1
|
Blomme B, Deroanne C, Hulin A, Lambert C, Defraigne JO, Nusgens B, Radermecker M, Colige A. Mechanical strain induces a pro-fibrotic phenotype in human mitral valvular interstitial cells through RhoC/ROCK/MRTF-A and Erk1/2 signaling pathways. J Mol Cell Cardiol 2019; 135:149-159. [PMID: 31442470 DOI: 10.1016/j.yjmcc.2019.08.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 08/13/2019] [Accepted: 08/19/2019] [Indexed: 01/16/2023]
Abstract
The mitral valve is a complex multilayered structure populated by fibroblast-like cells, valvular interstitial cells (VIC) which are embedded in an extracellular matrix (ECM) scaffold and are submitted to the mechanical deformations affecting valve at each heartbeat, for an average of 40 million times per year. Myxomatous mitral valve (MMV) is the most frequent heart valve disease characterized by disruption of several valvular structures due to alterations of their ECM preventing the complete closure of the valve resulting in symptoms of prolapse and regurgitation. VIC and their ECM exhibit reciprocal dynamic processes between the mechanical signals issued from the ECM and the modulation of VIC phenotype responsible for ECM homeostasis of the valve. Abnormal perception and responsiveness of VIC to mechanical stress may induce an inappropriate adaptative remodeling of the valve progressively leading to MMV. To investigate the response of human VIC to mechanical strain and identify the molecular mechanisms of mechano-transduction in these cells, a cyclic equibiaxial elongation of 14% at the cardiac frequency of 1.16 Hz was applied to VIC by using a Flexercell-4000 T™ apparatus for increasing time (from 1 h to 8 h). We showed that cyclic stretch induces an early (1 h) and transient over-expression of TGFβ2 and αSMA. CTGF, a profibrotic growth factor promoting the synthesis of ECM components, was strongly induced after 1 and 2 h of stretching and still upregulated at 8 h. The mechanical stress-induced CTGF up-regulation was dependent on RhoC, but not RhoA, as demonstrated by siRNA-mediated silencing approaches, and further supported by evidencing RhoC activation upon cell stretching and suppression of cell response by pharmacological inhibition of the effector ROCK1/2. It was also dependent on the MEK/Erk1/2 pathway which was activated by mechanical stress independently of RhoC and ROCK. Finally, mechanical stretching induced the nuclear translocation of myocardin related transcription factor-A (MRTF-A) which forms a transcriptional complex with SRF to promote the expression of target genes, notably CTGF. Treatment of stretched cultures with inhibitors of the identified pathways (ROCK1/2, MEK/Erk1/2, MRTF-A translocation) blocked CTGF overexpression and abrogated the increased MRTF-A nuclear translocation. CTGF is up-regulated in many pathological processes involving mechanically challenged organs, promotes ECM accumulation and is considered as a hallmark of fibrotic diseases. Pharmacological targeting of MRTF-A by newly developed inhibitors may represent a relevant therapy for MMV.
Collapse
Affiliation(s)
- Benoit Blomme
- Laboratory of Connective Tissues Biology, GIGA-Research, University of Liège, Tour de Pathologie, B23, 4000 Sart-Tilman, Belgium; Department of Cardiovascular and Thoracic Surgery, B35, University of Liège, CHU Sart-Tilman, 4000 Sart Tilman, Belgium
| | - Christophe Deroanne
- Laboratory of Connective Tissues Biology, GIGA-Research, University of Liège, Tour de Pathologie, B23, 4000 Sart-Tilman, Belgium
| | - Alexia Hulin
- Laboratory of Cardiology, GIGA-Cardiovascular Sciences, B34, University of Liège, 4000 Sart- Tilman, Belgium
| | - Charles Lambert
- Laboratory of Connective Tissues Biology, GIGA-Research, University of Liège, Tour de Pathologie, B23, 4000 Sart-Tilman, Belgium
| | - Jean-Olivier Defraigne
- Department of Cardiovascular and Thoracic Surgery, B35, University of Liège, CHU Sart-Tilman, 4000 Sart Tilman, Belgium
| | - Betty Nusgens
- Laboratory of Connective Tissues Biology, GIGA-Research, University of Liège, Tour de Pathologie, B23, 4000 Sart-Tilman, Belgium
| | - Marc Radermecker
- Department of Cardiovascular and Thoracic Surgery, B35, University of Liège, CHU Sart-Tilman, 4000 Sart Tilman, Belgium; Department of Human Anatomy, B23, University of Liège, CHU Sart-Tilman, 4000 Sart Tilman, Belgium
| | - Alain Colige
- Laboratory of Connective Tissues Biology, GIGA-Research, University of Liège, Tour de Pathologie, B23, 4000 Sart-Tilman, Belgium.
| |
Collapse
|
2
|
Fisher CI, Chen J, Merryman WD. Calcific nodule morphogenesis by heart valve interstitial cells is strain dependent. Biomech Model Mechanobiol 2012; 12:5-17. [PMID: 22307683 DOI: 10.1007/s10237-012-0377-8] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 01/18/2012] [Indexed: 01/26/2023]
Abstract
Calcific aortic valve disease (CAVD) results in impaired function through the inability of valves to fully open and close, but the causes of this pathology are unknown. Stiffening of the aorta is associated with CAVD and results in exposing the aortic valves to greater mechanical strain. Transforming growth factor β1 (TGF-β1) is enriched in diseased valves and has been shown to combine with strain to synergistically alter aortic valve interstitial cell (AVIC) phenotypes. Therefore, we investigated the role of strain and TGF-β1 on the calcification of AVICs. Following TGF-β1 pretreatment, strain induced intact monolayers to aggregate and calcify. Using a wound assay, we confirmed that TGF-β1 increases tension in the monolayer in parallel with α-smooth muscle actin (αSMA) expression. Continual exposure to strain accelerates aggregates to calcify into mature nodules that contain a necrotic core surrounded by an apoptotic ring. This phenotype appears to be mediated by strain inhibition of AVIC migration after the initial formation of aggregates. To better interpret the extent to which externally applied strain physically impacts this process, we modified the classical Lamé solution, derived using principles from linear elasticity, to reveal strain magnification as a novel feature occurring in a mechanical environment that supports nodule formation. These results indicate that strain can impact multiple points of nodule formation: by modifying tension in the monolayer, remodeling cell contacts, migration, apoptosis, and mineralization. Therefore, strain-induced nodule formation provides new directions for developing strategies to address CAVD.
Collapse
Affiliation(s)
- Charles I Fisher
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232-0493, USA
| | | | | |
Collapse
|