1
|
Schnichels S, Paquet-Durand F, Löscher M, Tsai T, Hurst J, Joachim SC, Klettner A. Retina in a dish: Cell cultures, retinal explants and animal models for common diseases of the retina. Prog Retin Eye Res 2020; 81:100880. [PMID: 32721458 DOI: 10.1016/j.preteyeres.2020.100880] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 06/23/2020] [Accepted: 06/26/2020] [Indexed: 12/11/2022]
Abstract
For many retinal diseases, including age-related macular degeneration (AMD), glaucoma, and diabetic retinopathy (DR), the exact pathogenesis is still unclear. Moreover, the currently available therapeutic options are often unsatisfactory. Research designed to remedy this situation heavily relies on experimental animals. However, animal models often do not faithfully reproduce human disease and, currently, there is strong pressure from society to reduce animal research. Overall, this creates a need for improved disease models to understand pathologies and develop treatment options that, at the same time, require fewer or no experimental animals. Here, we review recent advances in the field of in vitro and ex vivo models for AMD, glaucoma, and DR. We highlight the difficulties associated with studies on complex diseases, in which both the initial trigger and the ensuing pathomechanisms are unclear, and then delineate which model systems are optimal for disease modelling. To this end, we present a variety of model systems, ranging from primary cell cultures, over organotypic cultures and whole eye cultures, to animal models. Specific advantages and disadvantages of such models are discussed, with a special focus on their relevance to putative in vivo disease mechanisms. In many cases, a replacement of in vivo research will mean that several different in vitro models are used in conjunction, for instance to analyze and validate causative molecular pathways. Finally, we argue that the analytical decomposition into appropriate cell and tissue model systems will allow making significant progress in our understanding of complex retinal diseases and may furthermore advance the treatment testing.
Collapse
Affiliation(s)
- Sven Schnichels
- University Eye Hospital, Centre for Ophthalmology, University of Tübingen, Germany.
| | - François Paquet-Durand
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Germany
| | - Marina Löscher
- University Eye Hospital, Centre for Ophthalmology, University of Tübingen, Germany
| | - Teresa Tsai
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, Germany
| | - José Hurst
- University Eye Hospital, Centre for Ophthalmology, University of Tübingen, Germany
| | - Stephanie C Joachim
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, Germany
| | - Alexa Klettner
- Department of Ophthalmology, University Medical Center, University of Kiel, Kiel, Germany
| |
Collapse
|
2
|
Impact of Three-Dimentional Culture Systems on Hepatic Differentiation of Puripotent Stem Cells and Beyond. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018. [PMID: 30357683 DOI: 10.1007/978-981-13-0947-2_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Generation of functional hepatocytes from human pluripotent stem cells (hPSCs) is a vital tool to produce large amounts of human hepatocytes, which hold a great promise for biomedical and regenerative medicine applications. Despite a tremendous progress in developing the differentiation protocols recapitulating the developmental signalling and stages, these resulting hepatocytes from hPSCs yet achieve maturation and functionality comparable to those primary hepatocytes. The absence of 3D milieu in the culture and differentiation of these hepatocytes may account for this, at least partly, thus developing an optimal 3D culture could be a step forward to achieve this aim. Hence, review focuses on current development of 3D culture systems for hepatic differentiation and maturation and the future perspectives of its application.
Collapse
|
3
|
Jung J, Baek JA, Seol HW, Choi YM. Propagation of Human Embryonic Stem Cells on Human Amniotic Fluid Cells as Feeder Cells in Xeno-Free Culture Conditions. Dev Reprod 2016; 20:63-71. [PMID: 27294211 PMCID: PMC4899559 DOI: 10.12717/dr.2016.20.1.063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Human embryonic stem cells (hESCs) have been routinely cultured on mouse embryonic fibroblast feederlayers with a medium containing animal materials. For clinical application of hESCs, animal-derived products from the animal feeder cells, animal substrates such as gelatin or Matrigel and animal serum are strictly to be eliminated in the culture system. In this study, we performed that SNUhES32 and H1 were cultured on human amniotic fluid cells (hAFCs) with KOSR XenoFree and a humanized substrate. All of hESCs were relatively well propagated on hAFCs feeders with xeno-free conditions and they expressed pluripotent stem cell markers, alkaline phosphatase, SSEA-4, TRA1-60, TRA1-81, Oct-4, and Nanog like hESCs cultured on STO or human foreskin fibroblast feeders. In addition, we observed the expression of nonhuman N-glycolylneuraminic acid (Neu5GC) molecules by flow cytometry, which was xenotransplantation components of contamination in hESCs cultured on animal feeder conditions, was not detected in this xeno-free condition. In conclusion, SNUhES32 and H1 could be maintained on hAFCs for humanized culture conditions, therefore, we suggested that new xenofree conditions for clinical grade hESCs culture will be useful data in future clinical studies.
Collapse
Affiliation(s)
- Juwon Jung
- Institute of Reproductive Medicine and Population, Medical Research Center, Seoul National University, Seoul 03080, Korea
| | - Jin Ah Baek
- Institute of Reproductive Medicine and Population, Medical Research Center, Seoul National University, Seoul 03080, Korea
| | - Hye Won Seol
- Institute of Reproductive Medicine and Population, Medical Research Center, Seoul National University, Seoul 03080, Korea
| | - Young Min Choi
- Institute of Reproductive Medicine and Population, Medical Research Center, Seoul National University, Seoul 03080, Korea; Dept. of Obstetrics & Gynecology, College of Medicine, Seoul National University, Seoul 03080, Korea
| |
Collapse
|
4
|
Does the adult human ciliary body epithelium contain "true" retinal stem cells? BIOMED RESEARCH INTERNATIONAL 2013; 2013:531579. [PMID: 24286080 PMCID: PMC3826557 DOI: 10.1155/2013/531579] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 08/26/2013] [Accepted: 08/31/2013] [Indexed: 11/17/2022]
Abstract
Recent reports of retinal stem cells being present in several locations of the adult eye have sparked great hopes that they may be used to treat the millions of people worldwide who suffer from blindness as a result of retinal disease or injury. A population of proliferative cells derived from the ciliary body epithelium (CE) has been considered one of the prime stem cell candidates, and as such they have received much attention in recent years. However, the true nature of these cells in the adult human eye has still not been fully elucidated, and the stem cell claim has become increasingly controversial in light of new and conflicting reports. In this paper, we will try to answer the question of whether the available evidence is strong enough for the research community to conclude that the adult human CE indeed harbors stem cells.
Collapse
|
5
|
Recombinant spider silk matrices for neural stem cell cultures. Biomaterials 2012; 33:7712-7. [DOI: 10.1016/j.biomaterials.2012.07.021] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 07/09/2012] [Indexed: 01/09/2023]
|
6
|
Wang X, Li S, Cao T, Fu X, Yu G. Evaluating biotoxicity with fibroblasts derived from human embryonic stem cells. Toxicol In Vitro 2012; 26:1056-63. [DOI: 10.1016/j.tiv.2012.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 02/19/2012] [Accepted: 04/04/2012] [Indexed: 12/28/2022]
|
7
|
Zucchelli M, Ström S, Holm F, Malmgren H, Sahlén S, Religa P, Hovatta O, Kere J, Inzunza J. In vivo differentiated human embryonic stem cells can acquire chromosomal aberrations more frequently than in vitro during the same period. Stem Cells Dev 2012; 21:3363-71. [PMID: 22709429 DOI: 10.1089/scd.2012.0066] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Human embryonic stem cells (hESCs) are regarded as a promising approach to generate transplantable cells for the treatment of several diseases. These cells offer an immense potential as a source of cells for regenerative medicine, but the possible ability of these cells to produce tumors in vivo presents a major impediment for the achievement of this potential in clinical reality. hESCs can obtain growth advantages in vitro by acquired mutations, a phenomenon called culture adaptation. The most common chromosome modifications involve chromosomes 12, 17, and X. The mechanisms that may influence chromosome modification in hESCs are not well known. We have performed a comparative in vitro and in vivo study on 3 hESC lines produced in our laboratory to see if there are changes also during in vivo growth. In vivo differentiated cells and in vitro cultured hESCs were analyzed by using a high-resolution Affymetrix SNP 6.0 array revealing DNA copy number variations. We were able, for the first time, to identify chromosomal aberrations that had occurred in vivo in one out of the 3 hESC lines. In the hESC line HS364 differentiated in vivo, an amplification of the whole X chromosome was detected, possibly due to mosaicism of XY and XX cells. In the hESC line HS366, array results showed small amplifications and gains. The third hESC line (HS368) was less altered, but contained also a new gain verified by fluorescent in situ hybridization in a teratoma in 21% of the cells. These results indicate that mutations occur during the in vivo differentiation process as well as in vitro. The potential of precancerous mutations in in-vivo conditions is important to consider for safety measures, and underlines the necessity to remove all pluripotent stem cells from the differentiated cell population that will be transplanted.
Collapse
Affiliation(s)
- Marco Zucchelli
- Department of Biosciences and Nutrition, Karolinska Institutet, Novum, Karolinska University Hospital, Huddinge, Stockholm, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Stephenson E, Jacquet L, Miere C, Wood V, Kadeva N, Cornwell G, Codognotto S, Dajani Y, Braude P, Ilic D. Derivation and propagation of human embryonic stem cell lines from frozen embryos in an animal product-free environment. Nat Protoc 2012; 7:1366-81. [PMID: 22722371 DOI: 10.1038/nprot.2012.080] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The protocols described here are comprehensive instructions for deriving human embryonic stem (hES) cell lines in xeno-free conditions from cryopreserved embryos. Details are included for propagation, cryopreservation and characterization. Initial derivation is on feeder cells and is followed by adaptation to a feeder-free environment; competent technicians can perform these simplified methods easily. From derivation to cryopreservation of fully characterized initial stocks takes 3-4 months. These protocols served as the basis for standard operating procedures (SOPs), with both operational and technical components, that we set to meet good manufacturing practice (GMP) and UK regulatory body requirements for derivation of clinical-grade cells. As such, these SOPs are currently used in our current GMP compliant facility to derive hES cell lines ab initio, in an animal product-free environment; these lines are suitable for research and potentially for clinical use in cell therapy. So far, we have derived eight clinical-grade lines, which will be freely available to the scientific community after submission/accession to the UK Stem Cell Bank.
Collapse
Affiliation(s)
- Emma Stephenson
- Embryonic Stem Cell Laboratories, Guy's Assisted Conception Unit, Division of Women's Health, King's College School of Medicine, London, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Valamehr B, Tsutsui H, Ho CM, Wu H. Developing defined culture systems for human pluripotent stem cells. Regen Med 2012; 6:623-34. [PMID: 21916597 DOI: 10.2217/rme.11.54] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Human pluripotent stem cells hold promising potential in many therapeutics applications including regenerative medicine and drug discovery. Over the past three decades, embryonic stem cell research has illustrated that embryonic stem cells possess two important and distinct properties: the ability to continuously self-renew and the ability to differentiate into all specialized cell types. In this article, we will discuss the continuing evolution of human pluripotent stem cell culture by examining requirements needed for the maintenance of self-renewal in vitro. We will also elaborate on the future direction of the field toward generating a robust and completely defined culture system, which has brought forth collaborations amongst biologists and engineers. As human pluripotent stem cell research progresses towards identifying solutions for debilitating diseases, it will be critical to establish a defined, reproducible and scalable culture system to meet the requirements of these clinical applications.
Collapse
Affiliation(s)
- Bahram Valamehr
- Department of Molecular and Medical Pharmacology, University of California at Los Angeles, CA, USA
| | | | | | | |
Collapse
|
10
|
Skottman H. Differentiation of Human Embryonic Stem Cells and Human Induced Pluripotent Stem Cells into Retinal Pigment Epithelium. STEM CELLS AND CANCER STEM CELLS, VOLUME 7 2012. [DOI: 10.1007/978-94-007-4285-7_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
11
|
Culture of human pluripotent stem cells on glass slides for high-resolution imaging. Methods Mol Biol 2011; 767:161-73. [PMID: 21822874 DOI: 10.1007/978-1-61779-201-4_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
For certain applications, particularly experiments involving high-resolution imaging, it is necessary to culture cells on glass slides or cover glasses. This chapter describes techniques for successfully growing human embryonic stem cells (hESCs) on glass surfaces under three different conditions - serum-containing, serum-free, and following single-cell dissociation. It is anticipated that these techniques will extrapolate to other types of pluripotent stem cells such as induced pluripotent stem cells (iPSCs) and embryonic germ cells (EGCs).
Collapse
|
12
|
Sundberg M, Hyysalo A, Skottman H, Shin S, Vemuri M, Suuronen R, Narkilahti S. A xeno-free culturing protocol for pluripotent stem cell-derived oligodendrocyte precursor cell production. Regen Med 2011; 6:449-60. [PMID: 21749203 DOI: 10.2217/rme.11.36] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
AIM To show that human embryonic stem cells (hESCs) can be efficiently differentiated into oligodendrocyte precursor cells (OPCs) in a xeno-free medium with a specific medium supplement and specific human recombinant growth factors. MATERIALS & METHODS The xeno-free OPC-differentiation medium for pluripotent stem cells was developed by using StemPro® neural stem cell xeno-free medium supplement together with human recombinant growth factors SHH, PDGF-AA, IGF-1, EGF, basic FGF and CNTF, in addition to RA, T3, human laminin and ascorbic acid. We analyzed the differentiated hESC-derived OPCs and oligodendrocytes with quantitative real-time (RT)-PCR, RT-PCR, flow cytometry and immunocytochemistry, and we performed NG2-positive selection for OPC cultures with fluorescence-activated cell sorting. RESULTS Based on quantitative RT-PCR analysis, OPCs after 9 weeks of differentiation in xeno-free medium expressed OLIG2, SOX10 and NKX2.2 at elevated levels compared with control conditions. According to the flow cytometric analysis, the cells expressed A2B5 (>70%) and NG2 (40-60%) at 5 weeks time point whereas maturing oligodendrocytes expressed O4 (60-80%) at 11 weeks time point. In addition, hESC-derived OPC populations were purified based on NG2-positive selection using fluorescence-activated cell sorting. NG2-positive OPC populations survived and differentiated further into O4 expressing oligodendrocytes in xeno-free medium, and the sorted cell populations were free from pluripotent Tra1-81 and Oct-4 -positive cells. CONCLUSIONS This study confirms that the xeno-free culturing method can support the differentiation and purification of hESC-derived OPC populations and provides an initial step toward safe cell graft production for the future clinical applications.
Collapse
Affiliation(s)
- Maria Sundberg
- Regea - Institute for Regenerative Medicine, University of Tampere & Tampere University Hospital, Tampere, Finland
| | | | | | | | | | | | | |
Collapse
|
13
|
Ilic D, Stephenson E, Wood V, Jacquet L, Stevenson D, Petrova A, Kadeva N, Codognotto S, Patel H, Semple M, Cornwell G, Ogilvie C, Braude P. Derivation and feeder-free propagation of human embryonic stem cells under xeno-free conditions. Cytotherapy 2011; 14:122-8. [PMID: 22029654 DOI: 10.3109/14653249.2011.623692] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND AIMS Human embryonic stem (hES) cells hold great potential for cell therapy and regenerative medicine because of their pluripotency and capacity for self-renewal. The conditions used to derive and culture hES cells vary between and within laboratories depending on the desired use of the cells. Until recently, stem cell culture has been carried out using feeder cells, and culture media, that contain animal products. Recent advances in technology have opened up the possibility of both xeno-free and feeder-free culture of stem cells, essential conditions for the use of stem cells for clinical purposes. To date, however, there has been limited success in achieving this aim. METHODS, RESULTS AND CONCLUSIONS Protocols were developed for the successful derivation of two normal and three specific mutation-carrying (SMC) (Huntington's disease and myotonic dystrophy 1) genomically stable hES cell lines, and their adaptation to feeder-free culture, all under xeno-free conditions.
Collapse
Affiliation(s)
- Dusko Ilic
- Embryonic Stem Cell Laboratories, Guy's Assisted Conception Unit, Division of Women's Health, King's College School of Medicine, London, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Overexpression of BCL2 enhances survival of human embryonic stem cells during stress and obviates the requirement for serum factors. Proc Natl Acad Sci U S A 2011; 108:3282-7. [PMID: 21300885 DOI: 10.1073/pnas.1019047108] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The promise of pluripotent stem cells as a research and therapeutic tool is partly undermined by the technical challenges of generating and maintaining these cells in culture. Human embryonic stem cells (hESCs) are exquisitely sensitive to culture conditions, and require constant signaling by growth factors and cell-cell and cell-matrix interactions to prevent apoptosis, senescence, and differentiation. Previous work from our laboratory demonstrated that overexpression of the prosurvival gene BCL2 in mouse embryonic stem cells overrode the requirement of serum factors and feeder cells to maintain mESCs in culture. To determine whether this prosurvival gene could similarly protect hESCs, we generated hESC lines that constitutively or inducibly express BCL2. We find that BCL2 overexpression significantly decreases dissociation-induced apoptosis, resulting in enhanced colony formation from sorted single cells, and enhanced embryoid body formation. In addition, BCL2-hESCs exhibit normal growth in the absence of serum, but require basic fibroblast growth factor to remain undifferentiated. Furthermore, they maintain their pluripotency markers, form teratomas in vivo, and differentiate into all three germ layers. Our data suggest that the BCL2 signaling pathway plays an important role in inhibiting hESC apoptosis, such that its overexpression in hESCs offers both a survival benefit in conditions of stress by resisting apoptosis and obviates the requirement for serum or a feeder layer for maintenance.
Collapse
|
15
|
Lappalainen RS, Salomäki M, Ylä-Outinen L, Heikkilä TJ, Hyttinen JAK, Pihlajamäki H, Suuronen R, Skottman H, Narkilahti S. Similarly derived and cultured hESC lines show variation in their developmental potential towards neuronal cells in long-term culture. Regen Med 2011; 5:749-62. [PMID: 20868330 DOI: 10.2217/rme.10.58] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Human embryonic stem cells (hESCs) can differentiate into any human cell type, including CNS cells, and thus have high potential in regenerative medicine. Several protocols exist for neuronal differentiation of hESCs, which do not necessarily work for all hESC lines. MATERIALS & METHODS We tested the differentiation capacity of four similarly derived and cultured hESC lines (HS181, HS360, HS362 and HS401) in suspension culture in relatively simple neural differentiation medium for up to 20 weeks. RESULTS All the hESC lines differentiated into neuronal cells, but in a line-dependent manner. Using our method, the HS181- and HS360-derived neurospheres differentiated in vitro into pure neuronal cell populations within 6 weeks, whereas HS362 and HS401 reached their peak of differentiation in 12 weeks, but never produced pure neuronal cell populations using the present method. The withdrawal of FGF from suspension culture increased the in vitro differentiation potential. The hESC-derived neurospheres formed functional neuronal networks when replated on a microelectrode array and responded as expected to pharmacologic modulation. CONCLUSION Simple neurosphere culture is a suitable method for producing hESC-derived neuronal cells that can form functional neuronal networks from a number of hESC lines. The variation in the differentiation potential of hESC lines into neuronal cells must be carefully considered by those comparing various differentiation methods and designing transplantation therapies for neuronal disorders.
Collapse
Affiliation(s)
- Riikka S Lappalainen
- Regea Institute for Regenerative Medicine, University of Tampere & Tampere University Hospital, Tampere, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Pakzad M, Totonchi M, Taei A, Seifinejad A, Hassani SN, Baharvand H. Presence of a ROCK inhibitor in extracellular matrix supports more undifferentiated growth of feeder-free human embryonic and induced pluripotent stem cells upon passaging. Stem Cell Rev Rep 2010; 6:96-107. [PMID: 20012714 DOI: 10.1007/s12015-009-9103-z] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Optimization and development of better defined culture methods for human embryonic and induced pluripotent stem cells (hESCs and hiPSCs) will provide an invaluable contribution to the field of regenerative medicine. However, one problem is the vulnerability of hESCs and hiPSCs to apoptosis that causes a low plating efficiency upon passaging. Herein, we have developed a novel hESCs and hiPSCs culture technique that uses ROCK inhibitor (ROCKi) Y-27632 (10 microM) in Matrigel-coated dishes in both serum- and feeder-free culture conditions. This increases plating efficiency during enzymatic and mechanical passaging as compared to its presence solely in culture medium. Under these conditions, hESCs (three lines) and hiPSCs (two lines) retain their typical morphology, a stable karyotype, express pluripotency markers and have the potential to differentiate into derivatives of all three germ layers after long-term culture. Real-time RT-PCR analysis of stemness-related integrins (alphaV, alpha6, and beta1) has demonstrated that their expression increases in the presence of ROCKi. Similar plating efficiencies have been obtained in both hESCs and hiPSCs with a lower concentration of Y-27632 (800 nM) and another ROCKi (HA-1077/Fasudil), thus ruling out the non-specific effects of Y-27632. These results show that addition of ROCKi in the extracellular matrix can increase the plating efficiency of hESCs and hiPSCs during passaging of clusters. This is due not only to an anti-apoptotic effect, but also to an increase in the ECM-cells interaction. Therefore, we believe this method will be useful for both current and future applications of these pluripotent stem cells.
Collapse
Affiliation(s)
- Mohammad Pakzad
- Department of Stem Cells and Developmental Biology, Royan Institute for Stem Cell Biology and Technology, ACECR, P.O. Box 19395-4644, Tehran, Iran
| | | | | | | | | | | |
Collapse
|
17
|
Ilic D, Giritharan G, Zdravkovic T, Caceres E, Genbacev O, Fisher SJ, Krtolica A. Derivation of human embryonic stem cell lines from biopsied blastomeres on human feeders with minimal exposure to xenomaterials. Stem Cells Dev 2010; 18:1343-50. [PMID: 19222349 DOI: 10.1089/scd.2008.0416] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In a continuous effort to improve the generation of therapeutic grade human embryonic stem cell (hESC) lines, we focused on preserving developmental capacity of the embryos, minimizing the exposure to xenomaterials, increasing derivation efficacy, and reducing the complexity of the derivation procedure. In this study, we describe an improved method for efficient derivation of hESC lines from blastomeres of biopsied embryos. Our protocol substituted feeder cells of mouse origin with human foreskin fibroblasts (HFFs), limited serum exposure of cells to formation of the initial outgrowth, and increased derivation efficacy from 12.5% (one hESC line out of 13 biopsies) to 50% (3 out of 6 biopsies) by using early population doubling (PD) HFFs. In addition, it eliminated a need for embryo-blastomere coculture, thus reducing the complexity of the culture and enabling continued development of the biopsied embryo under optimal conditions. All derived lines maintained normal karyotype and expressed totipotent phenotype including the ability to differentiate into trophectoderm and all three germ layers.
Collapse
Affiliation(s)
- Dusko Ilic
- SLLSciences StemLifeLine, Inc., San Carlos, California 94070, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Skottman H. Derivation and characterization of three new human embryonic stem cell lines in Finland. In Vitro Cell Dev Biol Anim 2010; 46:206-9. [PMID: 20177999 DOI: 10.1007/s11626-010-9286-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Accepted: 01/14/2010] [Indexed: 12/20/2022]
Abstract
Human embryonic stem cell (hESC) lines can be established from the preimplantation embryos. Due to their ability to differentiate into all three embryonic layers, hESC are of significant interest as a renewable source of cell material for different applications, especially for cell replacement therapy. Since the establishment of the first hESC lines in 1998, several studies have described the derivation and culture of new hESC lines using various derivation methods and culture conditions. Our group has currently established eight new hESC lines of which three of the latest ones are described in a more detailed way in this report. The described lines have been established using mechanical derivation methods for surplus bad quality embryos and culture conditions containing human foreskin fibroblast feeder cells and serum-free culture medium. All the new lines have a normal karyotype and typical hESC characteristics analyzed in vitro. The described hESC lines are available for research purposes upon request (www.regea.fi).
Collapse
Affiliation(s)
- Heli Skottman
- Regea-Institute for Regenerative Medicine, University of Tampere and Tampere University Hospital, Biokatu 12, 33520 Tampere, Finland.
| |
Collapse
|
19
|
Heng BC, Richards M, Ge Z, Shu Y. Induced adult stem (iAS) cells and induced transit amplifying progenitor (iTAP) cells-a possible alternative to induced pluripotent stem (iPS) cells? J Tissue Eng Regen Med 2010; 4:159-162. [DOI: 10.1002/term.230] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
20
|
An antibody surface for selective neuronal cell attachment. J Neurosci Methods 2009; 186:72-6. [PMID: 19903492 DOI: 10.1016/j.jneumeth.2009.11.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Revised: 10/28/2009] [Accepted: 11/04/2009] [Indexed: 11/24/2022]
Abstract
An optimal surface for culturing human embryonic stem cell (hESC)-derived neuronal cells is of high interest. In this study, a specific antibody to a neural cell adhesion molecule (NCAM) was immobilised on a solid surface of polystyrene and used as a selective matrix for culturing of hESC-derived neuronal cells. Thereafter, hESC-derived neurospheres were seeded on the matrix. The neurospheres did not attach to the NCAM antibody containing matrix whereas individual neuronal cells did. The neuronal cell attachment was depended on the NCAM antibody concentration. The neuronal cells were viable on the NCAM antibody containing matrix during an 8 day follow-up and exhibited typical bipolar morphology of immature neurons. Specific binding of the NCAM antigen to an immunoglobulin-polymer coated surface was verified by surface plasmon resonance (SPR) measurements. This study is to our knowledge the first demonstrating the use of an antibody layer as a selective surface for hESC-derived neuronal cells.
Collapse
|
21
|
Mollamohammadi S, Taei A, Pakzad M, Totonchi M, Seifinejad A, Masoudi N, Baharvand H. A simple and efficient cryopreservation method for feeder-free dissociated human induced pluripotent stem cells and human embryonic stem cells. Hum Reprod 2009; 24:2468-76. [DOI: 10.1093/humrep/dep244] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
22
|
Heng BC, Richards M, Shu Y, Gribbon P. Induced pluripotent stem cells: a new tool for toxicology screening? Arch Toxicol 2009; 83:641-4. [PMID: 19247633 DOI: 10.1007/s00204-009-0414-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Accepted: 02/16/2009] [Indexed: 01/23/2023]
|
23
|
Pekkanen-Mattila M, Kerkelä E, Tanskanen JMA, Pietilä M, Pelto-Huikko M, Hyttinen J, Skottman H, Suuronen R, Aalto-Setälä K. Substantial variation in the cardiac differentiation of human embryonic stem cell lines derived and propagated under the same conditions--a comparison of multiple cell lines. Ann Med 2009; 41:360-70. [PMID: 19165643 DOI: 10.1080/07853890802609542] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
AIM The differentiation efficiencies of human embryonic stem cell (hESC) lines differ from each other. To assess this in more detail we studied the cardiac differentiation of eight hESC lines derived in the same laboratory. RESULTS Substantial variation in growth and in the ability to form beating areas was seen between the different hESC lines; line HS346 gave the best efficiency (9.4%), while HS293 did not differentiate into beating colonies at all. Nine germ layer and differentiation markers were quantified during early differentiation in four hESC lines. The expression levels of Brachyury T, MESP1 and NKX2.5 were highest in the most efficient cardiac line (HS346). A systematic characterization of the beating cells revealed proper cardiac marker expression, electrophysiological activity, and pharmacological response. CONCLUSIONS The hESC lines derived in the same laboratory varied considerably in their potential to differentiate into beating cardiomyocytes. None of the expression markers could clearly predict cardiac differentiation potential, although the expression of early cardiomyogenic genes was upregulated in the best cardiac line. The proper cardiomyocyte characteristics and pharmacological response indicate that these cells could be used as a model for human cardiomyocytes in pharmacological and toxicological analyses when investigating new heart medications or cardiac side-effects.
Collapse
Affiliation(s)
- Mari Pekkanen-Mattila
- REGEA, Institute for Regenerative Medicine, University of Tampere and Tampere University Hospital, Biokatu 12, Tampere, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Wobus AM, Löser P. [Human embryonic stem cells within the context of international research activity]. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2008; 51:994-1004. [PMID: 18773174 DOI: 10.1007/s00103-008-0627-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Research involving pluripotent human embryonic stem cells (hESCs) is a rapidly growing field of science. Since hESCs originate from early human embryos, alternative methods for producing pluripotent cells have been developed. This article introduces some of those strategies and, in addition, covers international efforts to establish consistent international standards for cultivation, characterization and preservation of hESCs. Furthermore, global trends to form networks in the field of stem cell research as well as endeavors to harmonize ethical standards for hESC research are presented. Finally, potential applications of hESCs in the field of pharmacology/toxicology are discussed as well as recent results of animal studies using hESCs.
Collapse
Affiliation(s)
- A M Wobus
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung, Gatersleben, BRD.
| | | |
Collapse
|
25
|
Deconstructing human embryonic stem cell cultures: niche regulation of self-renewal and pluripotency. J Mol Med (Berl) 2008; 86:875-86. [PMID: 18521556 DOI: 10.1007/s00109-008-0356-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Revised: 03/17/2008] [Accepted: 03/31/2008] [Indexed: 02/08/2023]
Abstract
The factors and signaling pathways controlling pluripotent human cell properties, both embryonic and induced, have not been fully investigated. Failure to account for functional heterogeneity within human embryonic stem cell (hESC) cultures has led to inconclusive results in previous work examining extrinsic influences governing hESC fate (self renewal vs. differentiation vs. death). Here, we attempt to reconcile these inconsistencies with recent reports demonstrating that an autologously produced in vitro niche regulates hESCs. Moreover, we focus on the reciprocal paracrine signals within the in vitro hESC niche allowing for the maintenance and/or expansion of the hESC colony-initiating cell (CIC). Based on this, it is clear that separation of hESC-CICs, apart from their differentiated derivatives, will be essential in future studies involving their molecular regulation. Understanding how extrinsic factors control hESC self-renewal and differentiation will allow us to culture and differentiate these pluripotent cells with higher efficiency. This knowledge will be essential for clinical applications using human pluripotent cells in regenerative medicine.
Collapse
|
26
|
Albumin-associated lipids regulate human embryonic stem cell self-renewal. PLoS One 2008; 3:e1384. [PMID: 18167543 PMCID: PMC2148252 DOI: 10.1371/journal.pone.0001384] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2007] [Accepted: 12/07/2007] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Although human embryonic stem cells (hESCs) hold great promise as a source of differentiated cells to treat several human diseases, many obstacles still need to be surmounted before this can become a reality. First among these, a robust chemically-defined system to expand hESCs in culture is still unavailable despite recent advances in the understanding of factors controlling hESC self-renewal. METHODOLOGY/PRINCIPAL FINDINGS In this study, we attempted to find new molecules that stimulate long term hESC self-renewal. In order to do this, we started from the observation that a commercially available serum replacement product has a strong positive effect on the expansion of undifferentiated hESCs when added to a previously reported chemically-defined medium. Subsequent experiments demonstrated that the active ingredient within the serum replacement is lipid-rich albumin. Furthermore, we show that this activity is trypsin-resistant, strongly suggesting that lipids and not albumin are responsible for the effect. Consistent with this, lipid-poor albumin shows no detectable activity. Finally, we identified the major lipids bound to the lipid-rich albumin and tested several lipid candidates for the effect. CONCLUSIONS/SIGNIFICANCE Our discovery of the role played by albumin-associated lipids in stimulating hESC self-renewal constitutes a significant advance in the knowledge of how hESC pluripotency is maintained by extracellular factors and has important applications in the development of increasingly chemically defined hESC culture systems.
Collapse
|
27
|
Zweigerdt R. The art of cobbling a running pump--will human embryonic stem cells mend broken hearts? Semin Cell Dev Biol 2007; 18:794-804. [PMID: 18006339 DOI: 10.1016/j.semcdb.2007.09.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2007] [Accepted: 09/25/2007] [Indexed: 12/20/2022]
Abstract
The heart is one of the least regenerative organs in the body, and highly vulnerable to the increasing incidence of cardiovascular diseases in an aging world population. Cell-based approaches aimed at cardiac repair have recently caused great public excitement. But clinical trials of patients' own skeletal myoblasts or bone marrow cells for transplantation have been disappointing. Human embryonic stem cells (hESCs) form bona fide cardiomyocytes in vitro which are readily generated in mass culture and are being tested in animal models of heart damage. The early results, while encouraging, underscore that much remains to be done. This review focuses on the many challenges that remain before hESCs-mediated repair of the human heart becomes a reality.
Collapse
Affiliation(s)
- Robert Zweigerdt
- Institute of Medical Biology, 11 Biopolis Way, # 5-6 Helios, 138667 Singapore, Singapore.
| |
Collapse
|