1
|
Meyer TW, Bargman JM. The Removal of Uremic Solutes by Peritoneal Dialysis. J Am Soc Nephrol 2023; 34:1919-1927. [PMID: 37553867 PMCID: PMC10703087 DOI: 10.1681/asn.0000000000000211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/24/2023] [Indexed: 08/10/2023] Open
Abstract
ABSTRACT Peritoneal dialysis (PD) is now commonly prescribed to achieve target clearances for urea or creatinine. The International Society for Peritoneal Dialysis has proposed however that such targets should no longer be imposed. The Society's new guidelines suggest rather that the PD prescription should be adjusted to achieve well-being in individual patients. The relaxation of treatment targets could allow increased use of PD. Measurement of solute levels in patients receiving dialysis individualized to relieve uremic symptoms could also help us identify the solutes responsible for those symptoms and then devise new means to limit their accumulation. This possibility has prompted us to review the extent to which different uremic solutes are removed by PD.
Collapse
Affiliation(s)
- Timothy W. Meyer
- Departments of Medicine, Stanford University and VA Palo Alto HCS, Palo Alto, California
| | - Joanne M. Bargman
- Division of Nephrology and Department of Medicine, University Health Network and the University of Toronto, Canada
| |
Collapse
|
2
|
Do C, Evans GJ, DeAguero J, Escobar GP, Lin HC, Wagner B. Dysnatremia in Gastrointestinal Disorders. Front Med (Lausanne) 2022; 9:892265. [PMID: 35646996 PMCID: PMC9136014 DOI: 10.3389/fmed.2022.892265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/22/2022] [Indexed: 01/19/2023] Open
Abstract
The primary solute of the milieu intérieur is sodium and accompanying anions. The solvent is water. The kidneys acutely regulate homeostasis in filtration, secretion, and resorption of electrolytes, non-electrolytes, and minerals while balancing water retention and clearance. The gastrointestinal absorptive and secretory functions enable food digestion and water absorption needed to sustain life. Gastrointestinal perturbations including vomiting and diarrhea can lead to significant volume and electrolyte losses, overwhelming the renal homeostatic compensatory mechanisms. Dysnatremia, potassium and acid-base disturbances can result from gastrointestinal pathophysiologic processes. Understanding the renal and gastrointestinal contributions to homeostatis are important for the clinical evaluation of perturbed volume disturbances.
Collapse
Affiliation(s)
- Catherine Do
- Division of Nephrology, Department of Medicine, Kidney Institute of New Mexico, University of New Mexico Health Science Center, Albuquerque, NM, United States,New Mexico Veterans Administration Health Care System, Albuquerque, NM, United States,University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Gretta J. Evans
- University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Joshua DeAguero
- Division of Nephrology, Department of Medicine, Kidney Institute of New Mexico, University of New Mexico Health Science Center, Albuquerque, NM, United States,University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - G. Patricia Escobar
- Division of Nephrology, Department of Medicine, Kidney Institute of New Mexico, University of New Mexico Health Science Center, Albuquerque, NM, United States,University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Henry C. Lin
- New Mexico Veterans Administration Health Care System, Albuquerque, NM, United States
| | - Brent Wagner
- Division of Nephrology, Department of Medicine, Kidney Institute of New Mexico, University of New Mexico Health Science Center, Albuquerque, NM, United States,New Mexico Veterans Administration Health Care System, Albuquerque, NM, United States,University of New Mexico Health Sciences Center, Albuquerque, NM, United States,*Correspondence: Brent Wagner
| |
Collapse
|
3
|
Pou Casellas C, Jansen K, Rookmaaker MB, Clevers H, Verhaar MC, Masereeuw R. Regulation of Solute Carriers OCT2 and OAT1/3 in the Kidney: A Phylogenetic, Ontogenetic and Cell Dynamic Perspective. Physiol Rev 2021; 102:993-1024. [PMID: 34486394 DOI: 10.1152/physrev.00009.2021] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Over the course of more than 500 million years, the kidneys have undergone a remarkable evolution from primitive nephric tubes to intricate filtration-reabsorption systems that maintain homeostasis and remove metabolic end products from the body. The evolutionarily conserved solute carriers Organic Cation Transporter 2 (OCT2), and Organic Anion Transporters 1 and 3 (OAT1/3) coordinate the active secretion of a broad range of endogenous and exogenous substances, many of which accumulate in the blood of patients with kidney failure despite dialysis. Harnessing OCT2 and OAT1/3 through functional preservation or regeneration could alleviate the progression of kidney disease. Additionally, it would improve current in vitro test models that lose their expression in culture. With this review, we explore OCT2 and OAT1/3 regulation using different perspectives: phylogenetic, ontogenetic and cell dynamic. Our aim is to identify possible molecular targets to both help prevent or compensate for the loss of transport activity in patients with kidney disease, and to enable endogenous OCT2 and OAT1/3 induction in vitro in order to develop better models for drug development.
Collapse
Affiliation(s)
- Carla Pou Casellas
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, Netherlands.,Hubrecht Institute - Royal Netherlands Academy of Arts and Sciences, Utrecht, The Netherlands
| | - Katja Jansen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Maarten B Rookmaaker
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, Netherlands
| | - Hans Clevers
- Hubrecht Institute - Royal Netherlands Academy of Arts and Sciences, Utrecht, The Netherlands
| | - Marianne C Verhaar
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, Netherlands
| | - Rosalinde Masereeuw
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|