1
|
Granata V, Fusco R, De Muzio F, Brunese MC, Setola SV, Ottaiano A, Cardone C, Avallone A, Patrone R, Pradella S, Miele V, Tatangelo F, Cutolo C, Maggialetti N, Caruso D, Izzo F, Petrillo A. Radiomics and machine learning analysis by computed tomography and magnetic resonance imaging in colorectal liver metastases prognostic assessment. LA RADIOLOGIA MEDICA 2023; 128:1310-1332. [PMID: 37697033 DOI: 10.1007/s11547-023-01710-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 08/22/2023] [Indexed: 09/13/2023]
Abstract
OBJECTIVE The aim of this study was the evaluation radiomics analysis efficacy performed using computed tomography (CT) and magnetic resonance imaging in the prediction of colorectal liver metastases patterns linked to patient prognosis: tumor growth front; grade; tumor budding; mucinous type. Moreover, the prediction of liver recurrence was also evaluated. METHODS The retrospective study included an internal and validation dataset; the first was composed by 119 liver metastases from 49 patients while the second consisted to 28 patients with single lesion. Radiomic features were extracted using PyRadiomics. Univariate and multivariate approaches including machine learning algorithms were employed. RESULTS The best predictor to identify tumor growth was the Wavelet_HLH_glcm_MaximumProbability with an accuracy of 84% and to detect recurrence the best predictor was wavelet_HLH_ngtdm_Complexity with an accuracy of 90%, both extracted by T1-weigthed arterial phase sequence. The best predictor to detect tumor budding was the wavelet_LLH_glcm_Imc1 with an accuracy of 88% and to identify mucinous type was wavelet_LLH_glcm_JointEntropy with an accuracy of 92%, both calculated on T2-weigthed sequence. An increase statistically significant of accuracy (90%) was obtained using a linear weighted combination of 15 predictors extracted by T2-weigthed images to detect tumor front growth. An increase statistically significant of accuracy at 93% was obtained using a linear weighted combination of 11 predictors by the T1-weigthed arterial phase sequence to classify tumor budding. An increase statistically significant of accuracy at 97% was obtained using a linear weighted combination of 16 predictors extracted on CT to detect recurrence. An increase statistically significant of accuracy was obtained in the tumor budding identification considering a K-nearest neighbors and the 11 significant features extracted T1-weigthed arterial phase sequence. CONCLUSIONS The results confirmed the Radiomics capacity to recognize clinical and histopathological prognostic features that should influence the choice of treatments in colorectal liver metastases patients to obtain a more personalized therapy.
Collapse
Affiliation(s)
- Vincenza Granata
- Division of Radiology, Istituto Nazionale Tumori IRCCS Fondazione Pascale - IRCCS di Napoli, Naples, Italy.
| | | | - Federica De Muzio
- Department of Medicine and Health Sciences V. Tiberio, University of Molise, 86100, Campobasso, Italy
| | - Maria Chiara Brunese
- Department of Medicine and Health Sciences V. Tiberio, University of Molise, 86100, Campobasso, Italy
| | - Sergio Venanzio Setola
- Division of Radiology, Istituto Nazionale Tumori IRCCS Fondazione Pascale - IRCCS di Napoli, Naples, Italy
| | - Alessandro Ottaiano
- Clinical Experimental Abdominal Oncology Unit, Istituto Nazionale Tumori, IRCCS Fondazione G. Pascale, 80131, Naples, Italy
| | - Claudia Cardone
- Clinical Experimental Abdominal Oncology Unit, Istituto Nazionale Tumori, IRCCS Fondazione G. Pascale, 80131, Naples, Italy
| | - Antonio Avallone
- Clinical Experimental Abdominal Oncology Unit, Istituto Nazionale Tumori, IRCCS Fondazione G. Pascale, 80131, Naples, Italy
| | - Renato Patrone
- Division of Hepatobiliary Surgical Oncology, Istituto Nazionale Tumori IRCCS Fondazione Pascale-IRCCS di Napoli, 80131, Naples, Italy
| | - Silvia Pradella
- Department of Radiology, Careggi University Hospital, Largo Brambilla 3, 50134, Florence, Italy
- SIRM Foundation, Italian Society of Medical and Interventional Radiology (SIRM), 20122, Milan, Italy
| | - Vittorio Miele
- Department of Radiology, Careggi University Hospital, Largo Brambilla 3, 50134, Florence, Italy
- SIRM Foundation, Italian Society of Medical and Interventional Radiology (SIRM), 20122, Milan, Italy
| | - Fabiana Tatangelo
- Division of Pathological Anatomy and Cytopathology, Istituto Nazionale Tumori IRCCS Fondazione Pascale-IRCCS di Napoli, 80131, Naples, Italy
| | - Carmen Cutolo
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84084, Salerno, Italy
| | - Nicola Maggialetti
- Department of Medical Science, Neuroscience and Sensory Organs (DSMBNOS), University of Bari "Aldo Moro", 70124, Bari, Italy
| | - Damiano Caruso
- Department of Medical Surgical Sciences and Translational Medicine, Radiology Unit-Sant'Andrea University Hospital, Sapienza-University of Rome, 00189, Rome, Italy
| | - Francesco Izzo
- Division of Hepatobiliary Surgical Oncology, Istituto Nazionale Tumori IRCCS Fondazione Pascale-IRCCS di Napoli, 80131, Naples, Italy
| | - Antonella Petrillo
- Division of Radiology, Istituto Nazionale Tumori IRCCS Fondazione Pascale - IRCCS di Napoli, Naples, Italy
| |
Collapse
|
2
|
Granata V, Fusco R, Setola SV, Galdiero R, Maggialetti N, Patrone R, Ottaiano A, Nasti G, Silvestro L, Cassata A, Grassi F, Avallone A, Izzo F, Petrillo A. Colorectal liver metastases patients prognostic assessment: prospects and limits of radiomics and radiogenomics. Infect Agent Cancer 2023; 18:18. [PMID: 36927442 PMCID: PMC10018963 DOI: 10.1186/s13027-023-00495-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/07/2023] [Indexed: 03/18/2023] Open
Abstract
In this narrative review, we reported un up-to-date on the role of radiomics to assess prognostic features, which can impact on the liver metastases patient treatment choice. In the liver metastases patients, the possibility to assess mutational status (RAS or MSI), the tumor growth pattern and the histological subtype (NOS or mucinous) allows a better treatment selection to avoid unnecessary therapies. However, today, the detection of these features require an invasive approach. Recently, radiomics analysis application has improved rapidly, with a consequent growing interest in the oncological field. Radiomics analysis allows the textural characteristics assessment, which are correlated to biological data. This approach is captivating since it should allow to extract biological data from the radiological images, without invasive approach, so that to reduce costs and time, avoiding any risk for the patients. Several studies showed the ability of Radiomics to identify mutational status, tumor growth pattern and histological type in colorectal liver metastases. Although, radiomics analysis in a non-invasive and repeatable way, however features as the poor standardization and generalization of clinical studies results limit the translation of this analysis into clinical practice. Clear limits are data-quality control, reproducibility, repeatability, generalizability of results, and issues related to model overfitting.
Collapse
Affiliation(s)
- Vincenza Granata
- Division of Radiology, "Istituto Nazionale Tumori IRCCS Fondazione Pascale - IRCCS di Napoli", Naples, Italy.
| | - Roberta Fusco
- Medical Oncology Division, Igea SpA, Napoli, Italy.,Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Via della Signora 2, Milan, 20122, Italy
| | - Sergio Venanzio Setola
- Division of Radiology, "Istituto Nazionale Tumori IRCCS Fondazione Pascale - IRCCS di Napoli", Naples, Italy
| | - Roberta Galdiero
- Division of Radiology, "Istituto Nazionale Tumori IRCCS Fondazione Pascale - IRCCS di Napoli", Naples, Italy
| | - Nicola Maggialetti
- Department of Medical Science, Neuroscience and Sensory Organs (DSMBNOS), University of Bari "Aldo Moro", Bari, 70124, Italy
| | - Renato Patrone
- Division of Epatobiliary Surgical Oncology, Istituto Nazionale Tumori IRCCS Fondazione Pascale-IRCCS di Napoli, Naples, 80131, Italy
| | - Alessandro Ottaiano
- Clinical Sperimental Abdominal Oncology Unit, Istituto Nazionale Tumori, IRCCS Fondazione G. Pascale, Napoli, 80131, Italy
| | - Guglielmo Nasti
- Clinical Sperimental Abdominal Oncology Unit, Istituto Nazionale Tumori, IRCCS Fondazione G. Pascale, Napoli, 80131, Italy
| | - Lucrezia Silvestro
- Clinical Sperimental Abdominal Oncology Unit, Istituto Nazionale Tumori, IRCCS Fondazione G. Pascale, Napoli, 80131, Italy
| | - Antonio Cassata
- Clinical Sperimental Abdominal Oncology Unit, Istituto Nazionale Tumori, IRCCS Fondazione G. Pascale, Napoli, 80131, Italy
| | - Francesca Grassi
- Division of Radiology, "Università degli Studi della Campania Luigi Vanvitelli", Naples, 80138, Italy
| | - Antonio Avallone
- Clinical Sperimental Abdominal Oncology Unit, Istituto Nazionale Tumori, IRCCS Fondazione G. Pascale, Napoli, 80131, Italy
| | - Francesco Izzo
- Division of Epatobiliary Surgical Oncology, Istituto Nazionale Tumori IRCCS Fondazione Pascale-IRCCS di Napoli, Naples, 80131, Italy
| | - Antonella Petrillo
- Division of Radiology, "Istituto Nazionale Tumori IRCCS Fondazione Pascale - IRCCS di Napoli", Naples, Italy
| |
Collapse
|
3
|
Granata V, Fusco R, De Muzio F, Cutolo C, Grassi F, Brunese MC, Simonetti I, Catalano O, Gabelloni M, Pradella S, Danti G, Flammia F, Borgheresi A, Agostini A, Bruno F, Palumbo P, Ottaiano A, Izzo F, Giovagnoni A, Barile A, Gandolfo N, Miele V. Risk Assessment and Cholangiocarcinoma: Diagnostic Management and Artificial Intelligence. BIOLOGY 2023; 12:213. [PMID: 36829492 PMCID: PMC9952965 DOI: 10.3390/biology12020213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/21/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023]
Abstract
Intrahepatic cholangiocarcinoma (iCCA) is the second most common primary liver tumor, with a median survival of only 13 months. Surgical resection remains the only curative therapy; however, at first detection, only one-third of patients are at an early enough stage for this approach to be effective, thus rendering early diagnosis as an efficient approach to improving survival. Therefore, the identification of higher-risk patients, whose risk is correlated with genetic and pre-cancerous conditions, and the employment of non-invasive-screening modalities would be appropriate. For several at-risk patients, such as those suffering from primary sclerosing cholangitis or fibropolycystic liver disease, the use of periodic (6-12 months) imaging of the liver by ultrasound (US), magnetic Resonance Imaging (MRI)/cholangiopancreatography (MRCP), or computed tomography (CT) in association with serum CA19-9 measurement has been proposed. For liver cirrhosis patients, it has been proposed that at-risk iCCA patients are monitored in a similar fashion to at-risk HCC patients. The possibility of using Artificial Intelligence models to evaluate higher-risk patients could favor the diagnosis of these entities, although more data are needed to support the practical utility of these applications in the field of screening. For these reasons, it would be appropriate to develop screening programs in the research protocols setting. In fact, the success of these programs reauires patient compliance and multidisciplinary cooperation.
Collapse
Affiliation(s)
- Vincenza Granata
- Division of Radiology, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, 80131 Naples, Italy
| | - Roberta Fusco
- Medical Oncology Division, Igea SpA, 80013 Naples, Italy
| | - Federica De Muzio
- Diagnostic Imaging Section, Department of Medical and Surgical Sciences & Neurosciences, University of Molise, 86100 Campobasso, Italy
| | - Carmen Cutolo
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Salerno, Italy
| | - Francesca Grassi
- Division of Radiology, Università degli Studi della Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Maria Chiara Brunese
- Diagnostic Imaging Section, Department of Medical and Surgical Sciences & Neurosciences, University of Molise, 86100 Campobasso, Italy
| | - Igino Simonetti
- Division of Radiology, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, 80131 Naples, Italy
| | - Orlando Catalano
- Radiology Unit, Istituto Diagnostico Varelli, Via Cornelia dei Gracchi 65, 80126 Naples, Italy
| | - Michela Gabelloni
- Nuclear Medicine Unit, Department of Translational Research, University of Pisa, 56216 Pisa, Italy
| | - Silvia Pradella
- Department of Radiology, Careggi University Hospital, Largo Brambilla 3, 50134 Florence, Italy
| | - Ginevra Danti
- Department of Radiology, Careggi University Hospital, Largo Brambilla 3, 50134 Florence, Italy
| | - Federica Flammia
- Department of Radiology, Careggi University Hospital, Largo Brambilla 3, 50134 Florence, Italy
| | - Alessandra Borgheresi
- Department of Clinical, Special and Dental Sciences, University Politecnica delle Marche, Via Conca 71, 60126 Ancona, Italy
- Department of Radiology, University Hospital “Azienda Ospedaliera Universitaria delle Marche”, Via Conca 71, 60126 Ancona, Italy
| | - Andrea Agostini
- Department of Clinical, Special and Dental Sciences, University Politecnica delle Marche, Via Conca 71, 60126 Ancona, Italy
- Department of Radiology, University Hospital “Azienda Ospedaliera Universitaria delle Marche”, Via Conca 71, 60126 Ancona, Italy
| | - Federico Bruno
- Department of Applied Clinical Sciences and Biotechnology, University of L’Aquila, Via Vetoio 1, 67100 L’Aquila, Italy
| | - Pierpaolo Palumbo
- Department of Applied Clinical Sciences and Biotechnology, University of L’Aquila, Via Vetoio 1, 67100 L’Aquila, Italy
| | - Alessandro Ottaiano
- SSD Innovative Therapies for Abdominal Metastases, Istituto Nazionale Tumori IRCCS-Fondazione G. Pascale, 80130 Naples, Italy
| | - Francesco Izzo
- Division of Epatobiliary Surgical Oncology, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, 80131 Naples, Italy
| | - Andrea Giovagnoni
- Department of Clinical, Special and Dental Sciences, University Politecnica delle Marche, Via Conca 71, 60126 Ancona, Italy
- Department of Radiology, University Hospital “Azienda Ospedaliera Universitaria delle Marche”, Via Conca 71, 60126 Ancona, Italy
| | - Antonio Barile
- Department of Applied Clinical Sciences and Biotechnology, University of L’Aquila, Via Vetoio 1, 67100 L’Aquila, Italy
| | - Nicoletta Gandolfo
- Diagnostic Imaging Department, Villa Scassi Hospital-ASL 3, Corso Scassi 1, 16149 Genoa, Italy
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Via della Signora 2, 20122 Milan, Italy
| | - Vittorio Miele
- Department of Radiology, Careggi University Hospital, Largo Brambilla 3, 50134 Florence, Italy
| |
Collapse
|
4
|
Granata V, Fusco R, Setola SV, Galdiero R, Maggialetti N, Silvestro L, De Bellis M, Di Girolamo E, Grazzini G, Chiti G, Brunese MC, Belli A, Patrone R, Palaia R, Avallone A, Petrillo A, Izzo F. Risk Assessment and Pancreatic Cancer: Diagnostic Management and Artificial Intelligence. Cancers (Basel) 2023; 15:351. [PMID: 36672301 PMCID: PMC9857317 DOI: 10.3390/cancers15020351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/30/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
Pancreatic cancer (PC) is one of the deadliest cancers, and it is responsible for a number of deaths almost equal to its incidence. The high mortality rate is correlated with several explanations; the main one is the late disease stage at which the majority of patients are diagnosed. Since surgical resection has been recognised as the only curative treatment, a PC diagnosis at the initial stage is believed the main tool to improve survival. Therefore, patient stratification according to familial and genetic risk and the creation of screening protocol by using minimally invasive diagnostic tools would be appropriate. Pancreatic cystic neoplasms (PCNs) are subsets of lesions which deserve special management to avoid overtreatment. The current PC screening programs are based on the annual employment of magnetic resonance imaging with cholangiopancreatography sequences (MR/MRCP) and/or endoscopic ultrasonography (EUS). For patients unfit for MRI, computed tomography (CT) could be proposed, although CT results in lower detection rates, compared to MRI, for small lesions. The actual major limit is the incapacity to detect and characterize the pancreatic intraepithelial neoplasia (PanIN) by EUS and MR/MRCP. The possibility of utilizing artificial intelligence models to evaluate higher-risk patients could favour the diagnosis of these entities, although more data are needed to support the real utility of these applications in the field of screening. For these motives, it would be appropriate to realize screening programs in research settings.
Collapse
Affiliation(s)
- Vincenza Granata
- Division of Radiology, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, 80131 Naples, Italy
| | - Roberta Fusco
- Medical Oncology Division, Igea SpA, 41012 Napoli, Italy
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Via della Signora 2, 20122 Milan, Italy
| | - Sergio Venanzio Setola
- Division of Radiology, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, 80131 Naples, Italy
| | - Roberta Galdiero
- Division of Radiology, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, 80131 Naples, Italy
| | - Nicola Maggialetti
- Department of Medical Science, Neuroscience and Sensory Organs (DSMBNOS), University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Lucrezia Silvestro
- Division of Clinical Experimental Oncology Abdomen, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, 80131 Naples, Italy
| | - Mario De Bellis
- Division of Gastroenterology and Digestive Endoscopy, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, 80131 Naples, Italy
| | - Elena Di Girolamo
- Division of Gastroenterology and Digestive Endoscopy, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, 80131 Naples, Italy
| | - Giulia Grazzini
- Department of Emergency Radiology, University Hospital Careggi, Largo Brambilla 3, 50134 Florence, Italy
| | - Giuditta Chiti
- Department of Emergency Radiology, University Hospital Careggi, Largo Brambilla 3, 50134 Florence, Italy
| | - Maria Chiara Brunese
- Diagnostic Imaging Section, Department of Medical and Surgical Sciences & Neurosciences, University of Molise, 86100 Campobasso, Italy
| | - Andrea Belli
- Division of Epatobiliary Surgical Oncology, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, 80131 Naples, Italy
| | - Renato Patrone
- Division of Epatobiliary Surgical Oncology, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, 80131 Naples, Italy
| | - Raffaele Palaia
- Division of Epatobiliary Surgical Oncology, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, 80131 Naples, Italy
| | - Antonio Avallone
- Division of Clinical Experimental Oncology Abdomen, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, 80131 Naples, Italy
| | - Antonella Petrillo
- Division of Radiology, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, 80131 Naples, Italy
| | - Francesco Izzo
- Division of Epatobiliary Surgical Oncology, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, 80131 Naples, Italy
| |
Collapse
|
5
|
Granata V, Fusco R, De Muzio F, Cutolo C, Setola SV, Dell'Aversana F, Grassi F, Belli A, Silvestro L, Ottaiano A, Nasti G, Avallone A, Flammia F, Miele V, Tatangelo F, Izzo F, Petrillo A. Radiomics and machine learning analysis based on magnetic resonance imaging in the assessment of liver mucinous colorectal metastases. Radiol Med 2022; 127:763-772. [PMID: 35653011 DOI: 10.1007/s11547-022-01501-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/27/2022] [Indexed: 12/11/2022]
Abstract
PURPOSE The purpose of this study is to evaluate the Radiomics and Machine Learning Analysis based on MRI in the assessment of Liver Mucinous Colorectal Metastases.Query METHODS: The cohort of patients included a training set (121 cases) and an external validation set (30 cases) with colorectal liver metastases with pathological proof and MRI study enrolled in this approved study retrospectively. About 851 radiomics features were extracted as median values by means of the PyRadiomics tool on volume on interest segmented manually by two expert radiologists. Univariate analysis, linear regression modelling and pattern recognition methods were used as statistical and classification procedures. RESULTS The best results at univariate analysis were reached by the wavelet_LLH_glcm_JointEntropy extracted by T2W SPACE sequence with accuracy of 92%. Linear regression model increased the performance obtained respect to the univariate analysis. The best results were obtained by a linear regression model of 15 significant features extracted by the T2W SPACE sequence with accuracy of 94%, a sensitivity of 92% and a specificity of 95%. The best classifier among the tested pattern recognition approaches was k-nearest neighbours (KNN); however, KNN achieved lower precision than the best linear regression model. CONCLUSIONS Radiomics metrics allow the mucinous subtype lesion characterization, in order to obtain a more personalized approach. We demonstrated that the best performance was obtained by T2-W extracted textural metrics.
Collapse
Affiliation(s)
- Vincenza Granata
- Division of Radiology, Istituto Nazionale Tumori IRCCS Fondazione Pascale-IRCCS Di Napoli, Naples, Italy
| | | | - Federica De Muzio
- Department of Medicine and Health Sciences V. Tiberio, University of Molise, 86100, Campobasso, Italy
| | - Carmen Cutolo
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84084, Fisciano, Italy
| | - Sergio Venanzio Setola
- Division of Radiology, Istituto Nazionale Tumori IRCCS Fondazione Pascale-IRCCS Di Napoli, Naples, Italy
| | - Federica Dell'Aversana
- Division of Radiology, Università Degli Studi Della Campania Luigi Vanvitelli, Naples, Italy
| | - Francesca Grassi
- Division of Radiology, Università Degli Studi Della Campania Luigi Vanvitelli, Naples, Italy
| | - Andrea Belli
- Division of Hepatobiliary Surgery, Istituto Nazionale Tumori IRCCS Fondazione Pascale-IRCCS Di Napoli, Naples, Italy
| | - Lucrezia Silvestro
- Division of Abdominal Oncology, Istituto Nazionale Tumori IRCCS Fondazione Pascale, Naples, Italy
| | - Alessandro Ottaiano
- Division of Abdominal Oncology, Istituto Nazionale Tumori IRCCS Fondazione Pascale, Naples, Italy
| | - Guglielmo Nasti
- Division of Abdominal Oncology, Istituto Nazionale Tumori IRCCS Fondazione Pascale, Naples, Italy
| | - Antonio Avallone
- Division of Abdominal Oncology, Istituto Nazionale Tumori IRCCS Fondazione Pascale, Naples, Italy
| | - Federica Flammia
- Division of Radiology, Azienda Ospedaliera Universitaria Careggi, 50134, Florence, Italy
| | - Vittorio Miele
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, via della Signora 2, 20122, Milan, Italy.,Division of Radiology, Azienda Ospedaliera Universitaria Careggi, 50134, Florence, Italy
| | - Fabiana Tatangelo
- Division of Pathology, Istituto Nazionale Tumori IRCCS Fondazione Pascale-IRCCS Di Napoli, 80131, Naples, Italy
| | - Francesco Izzo
- Division of Hepatobiliary Surgery, Istituto Nazionale Tumori IRCCS Fondazione Pascale-IRCCS Di Napoli, Naples, Italy
| | - Antonella Petrillo
- Division of Radiology, Istituto Nazionale Tumori IRCCS Fondazione Pascale-IRCCS Di Napoli, Naples, Italy
| |
Collapse
|
6
|
Granata V, Fusco R, De Muzio F, Cutolo C, Setola SV, Simonetti I, Dell’Aversana F, Grassi F, Bruno F, Belli A, Patrone R, Pilone V, Petrillo A, Izzo F. Complications Risk Assessment and Imaging Findings of Thermal Ablation Treatment in Liver Cancers: What the Radiologist Should Expect. J Clin Med 2022; 11:2766. [PMID: 35628893 PMCID: PMC9147303 DOI: 10.3390/jcm11102766] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 02/04/2023] Open
Abstract
One of the major fields of application of ablation treatment is liver tumors. With respect to HCC, ablation treatments are considered as upfront treatments in patients with early-stage disease, while in colorectal liver metastases (CLM), they can be employed as an upfront treatment or in association with surgical resection. The main prognostic feature of ablation is the tumor size, since the goal of the treatment is the necrosis of all viable tumor tissue with an adequate tumor-free margin. Radiofrequency ablation (RFA) and microwave ablation (MWA) are the most employed ablation techniques. Ablation therapies in HCC and liver metastases have presented a challenge to radiologists, who need to assess response to determine complication-related treatment. Complications, defined as any unexpected variation from a procedural course, and adverse events, defined as any actual or potential injury related to the treatment, could occur either during the procedure or afterwards. To date, RFA and MWA have shown no statistically significant differences in mortality rates or major or minor complications. To reduce the rate of major complications, patient selection and risk assessment are essential. To determine the right cost-benefit ratio for the ablation method to be used, it is necessary to identify patients at high risk of infections, coagulation disorders and previous abdominal surgery interventions. Based on risk assessment, during the procedure as part of surveillance, the radiologists should pay attention to several complications, such as vascular, biliary, mechanical and infectious. Multiphase CT is an imaging tool chosen in emergency settings. The radiologist should report technical success, treatment efficacy, and complications. The complications should be assessed according to well-defined classification systems, and these complications should be categorized consistently according to severity and time of occurrence.
Collapse
Affiliation(s)
- Vincenza Granata
- Radiology Division, Istituto Nazionale Tumori—IRCCS—Fondazione G. Pascale, Via Mariano Semmola, 80131 Naples, Italy; (S.V.S.); (I.S.); (A.P.)
| | - Roberta Fusco
- Medical Oncology Division, Igea SpA, 80013 Naples, Italy;
| | - Federica De Muzio
- Department of Medicine and Health Sciences V. Tiberio, University of Molise, 86100 Campobasso, Italy;
| | - Carmen Cutolo
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84084 Fisciano, Italy; (C.C.); (V.P.)
| | - Sergio Venanzio Setola
- Radiology Division, Istituto Nazionale Tumori—IRCCS—Fondazione G. Pascale, Via Mariano Semmola, 80131 Naples, Italy; (S.V.S.); (I.S.); (A.P.)
| | - Igino Simonetti
- Radiology Division, Istituto Nazionale Tumori—IRCCS—Fondazione G. Pascale, Via Mariano Semmola, 80131 Naples, Italy; (S.V.S.); (I.S.); (A.P.)
| | - Federica Dell’Aversana
- Division of Radiology, Università degli Studi della Campania Luigi Vanvitelli, 80138 Naples, Italy; (F.D.); (F.G.)
| | - Francesca Grassi
- Division of Radiology, Università degli Studi della Campania Luigi Vanvitelli, 80138 Naples, Italy; (F.D.); (F.G.)
| | - Federico Bruno
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, 20122 Milan, Italy;
- Department of Applied Clinical Sciences and Biotechnology, University of L’Aquila, 67100 L’Aquila, Italy
| | - Andrea Belli
- Hepatobiliary Surgical Oncology Division, Istituto Nazionale Tumori—IRCCS—Fondazione G. Pascale, Via Mariano Semmola, 80131 Naples, Italy; (A.B.); (R.P.); (F.I.)
| | - Renato Patrone
- Hepatobiliary Surgical Oncology Division, Istituto Nazionale Tumori—IRCCS—Fondazione G. Pascale, Via Mariano Semmola, 80131 Naples, Italy; (A.B.); (R.P.); (F.I.)
| | - Vincenzo Pilone
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84084 Fisciano, Italy; (C.C.); (V.P.)
| | - Antonella Petrillo
- Radiology Division, Istituto Nazionale Tumori—IRCCS—Fondazione G. Pascale, Via Mariano Semmola, 80131 Naples, Italy; (S.V.S.); (I.S.); (A.P.)
| | - Francesco Izzo
- Hepatobiliary Surgical Oncology Division, Istituto Nazionale Tumori—IRCCS—Fondazione G. Pascale, Via Mariano Semmola, 80131 Naples, Italy; (A.B.); (R.P.); (F.I.)
| |
Collapse
|
7
|
Complications after Thermal Ablation of Hepatocellular Carcinoma and Liver Metastases: Imaging Findings. Diagnostics (Basel) 2022; 12:diagnostics12051151. [PMID: 35626306 PMCID: PMC9139664 DOI: 10.3390/diagnostics12051151] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 04/26/2022] [Accepted: 05/03/2022] [Indexed: 01/25/2023] Open
Abstract
Tumour ablation is a strategy of treatment of hepatic tumours in patients with small hepatocellular carcinoma (HCC) (<3 cm) or in patients unfit for surgical resection. Moreover, tumor ablation can be used as an adjuvant therapy or may be used in association with resection in case of patients with poor functional liver disease. These types of treatment usually could be performed percutaneously under image guidance. The most clinically verified and used ablation modalities are Radiofrequency Ablation (RFA) and microwave ablation (MWA). However, despite both of them are considered minimally invasive techniques, they could be related to post-procedural complications. The International Working Group on Image-Guided Tumor and the Society of Interventional Radiology (SIR) identified major and minor post-ablative complications. Major complications, as vascular complications, occur in 2.2% to 3.1% of cases and include all the high risk pathological conditions which could increase the level of care or result in hospital admission or substantially prolonged hospital stay (SIR classifications C−E). Minor complications, as biliary complications, occur in 5% to 8.9% and include self-limiting conditions that are considered to be of low risk for the patient’s outcome. The purpose of this review is to summarise the main pathological ultrasound (US) and Computed Tomography (CT) findings, that may arise after ablative treatment. To simplify the analysis, the pathological pictures are divided according to the site of damage into vascular, biliary and extrahepatic complications.
Collapse
|
8
|
Radiomics and Machine Learning Analysis Based on Magnetic Resonance Imaging in the Assessment of Colorectal Liver Metastases Growth Pattern. Diagnostics (Basel) 2022; 12:diagnostics12051115. [PMID: 35626271 PMCID: PMC9140199 DOI: 10.3390/diagnostics12051115] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/11/2022] [Accepted: 04/27/2022] [Indexed: 02/07/2023] Open
Abstract
To assess Radiomics and Machine Learning Analysis in Liver Colon and Rectal Cancer Metastases (CRLM) Growth Pattern, we evaluated, retrospectively, a training set of 51 patients with 121 liver metastases and an external validation set of 30 patients with a single lesion. All patients were subjected to MRI studies in pre-surgical setting. For each segmented volume of interest (VOI), 851 radiomics features were extracted using PyRadiomics package. Nonparametric test, univariate, linear regression analysis and patter recognition approaches were performed. The best results to discriminate expansive versus infiltrative front of tumor growth with the highest accuracy and AUC at univariate analysis were obtained by the wavelet_LHH_glrlm_ShortRunLowGray Level Emphasis from portal phase of contrast study. With regard to linear regression model, this increased the performance obtained respect to the univariate analysis for each sequence except that for EOB-phase sequence. The best results were obtained by a linear regression model of 15 significant features extracted by the T2-W SPACE sequence. Furthermore, using pattern recognition approaches, the diagnostic performance to discriminate the expansive versus infiltrative front of tumor growth increased again and the best classifier was a weighted KNN trained with the 9 significant metrics extracted from the portal phase of contrast study, with an accuracy of 92% on training set and of 91% on validation set. In the present study, we have demonstrated as Radiomics and Machine Learning Analysis, based on EOB-MRI study, allow to identify several biomarkers that permit to recognise the different Growth Patterns in CRLM.
Collapse
|
9
|
Magnetic Resonance Features of Liver Mucinous Colorectal Metastases: What the Radiologist Should Know. J Clin Med 2022; 11:jcm11082221. [PMID: 35456314 PMCID: PMC9027866 DOI: 10.3390/jcm11082221] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/01/2022] [Accepted: 04/12/2022] [Indexed: 02/06/2023] Open
Abstract
Purpose: The aim of this study is to assess MRI features of mucinous liver metastases compared to non-mucinous metastases and hepatic hemangioma. Methods: A radiological archive was assessed from January 2017 to June 2021 to select patients subjected to liver resection for CRCLM and MRI in the staging phase. We selected 20 patients with hepatic hemangioma (study group B). We evaluated (a) the maximum diameter of the lesions, in millimeters, on T1-W flash 2D in phase and out phase, on axial HASTE T2-W and on portal phase axial VIBE T1 W; and (b) the signal intensity (SI) in T1-W sequences, in T2-W sequences, Diffusion-Weighted Imaging (DWI) sequences and apparent diffusion coefficient (ADC) maps so as to observe (c) the presence and the type of contrast enhancement during the contrast study. The chi-square test was employed to analyze differences in percentage values of the categorical variable, while the non-parametric Kruskal−Wallis test was used to test for statistically significant differences between the median values of the continuous variables. A p-value < 0.05 was considered statistically significant. Results: The final study population included 52 patients (33 men and 19 women) with 63 years of median age (range 37−82 years) and 157 metastases. In 35 patients, we found 118 non-mucinous type metastases (control group), and in 17 patients, we found 39 mucinous type metastases (study group A). During follow-up, recurrence occurred in 12 patients, and three exhibited mucinous types among them. In the study group, all lesions (100%) showed hypointense SI on T1-W, very high SI (similar to hepatic hemangioma) in T2-W with restricted diffusion and iso-hypointense signals in the ADC map. During the contrast study, the main significant feature is the peripheral progressive enhancement.
Collapse
|