of Neurosurgery, Kyung Hee University Medical Center, Seoul, Korea
- Department of Neurosurgery, Kyung Hee University College of Medicine, Seoul, Korea
| | - Kyung-Bae Lee
- Department of Radiology, Kyung Hee University Medical Center, Seoul, Korea
| | - Chang-Kyu Park
- Department of Neurosurgery, Kyung Hee University Medical Center, Seoul, Korea
- Department of Neurosurgery, Kyung Hee University College of Medicine, Seoul, Korea
| |
Collapse
|
5
|
Evaluation of Ultra-High-Resolution Cone-Beam CT Prototype of Twin Robotic Radiography System for Cadaveric Wrist Imaging. Acad Radiol 2021; 28:e314-e322. [PMID: 32654956 DOI: 10.1016/j.acra.2020.06.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/12/2020] [Accepted: 06/13/2020] [Indexed: 01/14/2023]
Abstract
RATIONALE AND OBJECTIVES Cone-beam CT (CBCT) applications possess potential for dose reduction in musculoskeletal imaging. This study evaluates the ultra-high-resolution CBCT prototype of a twin robotic X-ray system in wrist examinations compared to high-resolution multidetector CT (MDCT). MATERIALS AND METHODS Sixteen wrists of body donors were examined with the CBCT scan mode and a 384 slice MDCT system. Radiation-equivalent low-dose (CTDIvol(16cm) = 3.3 mGy) and full-dose protocols (CTDIvol(16cm) = 13.8 mGy) were used for both systems. Two observers assessed image quality on a seven-point Likert scale. In addition, software-assisted quantification of signal intensity fractions in cancellous bone was performed. Fewer pixels with intermediate signal intensity were considered to indicate superior depiction of bone microarchitecture. RESULTS Subjective image quality in CBCT was superior to dose equivalent MDCT with p ≤ 0.03 for full-dose and p < 0.001 for low-dose scans, respectively. Median Likert values were 7/7 (reader 1 / reader 2) in full-dose CBCT, 6/6 in full-dose MDCT, 5/6 in low-dose CBCT and 3/3 in low-dose MDCT. Intraclass correlation coefficient was 0.936 (95% confidence interval, 0.897-0.961; p < 0.001), indicating excellent reliability. Objective analysis displayed smaller fractions of "indecisive" pixels with intermediate signal intensity for full-dose CBCT (0.57 [interquartile range 0.13]) compared to full-dose MDCT (0.68 [0.21]), low-dose CBCT (0.72 [0.19]), and low-dose MDCT (0.80 [0.15]) studies. No significant difference was observed between low-dose CBCT and full-dose MDCT. CONCLUSION The new CBCT prototype provides superior image quality for trabecula and bone marrow in cadaveric wrist studies and enables dose reduction up to 75% compared to high-resolution MDCT.
Collapse
|
6
|
Grunz JP, Pennig L, Fieber T, Gietzen CH, Heidenreich JF, Huflage H, Gruschwitz P, Kuhl PJ, Petritsch B, Kosmala A, Bley TA, Gassenmaier T. Twin robotic x-ray system in small bone and joint trauma: impact of cone-beam computed tomography on treatment decisions. Eur Radiol 2020; 31:3600-3609. [PMID: 33280057 PMCID: PMC8128787 DOI: 10.1007/s00330-020-07563-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 09/24/2020] [Accepted: 11/25/2020] [Indexed: 12/11/2022]
Abstract
Objectives Trauma evaluation of extremities can be challenging in conventional radiography. A multi-use x-ray system with cone-beam CT (CBCT) option facilitates ancillary 3-D imaging without repositioning. We assessed the clinical value of CBCT scans by analyzing the influence of additional findings on therapy. Methods Ninety-two patients underwent radiography and subsequent CBCT imaging with the twin robotic scanner (76 wrist/hand/finger and 16 ankle/foot/toe trauma scans). Reports by on-call radiologists before and after CBCT were compared regarding fracture detection, joint affliction, comminuted injuries, and diagnostic confidence. An orthopedic surgeon recommended therapy based on reported findings. Surgical reports (N = 52) and clinical follow-up (N = 85) were used as reference standard. Results CBCT detected more fractures (83/64 of 85), joint involvements (69/53 of 71), and multi-fragment situations (68/50 of 70) than radiography (all p < 0.001). Six fractures suspected in radiographs were ruled out by CBCT. Treatment changes based on additional information from CBCT were recommended in 29 patients (31.5%). While agreement between advised therapy before CBCT and actual treatment was moderate (κ = 0.41 [95% confidence interval 0.35–0.47]; p < 0.001), agreement after CBCT was almost perfect (κ = 0.88 [0.83–0.93]; p < 0.001). Diagnostic confidence increased considerably for CBCT studies (p < 0.001). Median effective dose for CBCT was 4.3 μSv [3.3–5.3 μSv] compared to 0.2 μSv [0.1–0.2 μSv] for radiography. Conclusions CBCT provides advantages for the evaluation of acute small bone and joint trauma by detecting and excluding extremity fractures and fracture-related findings more reliably than radiographs. Additional findings induced therapy change in one third of patients, suggesting substantial clinical impact. Key Points • With cone-beam CT, extremity fractures and fracture-related findings can be detected and ruled out more reliably than with conventional radiography. • Additional diagnostic information provided by cone-beam CT scans has substantial impact on therapy in small bone and joint trauma. • For distal extremity injury assessment, one-stop-shop imaging without repositioning is feasible with the twin robotic x-ray system.
Collapse
Affiliation(s)
- Jan-Peter Grunz
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080, Würzburg, Germany.
| | - Lenhard Pennig
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Straße 62, 50937, Cologne, Germany
| | - Tabea Fieber
- Department of Trauma, Hand, Plastic and Reconstructive Surgery, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080, Würzburg, Germany
| | - Carsten Herbert Gietzen
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080, Würzburg, Germany
| | - Julius Frederik Heidenreich
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080, Würzburg, Germany
| | - Henner Huflage
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080, Würzburg, Germany
| | - Philipp Gruschwitz
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080, Würzburg, Germany
| | - Philipp Josef Kuhl
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080, Würzburg, Germany
| | - Bernhard Petritsch
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080, Würzburg, Germany
| | - Aleksander Kosmala
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080, Würzburg, Germany
| | - Thorsten Alexander Bley
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080, Würzburg, Germany
| | - Tobias Gassenmaier
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080, Würzburg, Germany
| |
Collapse
|
7
|
Comparison of 3D X-ray tomography with computed tomography in patients with distal extremity fractures. Skeletal Radiol 2020; 49:1965-1975. [PMID: 32556952 DOI: 10.1007/s00256-020-03508-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/29/2020] [Accepted: 06/07/2020] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To compare fracture detection, image quality, and radiation dose in patients with distal extremity fractures using 3D tomography and computed tomography (CT). MATERIALS AND METHODS IRB approval was obtained including informed consent for this prospective study from June to December 2016. Patients diagnosed with an acute fracture at CT were consecutively scanned on the same day using 3D tomography. Anatomical location (effected bone and location within the bone) and morphological characteristics of fractures (avulsion, articular involvement, mono- vs. multifragmented, displacement), visibility of bone/soft tissue structures, and image quality were assessed independently by two blinded readers on a 5-point Likert scale. Dose-length-product (DLP; mGy*cm) was compared between both modalities. Descriptive statistics, Wilcoxon signed rank test (P < 0.05), Student's t test (P < 0.05), and Cohen's kappa (κ) for interreader reliability were calculated. RESULTS In 46 patients (28 males; 18 females; mean age, 53 ± 20 years) with 28 hand/wrist and 18 foot/ankle examinations, 86 out of 92 fractures were diagnosed with 3D tomography compared with CT. No false-positive finding occurred at 3D tomography. The six missed fractures on 3D tomography were five avulsion fractures of the carpals/metacarpals or tarsals/metatarsals, respectively, and one nondisplaced fracture of the capitate. Interreader agreement of anatomical location and morphological characteristics was substantial to almost perfect for upper (κ = 0.80-0.96) and lower (κ = 0.70-0.97) extremity fractures. Visibility of bone and soft tissue structures and image quality were slightly inferior using 3D tomography compared with CT (upper extremity P < 0.001-0.038 and lower extremity P < 0.001-0.035). DLP of a comparable scan coverage was significantly lower for 3D tomography (P < 0.001) for both upper (3D mean, 19.4 ± 5.9 mGy*cm; estimated CT mean, 336.5 ± 52.2 mGy*cm) and lower extremities (3D mean, 24.1 ± 11.1 mGy*cm; estimated CT mean, 182.9 ± 6.5 mGy*cm). Even the highest DLP with 3D tomography was < 30% of the mean estimated CT dose of a comparable area of coverage. CONCLUSION Fracture assessment of peripheral extremities is reliable utilizing a low-dose 3D tomography X-ray system, with slightly reduced image quality.
Collapse
|
8
|
In vivo 3D tomography of the lumbar spine using a twin robotic X-ray system: quantitative and qualitative evaluation of the lumbar neural foramina in supine and upright position. Eur Radiol 2020; 31:3478-3490. [PMID: 33119812 PMCID: PMC8043878 DOI: 10.1007/s00330-020-07355-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/27/2020] [Accepted: 09/16/2020] [Indexed: 11/27/2022]
Abstract
OBJECTIVES Supine lumbar spine examinations underestimate body weight effects on neuroforaminal size. Therefore, our purpose was to evaluate size changes of the lumbar neuroforamina using supine and upright 3D tomography and to initially assess image quality compared with computed tomography (CT). METHODS The lumbar spines were prospectively scanned in 48 patients in upright (3D tomographic twin robotic X-ray) and supine (30 with 3D tomography, 18 with CT) position. Cross-sectional area (CSA), cranio-caudal (CC), and ventro-dorsal (VD) diameters of foramina were measured by two readers and additionally graded in relation to the intervertebral disc height. Visibility of bone/soft tissue structures and image quality were assessed independently on a 5-point Likert scale for the 18 patients scanned with both modalities. Descriptive statistics, Wilcoxon's signed-rank test (p < 0.05), and interreader reliability were calculated. RESULTS Neuroforaminal size significantly decreased at all levels for both readers from the supine (normal intervertebral disc height; CSA 1.25 ± 0.32 cm2; CC 1.84 ± 0.24 cm2; VD 0.88 ± 0.16 cm2) to upright position (CSA 1.12 ± 0.34 cm2; CC 1.78 ± 0.24 cm2; VD 0.83 ± 0.16 cm2; each p < 0.001). Decrease in intervertebral disc height correlated with decrease in foraminal size (supine: CSA 0.88 ± 0.34 cm2; CC 1.39 ± 0.33 cm2; VD 0.87 ± 0.26 cm2; upright: CSA 0.83 ± 0.37 cm2, p = 0.010; CC 1.32 ± 0.33 cm2, p = 0.015; VD 0.80 ± 0.21 cm2, p = 0.021). Interreader reliability for area was fair to excellent (0.51-0.89) with a wide range for cranio-caudal (0.32-0.74) and ventro-dorsal (0.03-0.70) distances. Image quality was superior for CT compared with that for 3D tomography (p < 0.001; κ, CT = 0.66-0.92/3D tomography = 0.51-1.00). CONCLUSIONS The size of the lumbar foramina is smaller in the upright weight-bearing position compared with that in the supine position. Image quality, especially nerve root delineation, is inferior using 3D tomography compared to CT. KEY POINTS • Weight-bearing examination demonstrates a decrease of the neuroforaminal size. • Patients with higher decrease in intervertebral disc showed a narrower foraminal size. • Image quality is superior with CT compared to 3D tomographic twin robotic X-ray at the lumbar spine.
Collapse
|
9
|
Grunz JP, Weng AM, Kunz AS, Veyhl-Wichmann M, Schmitt R, Gietzen CH, Pennig L, Herz S, Ergün S, Bley TA, Gassenmaier T. 3D cone-beam CT with a twin robotic x-ray system in elbow imaging: comparison of image quality to high-resolution multidetector CT. Eur Radiol Exp 2020; 4:52. [PMID: 32895778 PMCID: PMC7477066 DOI: 10.1186/s41747-020-00177-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/03/2020] [Indexed: 02/07/2023] Open
Abstract
Background Elbow imaging is challenging with conventional multidetector computed tomography (MDCT), while cone-beam CT (CBCT) provides superior options. We compared intra-individually CBCT versus MDCT image quality in cadaveric elbows. Methods A twin robotic x-ray system with new CBCT mode and a high-resolution clinical MDCT were compared in 16 cadaveric elbows. Both systems were operated with a dedicated low-dose (LD) protocol (equivalent volume CT dose index [CTDIvol(16 cm)] = 3.3 mGy) and a regular clinical scan dose (RD) protocol (CTDIvol(16 cm) = 13.8 mGy). Image quality was evaluated by two radiologists (R1 and R2) on a seven-point Likert scale, and estimation of signal intensity in cancellous bone was conducted. Wilcoxon signed-rank tests and intraclass correlation coefficient (ICC) statistics were used. Results The CBCT prototype provided superior subjective image quality compared to MDCT scans (for RD, p ≤ 0.004; for LD, p ≤ 0.001). Image quality was rated very good or excellent in 100% of the cases by both readers for RD CBCT, 100% (R1) and 93.8% (R2) for LD CBCT, 62.6% and 43.8% for RD MDCT, and 0.0% and 0.0% for LD MDCT. Single-measure ICC was 0.95 (95% confidence interval 0.91–0.97; p < 0.001). Software-based assessment supported subjective findings with less “undecided” pixels in CBCT than dose-equivalent MDCT (p < 0.001). No significant difference was found between LD CBCT and RD MDCT. Conclusions In cadaveric elbow studies, the tested cone-beam CT prototype delivered superior image quality compared to high-end multidetector CT and showed a potential for considerable dose reduction.
Collapse
Affiliation(s)
- Jan-Peter Grunz
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080, Würzburg, Germany.
| | - Andreas Max Weng
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080, Würzburg, Germany
| | - Andreas Steven Kunz
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080, Würzburg, Germany
| | - Maike Veyhl-Wichmann
- Institute of Anatomy and Cell Biology, University of Würzburg, Koellikerstraße 6, 97070, Würzburg, Germany
| | - Rainer Schmitt
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080, Würzburg, Germany
| | - Carsten Herbert Gietzen
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080, Würzburg, Germany
| | - Lenhard Pennig
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Straße 62, 50937, Cologne, Germany
| | - Stefan Herz
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080, Würzburg, Germany
| | - Süleyman Ergün
- Institute of Anatomy and Cell Biology, University of Würzburg, Koellikerstraße 6, 97070, Würzburg, Germany
| | - Thorsten Alexander Bley
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080, Würzburg, Germany
| | - Tobias Gassenmaier
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080, Würzburg, Germany
| |
Collapse
|
10
|
Grunz JP, Gietzen CH, Grunz K, Bley T, Schmitt R. Imaging of Carpal Instabilities. ROFO-FORTSCHR RONTG 2020; 193:139-150. [DOI: 10.1055/a-1219-8158] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background The term “carpal instability” describes different debilitating wrist conditions, in which the carpus is unable to maintain its physiological range of motion and load transfer. Depending on the cause and location of the dysfunction, four groups can be defined: dissociative, non-dissociative, complex, and adaptive carpal instability. As the most common form by far, dissociative carpal instability can further be categorized as dorsal or palmar intercalated segment instability, contingent on the afflicted interosseous ligament.Method This review article outlines the different entities of carpal instability, their pathophysiology, and their clinical presentation. It further discusses the diagnostic significance of different imaging methods as well as the established treatment options for each form of instability in context with the current literature.Results and Conclusion Early detection and treatment of carpal instability are essential for preventing carpal osteoarthritis. Traumatic lesions of the scapholunate interosseous ligament are the most frequent cause of instability. They can occur in an isolated fashion or in context with other carpal injuries. While stress imaging and fluoroscopy facilitate the differentiation between dynamic and static forms of carpal instability, only MRI and CT/MR arthrography can directly reveal the extent of ligament discontinuity.Key Points:Citation Format
Collapse
Affiliation(s)
- Jan-Peter Grunz
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Germany
| | - Carsten Herbert Gietzen
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Germany
| | - Katharina Grunz
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Germany
| | - Thorsten Bley
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Germany
| | - Rainer Schmitt
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Germany
| |
Collapse
|