1
|
Bunpetch V, Wu H, Zhang S, Ouyang H. From "Bench to Bedside": Current Advancement on Large-Scale Production of Mesenchymal Stem Cells. Stem Cells Dev 2018; 26:1662-1673. [PMID: 28934885 DOI: 10.1089/scd.2017.0104] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are the primary cell source in cell therapy and regenerative medicine due to its extraordinary self-renewing capacity and multilineage differentiation potential. Clinical trials involving MSCs are being conducted in a range of human diseases and the number of registered cases is continuously increasing. However, a wide gap exists between the number of MSCs obtainable from the donor site and the number required for implantation to damage tissues, and also between MSC scalability and MSC phenotype stability. The clinical translation of MSCs necessitates a scalable expansion bioprocess for the biomanufacturing of therapeutically qualified cells. This review presents current achievements for expansion of MSCs. Issues involving culture condition modification, bioreactor systems, as well as microcarrier and scaffold platforms for optimal MSC systems are discussed. Most importantly, the gap between current MSC expansion and clinical application, as well as outbreak directions for the future are discussed. The present systemic review will bring new insights into future large-scale MSC expansion and clinical application.
Collapse
Affiliation(s)
- Varitsara Bunpetch
- 1 Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University , Hangzhou, China .,2 Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University , Hangzhou, China .,3 Center for Stem Cell and Tissue Engineering, School of Medicine, Zhejiang University , Hangzhou, China
| | - Haoyu Wu
- 1 Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University , Hangzhou, China .,2 Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University , Hangzhou, China .,3 Center for Stem Cell and Tissue Engineering, School of Medicine, Zhejiang University , Hangzhou, China
| | - Shufang Zhang
- 1 Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University , Hangzhou, China .,2 Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University , Hangzhou, China .,3 Center for Stem Cell and Tissue Engineering, School of Medicine, Zhejiang University , Hangzhou, China
| | - Hongwei Ouyang
- 1 Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University , Hangzhou, China .,2 Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University , Hangzhou, China .,3 Center for Stem Cell and Tissue Engineering, School of Medicine, Zhejiang University , Hangzhou, China .,4 State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University , Hangzhou, China .,5 Department of Sports Medicine, School of Medicine, Zhejiang University , Hangzhou, China
| |
Collapse
|
2
|
Toms D, Deardon R, Ungrin M. Climbing the mountain: experimental design for the efficient optimization of stem cell bioprocessing. J Biol Eng 2017; 11:35. [PMID: 29213303 PMCID: PMC5712411 DOI: 10.1186/s13036-017-0078-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 08/27/2017] [Indexed: 12/26/2022] Open
Abstract
"To consult the statistician after an experiment is finished is often merely to ask him to conduct a post mortem examination. He can perhaps say what the experiment died of." - R.A. Fisher While this idea is relevant across research scales, its importance becomes critical when dealing with the inherently large, complex and expensive process of preparing material for cell-based therapies (CBTs). Effective and economically viable CBTs will depend on the establishment of optimized protocols for the production of the necessary cell types. Our ability to do this will depend in turn on the capacity to efficiently search through a multi-dimensional problem space of possible protocols in a timely and cost-effective manner. In this review we discuss approaches to, and illustrate examples of the application of statistical design of experiments to stem cell bioprocess optimization.
Collapse
Affiliation(s)
- Derek Toms
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, 3280 Hospital Drive NW, Calgary, T2N 4Z6 Canada
| | - Rob Deardon
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, 3280 Hospital Drive NW, Calgary, T2N 4Z6 Canada
- Department of Mathematics and Statistics, Faculty of Science, University of Calgary, 612 Campus Place NW, Calgary, T2N 4N1 Canada
| | - Mark Ungrin
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, 3280 Hospital Drive NW, Calgary, T2N 4Z6 Canada
- Biomedical Engineering Graduate Program, University of Calgary, 2500 University Drive NW, Calgary, T2N 1N4 Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, T2N 4N1 Canada
- Alberta Diabetes Institute, University of Alberta, Li Ka Shing Centre for Health Research Innovation, Edmonton, T6G 2E1 Canada
- Centre for Bioengineering Research and Education, University of Calgary, 2500 University Drive NW, Calgary, T2N 1N4 Canada
- Arnie Charbonneau Cancer Institute, University of Calgary, 3280 Hospital Drive NW, Calgary, T2N 4Z6 Canada
| |
Collapse
|
3
|
Maartens JH, De-Juan-Pardo E, Wunner FM, Simula A, Voelcker NH, Barry SC, Hutmacher DW. Challenges and opportunities in the manufacture and expansion of cells for therapy. Expert Opin Biol Ther 2017; 17:1221-1233. [DOI: 10.1080/14712598.2017.1360273] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Joachim H. Maartens
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
- Cooperative Research Centre for Cell Therapy Manufacturing, Adelaide, Australia
| | - Elena De-Juan-Pardo
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
- Cooperative Research Centre for Cell Therapy Manufacturing, Adelaide, Australia
| | - Felix M. Wunner
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
- Cooperative Research Centre for Cell Therapy Manufacturing, Adelaide, Australia
| | - Antonio Simula
- Cooperative Research Centre for Cell Therapy Manufacturing, Adelaide, Australia
| | - Nicolas H. Voelcker
- Cooperative Research Centre for Cell Therapy Manufacturing, Adelaide, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Future Industries Institute, University of South Australia, Adelaide, Australia
| | - Simon C. Barry
- Cooperative Research Centre for Cell Therapy Manufacturing, Adelaide, Australia
- Molecular Immunology, Department of Gastroenterology, Women’s and Children’s Hospital, Adelaide, Australia
- Robinson Research Institute, University of Adelaide, Adelaide, Australia
| | - Dietmar W. Hutmacher
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
- Cooperative Research Centre for Cell Therapy Manufacturing, Adelaide, Australia
- ARC Centre in Additive Biomanufacturing, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
4
|
Kropp C, Massai D, Zweigerdt R. Progress and challenges in large-scale expansion of human pluripotent stem cells. Process Biochem 2017. [DOI: 10.1016/j.procbio.2016.09.032] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
5
|
Cunha B, Aguiar T, Carvalho SB, Silva MM, Gomes RA, Carrondo MJT, Gomes-Alves P, Peixoto C, Serra M, Alves PM. Bioprocess integration for human mesenchymal stem cells: From up to downstream processing scale-up to cell proteome characterization. J Biotechnol 2017; 248:87-98. [PMID: 28174039 DOI: 10.1016/j.jbiotec.2017.01.014] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 01/23/2017] [Accepted: 01/27/2017] [Indexed: 01/08/2023]
Abstract
To deliver the required cell numbers and doses to therapy, scaling-up production and purification processes (at least to the liter-scale) while maintaining cells' characteristics is compulsory. Therefore, the aim of this work was to prove scalability of an integrated streamlined bioprocess compatible with current good manufacturing practices (cGMP) comprised by cell expansion, harvesting and volume reduction unit operations using human mesenchymal stem cells (hMSC) isolated from bone marrow (BM-MSC) and adipose tissue (AT-MSC). BM-MSC and AT-MSC expansion and harvesting steps were scaled-up from spinner flasks to 2L scale stirred tank single-use bioreactor using synthetic microcarriers and xeno-free medium, ensuring high cellular volumetric productivities (50×106cellL-1day-1), expansion factors (14-16 fold) and cell recovery yields (80%). For the concentration step, flat sheet cassettes (FSC) and hollow fiber cartridges (HF) were compared showing a fairly linear scale-up, with a need to slightly decrease the permeate flux (30-50 LMH, respectively) to maximize cell recovery yield. Nonetheless, FSC allowed to recover 18% more cells after a volume reduction factor of 50. Overall, at the end of the entire bioprocess more than 65% of viable (>95%) hMSC could be recovered without compromising cell's critical quality attributes (CQA) of viability, identity and differentiation potential. Alongside the standard quality assays, a proteomics workflow based on mass spectrometry tools was established to characterize the impact of processing on hMSC's CQA; These analytical tools constitute a powerful tool to be used in process design and development.
Collapse
Affiliation(s)
- Bárbara Cunha
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal; iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal
| | - Tiago Aguiar
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal; iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal
| | - Sofia B Carvalho
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal; iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal
| | - Marta M Silva
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal; iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal
| | - Ricardo A Gomes
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal; iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal
| | - Manuel J T Carrondo
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal; Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Monte da Caparica, Portugal
| | - Patrícia Gomes-Alves
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal; iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal
| | - Cristina Peixoto
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal; iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal
| | - Margarida Serra
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal; iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal
| | - Paula M Alves
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal; iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal.
| |
Collapse
|
6
|
Patient-specific hiPSC bioprocessing for drug screening: Bioprocess economics and optimisation. Biochem Eng J 2016. [DOI: 10.1016/j.bej.2015.09.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
7
|
Cunha B, Aguiar T, Silva MM, Silva RJ, Sousa MF, Pineda E, Peixoto C, Carrondo MJ, Serra M, Alves PM. Exploring continuous and integrated strategies for the up- and downstream processing of human mesenchymal stem cells. J Biotechnol 2015; 213:97-108. [DOI: 10.1016/j.jbiotec.2015.02.023] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 02/08/2015] [Accepted: 02/16/2015] [Indexed: 01/08/2023]
|
8
|
Xu K, Narayanan K, Lee F, Bae KH, Gao S, Kurisawa M. Enzyme-mediated hyaluronic acid-tyramine hydrogels for the propagation of human embryonic stem cells in 3D. Acta Biomater 2015; 24:159-71. [PMID: 26112373 DOI: 10.1016/j.actbio.2015.06.026] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 06/18/2015] [Accepted: 06/18/2015] [Indexed: 01/20/2023]
Abstract
The propagation of human embryonic stem cells (hESCs) in three-dimensional (3D) scaffolds facilitates the cell expansion process and supplies pluripotent cells of high quality for broad-spectrum applications in regenerative medicine. Herein, we report an enzyme-mediated hyaluronic acid-tyramine (HA-Tyr) hydrogel that encapsulated and propagated hESCs in 3D. HA-Tyr hydrogels were formed by crosslinking the tyramine moieties with horseradish peroxidase (HRP) and hydrogen peroxide (H2O2). By changing the HRP and H2O2 concentration, we prepared HA-Tyr hydrogels of different mechanical strength and studied the self-renewal properties of hESCs in these scaffolds. We observed that both the chemical composition and mechanical strength of substrates were important factors affecting cell proliferation and pluripotency. The HA-Tyr hydrogel with a compressive modulus of ∼350Pa supported the proliferation of hESCs at the pluripotent state in both mTeSR1 medium and mouse embryonic fibroblast (MEF)-conditioned medium. Immunohistochemical analyses revealed that hESCs proliferated well and formed spheroid structures in 3D, without undergoing apoptosis. The hESCs cultured in HA-Tyr hydrogels showed high expression of CD44 and pluripotency markers. These cells exhibited the capability to form cell derivatives of all three embryonic germ layers in vitro and in vivo. In addition, the genetic integrity of the hESCs was unaffected in the 3D cultivation system. STATEMENT OF SIGNIFICANCE The scope of this study is to provide a stable 3D cultivation system for the expansion of human embryonic stem cells (hESCs) towards clinical applications. We report an enzyme mediated hyaluronic acid-tyramine (HA-Tyr) hydrogel that encapsulated and propagated hESCs in 3D. Unlike other HA-based photo-crosslinked hydrogel systems reported, we investigated the effects of mechanical strength of hydrogels on the self-renewal properties of hESCs in 3D. Then, we characterized hESCs cultured in hydrogels with lower mechanical strength that best supported the self-renewal of hESCs. Hence, we demonstrated a reliable approach for the controlled propagation of hESCs in 3D. We believe that such an approach would facilitate the development of stem cell-based therapy towards clinical applications.
Collapse
Affiliation(s)
- Keming Xu
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, Singapore 138669, Singapore
| | - Karthikeyan Narayanan
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, Singapore 138669, Singapore
| | - Fan Lee
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, Singapore 138669, Singapore
| | - Ki Hyun Bae
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, Singapore 138669, Singapore
| | - Shujun Gao
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, Singapore 138669, Singapore
| | - Motoichi Kurisawa
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, Singapore 138669, Singapore.
| |
Collapse
|
9
|
Alexander P, Thomson HAJ, Luff AJ, Lotery AJ. Retinal pigment epithelium transplantation: concepts, challenges, and future prospects. Eye (Lond) 2015; 29:992-1002. [PMID: 26043704 PMCID: PMC4541358 DOI: 10.1038/eye.2015.89] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 04/14/2015] [Indexed: 12/14/2022] Open
Abstract
The retinal pigment epithelium (RPE) is a single layer of cells that supports the light-sensitive photoreceptor cells that are essential for retinal function. Age-related macular degeneration (AMD) is a leading cause of visual impairment, and the primary pathogenic mechanism is thought to arise in the RPE layer. RPE cell structure and function are well understood, the cells are readily sustainable in laboratory culture and, unlike other cell types within the retina, RPE cells do not require synaptic connections to perform their role. These factors, together with the relative ease of outer retinal imaging, make RPE cells an attractive target for cell transplantation compared with other cell types in the retina or central nervous system. Seminal experiments in rats with an inherited RPE dystrophy have demonstrated that RPE transplantation can prevent photoreceptor loss and maintain visual function. This review provides an update on the progress made so far on RPE transplantation in human eyes, outlines potential sources of donor cells, and describes the technical and surgical challenges faced by the transplanting surgeon. Recent advances in the understanding of pluripotent stem cells, combined with novel surgical instrumentation, hold considerable promise, and support the concept of RPE transplantation as a regenerative strategy in AMD.
Collapse
Affiliation(s)
- P Alexander
- Clinical Neurosciences Research Group, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, University Hospital Southampton, Southampton, UK
| | - H A J Thomson
- Clinical Neurosciences Research Group, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, University Hospital Southampton, Southampton, UK
| | - A J Luff
- Clinical Neurosciences Research Group, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, University Hospital Southampton, Southampton, UK
| | - A J Lotery
- Clinical Neurosciences Research Group, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, University Hospital Southampton, Southampton, UK
| |
Collapse
|
10
|
|
11
|
Cunha B, Peixoto C, Silva MM, Carrondo MJ, Serra M, Alves PM. Filtration methodologies for the clarification and concentration of human mesenchymal stem cells. J Memb Sci 2015. [DOI: 10.1016/j.memsci.2014.12.041] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
12
|
Jenkins MJ, Farid SS. Human pluripotent stem cell-derived products: advances towards robust, scalable and cost-effective manufacturing strategies. Biotechnol J 2014; 10:83-95. [PMID: 25524780 PMCID: PMC4674985 DOI: 10.1002/biot.201400348] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 09/18/2014] [Accepted: 10/13/2014] [Indexed: 02/06/2023]
Abstract
The ability to develop cost-effective, scalable and robust bioprocesses for human pluripotent stem cells (hPSCs) will be key to their commercial success as cell therapies and tools for use in drug screening and disease modelling studies. This review outlines key process economic drivers for hPSCs and progress made on improving the economic and operational feasibility of hPSC bioprocesses. Factors influencing key cost metrics, namely capital investment and cost of goods, for hPSCs are discussed. Step efficiencies particularly for differentiation, media requirements and technology choice are amongst the key process economic drivers identified for hPSCs. Progress made to address these cost drivers in hPSC bioprocessing strategies is discussed. These include improving expansion and differentiation yields in planar and bioreactor technologies, the development of xeno-free media and microcarrier coatings, identification of optimal bioprocess operating conditions to control cell fate and the development of directed differentiation protocols that reduce reliance on expensive morphogens such as growth factors and small molecules. These approaches offer methods to further optimise hPSC bioprocessing in terms of its commercial feasibility.
Collapse
Affiliation(s)
- Michael J Jenkins
- Department of Biochemical Engineering, University College London, London, UK
| | | |
Collapse
|
13
|
Kandasamy K, Narayanan K, Ni M, Du C, Wan ACA, Zink D. Polysulfone Membranes Coated with Polymerized 3,4-Dihydroxy-l-phenylalanine are a Versatile and Cost-Effective Synthetic Substrate for Defined Long-Term Cultures of Human Pluripotent Stem Cells. Biomacromolecules 2014; 15:2067-78. [DOI: 10.1021/bm5001907] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Karthikeyan Kandasamy
- Institute of Bioengineering and Nanotechnology, 31
Biopolis Way, The Nanos, Singapore 138669, Singapore
| | - Karthikeyan Narayanan
- Institute of Bioengineering and Nanotechnology, 31
Biopolis Way, The Nanos, Singapore 138669, Singapore
| | - Ming Ni
- Institute of Bioengineering and Nanotechnology, 31
Biopolis Way, The Nanos, Singapore 138669, Singapore
| | - Chan Du
- Institute of Bioengineering and Nanotechnology, 31
Biopolis Way, The Nanos, Singapore 138669, Singapore
| | - Andrew C. A. Wan
- Institute of Bioengineering and Nanotechnology, 31
Biopolis Way, The Nanos, Singapore 138669, Singapore
| | - Daniele Zink
- Institute of Bioengineering and Nanotechnology, 31
Biopolis Way, The Nanos, Singapore 138669, Singapore
| |
Collapse
|
14
|
Characterization of human induced pluripotent stem cell-derived retinal pigment epithelium cell sheets aiming for clinical application. Stem Cell Reports 2014; 2:205-18. [PMID: 24527394 PMCID: PMC3923225 DOI: 10.1016/j.stemcr.2013.12.007] [Citation(s) in RCA: 434] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 12/11/2013] [Accepted: 12/11/2013] [Indexed: 02/06/2023] Open
Abstract
Age-related macular degeneration (AMD) causes severe visual impairment due in part to age-dependent impairment of retinal pigment epithelium (RPE). It has been suggested that autologous human induced pluripotent stem cells (hiPSCs) may represent a useful cell source for the generation of graft RPE. We generated hiPSC-derived RPE (hiPSC-RPE) cell sheets optimized to meet clinical use requirements, including quality, quantity, consistency, and safety. These cell sheets are generated as a monolayer of cells without any artificial scaffolds, express typical RPE markers, form tight junctions that exhibit polarized secretion of growth factors, and show phagocytotic ability and gene-expression patterns similar to those of native RPE. Additionally, upon transplantation, autologous nonhuman primate iPSC-RPE cell sheets showed no immune rejection or tumor formation. These results suggest that autologous hiPSC-RPE cell sheets may serve as a useful form of graft for use in tissue replacement therapy for AMD. hiPSC-RPE cell sheets show characteristics similar to those of native RPE A hiPSC-RPE sheet is sufficient to transplant a patient All hiPSC-RPEs show gene-expression patterns similar to native RPE Autologous nonhuman primate iPSC-RPE cell sheets show no rejection or tumor
Collapse
|
15
|
Wan AC, Tai BC. CHITIN — A promising biomaterial for tissue engineering and stem cell technologies. Biotechnol Adv 2013; 31:1776-85. [DOI: 10.1016/j.biotechadv.2013.09.007] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 09/13/2013] [Accepted: 09/23/2013] [Indexed: 10/26/2022]
|
16
|
Low temperature cell pausing: an alternative short-term preservation method for use in cell therapies including stem cell applications. Biotechnol Lett 2013; 36:201-9. [PMID: 24062136 DOI: 10.1007/s10529-013-1349-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 09/10/2013] [Indexed: 01/10/2023]
Abstract
Encouraging advances in cell therapies have produced a requirement for an effective short-term cell preservation method, enabling time for quality assurance testing and transport to their clinical destination. Low temperature pausing of cells offers many advantages over cryopreservation, including the ability to store cells at scale, reduced cost and a simplified procedure with increased reliability. This review will focus on the importance of developing a short-term cell preservation platform as well highlighting the major successes of cell pausing and the key challenges which need addressing, to enable application of the process to therapeutically relevant cells.
Collapse
|
17
|
Simaria AS, Hassan S, Varadaraju H, Rowley J, Warren K, Vanek P, Farid SS. Allogeneic cell therapy bioprocess economics and optimization: single-use cell expansion technologies. Biotechnol Bioeng 2013; 111:69-83. [PMID: 23893544 PMCID: PMC4065358 DOI: 10.1002/bit.25008] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Revised: 07/08/2013] [Accepted: 07/18/2013] [Indexed: 01/02/2023]
Abstract
For allogeneic cell therapies to reach their therapeutic potential, challenges related to achieving scalable and robust manufacturing processes will need to be addressed. A particular challenge is producing lot-sizes capable of meeting commercial demands of up to 10(9) cells/dose for large patient numbers due to the current limitations of expansion technologies. This article describes the application of a decisional tool to identify the most cost-effective expansion technologies for different scales of production as well as current gaps in the technology capabilities for allogeneic cell therapy manufacture. The tool integrates bioprocess economics with optimization to assess the economic competitiveness of planar and microcarrier-based cell expansion technologies. Visualization methods were used to identify the production scales where planar technologies will cease to be cost-effective and where microcarrier-based bioreactors become the only option. The tool outputs also predict that for the industry to be sustainable for high demand scenarios, significant increases will likely be needed in the performance capabilities of microcarrier-based systems. These data are presented using a technology S-curve as well as windows of operation to identify the combination of cell productivities and scale of single-use bioreactors required to meet future lot sizes. The modeling insights can be used to identify where future R&D investment should be focused to improve the performance of the most promising technologies so that they become a robust and scalable option that enables the cell therapy industry reach commercially relevant lot sizes. The tool outputs can facilitate decision-making very early on in development and be used to predict, and better manage, the risk of process changes needed as products proceed through the development pathway.
Collapse
Affiliation(s)
- Ana S Simaria
- Department of Biochemical Engineering, The Advanced Centre for Biochemical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK
| | | | | | | | | | | | | |
Collapse
|
18
|
Liu N, Li Y, Yang ST. Microfibrous carriers for integrated expansion and neural differentiation of embryonic stem cells in suspension bioreactor. Biochem Eng J 2013. [DOI: 10.1016/j.bej.2013.03.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
19
|
Reichen M, Macown RJ, Jaccard N, Super A, Ruban L, Griffin LD, Veraitch FS, Szita N. Microfabricated modular scale-down device for regenerative medicine process development. PLoS One 2012; 7:e52246. [PMID: 23284952 PMCID: PMC3526573 DOI: 10.1371/journal.pone.0052246] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 11/16/2012] [Indexed: 01/09/2023] Open
Abstract
The capacity of milli and micro litre bioreactors to accelerate process development has been successfully demonstrated in traditional biotechnology. However, for regenerative medicine present smaller scale culture methods cannot cope with the wide range of processing variables that need to be evaluated. Existing microfabricated culture devices, which could test different culture variables with a minimum amount of resources (e.g. expensive culture medium), are typically not designed with process development in mind. We present a novel, autoclavable, and microfabricated scale-down device designed for regenerative medicine process development. The microfabricated device contains a re-sealable culture chamber that facilitates use of standard culture protocols, creating a link with traditional small-scale culture devices for validation and scale-up studies. Further, the modular design can easily accommodate investigation of different culture substrate/extra-cellular matrix combinations. Inactivated mouse embryonic fibroblasts (iMEF) and human embryonic stem cell (hESC) colonies were successfully seeded on gelatine-coated tissue culture polystyrene (TC-PS) using standard static seeding protocols. The microfluidic chip included in the device offers precise and accurate control over the culture medium flow rate and resulting shear stresses in the device. Cells were cultured for two days with media perfused at 300 µl.h−1 resulting in a modelled shear stress of 1.1×10−4 Pa. Following perfusion, hESC colonies stained positively for different pluripotency markers and retained an undifferentiated morphology. An image processing algorithm was developed which permits quantification of co-cultured colony-forming cells from phase contrast microscope images. hESC colony sizes were quantified against the background of the feeder cells (iMEF) in less than 45 seconds for high-resolution images, which will permit real-time monitoring of culture progress in future experiments. The presented device is a first step to harness the advantages of microfluidics for regenerative medicine process development.
Collapse
Affiliation(s)
- Marcel Reichen
- Department of Biochemical Engineering, University College London, London, United Kingdom
| | - Rhys J. Macown
- Department of Biochemical Engineering, University College London, London, United Kingdom
| | - Nicolas Jaccard
- Department of Biochemical Engineering, University College London, London, United Kingdom
- Centre for Mathematics and Physics in the Life Sciences and Experimental Biology, University College London, London, United Kingdom
| | - Alexandre Super
- Department of Biochemical Engineering, University College London, London, United Kingdom
| | - Ludmila Ruban
- Department of Biochemical Engineering, University College London, London, United Kingdom
| | - Lewis D. Griffin
- Centre for Mathematics and Physics in the Life Sciences and Experimental Biology, University College London, London, United Kingdom
- Department of Computer Science, University College London, London, United Kingdom
| | - Farlan S. Veraitch
- Department of Biochemical Engineering, University College London, London, United Kingdom
| | - Nicolas Szita
- Department of Biochemical Engineering, University College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
20
|
Sart S, Ma T, Li Y. Cryopreservation of pluripotent stem cell aggregates in defined protein-free formulation. Biotechnol Prog 2012; 29:143-53. [PMID: 23125166 DOI: 10.1002/btpr.1653] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 09/25/2012] [Indexed: 12/14/2022]
Abstract
Cultivation of undifferentiated pluripotent stem cells (PSCs) as aggregates has emerged as an efficient culture configuration, enabling rapid and controlled large scale expansion. Aggregate-based PSC cryopreservation facilitates the integrated process of cell expansion and cryopreservation, but its feasibility has not been demonstrated. The goals of current study are to assess the suitability of cryopreserving intact mouse embryonic stem cell (mESC) aggregates and investigate the effects of aggregate size and the formulation of cryopreservation solution on mESC survival and recovery. The results demonstrated the size-dependent cell survival and recovery of intact aggregates. In particular, the generation of reactive oxygen species (ROS) and caspase activation were reduced for small aggregates (109 ± 55 μm) compared to medium (245 ± 77 μm) and large (365 ± 141 μm) ones, leading to the improved cell recovery. In addition, a defined protein-free formulation was tested and found to promote the aggregate survival, eliminating the cell exposure to animal serum. The cryopreserved aggregates also maintained the pluripotent markers and the differentiation capacity into three-germ layers after thawing. In summary, the cryopreservation of small PSC aggregates in a defined protein-free formulation was shown to be a suitable approach toward a fully integrated expansion and cryopreservation process at large scale.
Collapse
Affiliation(s)
- Sébastien Sart
- Dept. of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, USA
| | | | | |
Collapse
|
21
|
Scale-up of human embryonic stem cell culture using a hollow fibre bioreactor. Biotechnol Lett 2012; 34:2307-15. [DOI: 10.1007/s10529-012-1033-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 08/16/2012] [Indexed: 11/27/2022]
|
22
|
Tamura A, Nishi M, Kobayashi J, Nagase K, Yajima H, Yamato M, Okano T. Simultaneous Enhancement of Cell Proliferation and Thermally Induced Harvest Efficiency Based on Temperature-Responsive Cationic Copolymer-Grafted Microcarriers. Biomacromolecules 2012; 13:1765-73. [DOI: 10.1021/bm300256e] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Atsushi Tamura
- Institute of Advanced Biomedical
Engineering and Science, Tokyo Women’s Medical University (TWIns), and Global Center of Excellence
(COE), 8-1 Kawadacho, Shinjuku, Tokyo 162-8666, Japan
| | - Masanori Nishi
- Institute of Advanced Biomedical
Engineering and Science, Tokyo Women’s Medical University (TWIns), and Global Center of Excellence
(COE), 8-1 Kawadacho, Shinjuku, Tokyo 162-8666, Japan
- Department of Applied Chemistry, Tokyo University of Science, 12-1 Funagawara-cho, Ichigaya,
Shinjuku, Tokyo 162-0826, Japan
| | - Jun Kobayashi
- Institute of Advanced Biomedical
Engineering and Science, Tokyo Women’s Medical University (TWIns), and Global Center of Excellence
(COE), 8-1 Kawadacho, Shinjuku, Tokyo 162-8666, Japan
| | - Kenichi Nagase
- Institute of Advanced Biomedical
Engineering and Science, Tokyo Women’s Medical University (TWIns), and Global Center of Excellence
(COE), 8-1 Kawadacho, Shinjuku, Tokyo 162-8666, Japan
| | - Hirofumi Yajima
- Department of Applied Chemistry, Tokyo University of Science, 12-1 Funagawara-cho, Ichigaya,
Shinjuku, Tokyo 162-0826, Japan
| | - Masayuki Yamato
- Institute of Advanced Biomedical
Engineering and Science, Tokyo Women’s Medical University (TWIns), and Global Center of Excellence
(COE), 8-1 Kawadacho, Shinjuku, Tokyo 162-8666, Japan
| | - Teruo Okano
- Institute of Advanced Biomedical
Engineering and Science, Tokyo Women’s Medical University (TWIns), and Global Center of Excellence
(COE), 8-1 Kawadacho, Shinjuku, Tokyo 162-8666, Japan
| |
Collapse
|
23
|
Abstract
We identify three dimensions with which to classify heuristically the routes to widespread adoption of cellular therapies. The first dimension is based on the relative involvement of clinicians and companies in a particular cellular therapy. The second dimension is based on cell type and consequent scale of manufacture. The third dimension classifies the therapeutic intervention as a procedure or product and has perhaps received less attention. We suggest that for those cellular therapies that require therapeutic procedures, close collaboration between companies and clinicians will reduce the time to widespread adoption. For selected cellular therapies we make predictions of the likely time to widespread adoption.
Collapse
Affiliation(s)
- Lucy Foley
- Newcastle University Business School, Citywall, Citygate, Newcastle Upon Tyne, United Kingdom
| | | |
Collapse
|
24
|
Want AJ, Nienow AW, Hewitt CJ, Coopman K. Large-scale expansion and exploitation of pluripotent stem cells for regenerative medicine purposes: beyond the T flask. Regen Med 2012; 7:71-84. [DOI: 10.2217/rme.11.101] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Human pluripotent stem cells will likely be a significant part of the regenerative medicine-driven healthcare revolution. In order to realize this potential, culture processes must be standardized, scalable and able to produce clinically relevant cell numbers, whilst maintaining critical biological functionality. This review comprises a broad overview of important bioprocess considerations, referencing the development of biopharmaceutical processes in an effort to learn from current best practice in the field. Particular focus is given to the recent efforts to grow human pluripotent stem cells in microcarrier or aggregate suspension culture, which would allow geometric expansion of productive capacity were it to be fully realized. The potential of these approaches is compared with automation of traditional T-flask culture, which may provide a cost-effective platform for low-dose, low-incidence conditions or autologous therapies. This represents the first step in defining the full extent of the challenges facing bioprocess engineers in the exploitation of large-scale human pluripotent stem cell manufacture.
Collapse
Affiliation(s)
- Andrew J Want
- Centre for Biological Engineering, Department of Chemical Engineering, Loughborough University, Leicestershire, LE11 3TU, UK
| | - Alvin W Nienow
- Centre for Biological Engineering, Department of Chemical Engineering, Loughborough University, Leicestershire, LE11 3TU, UK
- Centre for Bioprocess Engineering, Department of Chemical Engineering, University of Birmingham, B15 2TT, UK
| | - Christopher J Hewitt
- Centre for Biological Engineering, Department of Chemical Engineering, Loughborough University, Leicestershire, LE11 3TU, UK
| | | |
Collapse
|
25
|
A 3D microfibrous scaffold for long-term human pluripotent stem cell self-renewal under chemically defined conditions. Biomaterials 2011; 33:2419-30. [PMID: 22196900 DOI: 10.1016/j.biomaterials.2011.11.077] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 11/27/2011] [Indexed: 12/18/2022]
Abstract
Realizing the potential of human pluripotent stem cell (hPSC)-based therapy requires the development of defined scalable culture systems with efficient expansion, differentiation and isolation protocols. We report an engineered 3D microfiber system that efficiently supports long-term hPSCs self-renewal under chemically defined conditions. The unique feature of this system lies in the application of a 3D ECM-like environment in which cells are embedded, that affords: (i) uniform high cell loading density in individual cell-laden constructs (∼10(7) cells/ml); (ii) quick recovery of encapsulated cells (<10min at 37°C) with excellent preservation of cell viability and 3D multicellular structure; (iii) direct cryopreservation of the encapsulated cells in situ in the microfibers with >17-fold higher cell viability compared to those cultured on Matrigel surface; (iv) long-term hPSC propagation under chemically defined conditions. Four hPSC lines propagated in the microfibrous scaffold for 10 consecutive passages were capable of maintaining an undifferentiated phenotype as demonstrated by the expression of stem cell markers and stable karyotype in vitro and the ability to form derivatives of the three germ layers both in vitro and in vivo. Our 3D microfibrous system has the potential for large-scale cultivation of transplantable hESCs and derivatives for clinical applications.
Collapse
|
26
|
Coopman K. Large-scale compatible methods for the preservation of human embryonic stem cells: Current perspectives. Biotechnol Prog 2011; 27:1511-21. [DOI: 10.1002/btpr.680] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
27
|
Alfred R, Taiani JT, Krawetz RJ, Yamashita A, Rancourt DE, Kallos MS. Large-scale production of murine embryonic stem cell-derived osteoblasts and chondrocytes on microcarriers in serum-free media. Biomaterials 2011; 32:6006-16. [PMID: 21620471 DOI: 10.1016/j.biomaterials.2011.04.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Accepted: 04/05/2011] [Indexed: 12/20/2022]
Abstract
The generation of tissue-engineered constructs from stem cells for the treatment of musculoskeletal diseases may have immense impact in regenerative medicine, but there are difficulties associated with stem cell culture and differentiation, including the use of serum. Here we present serum-free protocols for the successful production of murine embryonic stem cell (mESC) derived osteoblasts and chondrocytes on CultiSpher S macroporous microcarriers in stirred suspension bioreactors. Various inoculum forms and agitation rates were investigated. Produced osteogenic cells were implanted ectopically into SCID mice and orthotopically into a murine burr-hole fracture model. Osterix, osteocalcin and collagen type I were upregulated in osteogenic cultures, while aggrecan and collagen type II were upregulated in chondrogenic cultures. Histological analysis using alizarin red S, von Kossa and alcian blue staining confirmed the presence of osteoblasts and chondrocytes, respectively in cultured microcarriers and excised tissue. Finally, implantation of derived cells into a mouse fracture model revealed cellular integration without any tumor formation. Overall, microcarriers may provide a supportive scaffold for ESC expansion and differentiation in a serum-free bioprocess for in vivo implantation. These findings lay the groundwork for the development of clinical therapies for musculoskeletal injuries and diseases using hESCs and iPS cells.
Collapse
Affiliation(s)
- Roz Alfred
- Pharmaceutical Production Research Facility (PPRF), Schulich School of Engineering, University of Calgary, Calgary, AB T2N1N4, Canada
| | | | | | | | | | | |
Collapse
|
28
|
Alfred R, Radford J, Fan J, Boon K, Krawetz R, Rancourt D, Kallos MS. Efficient suspension bioreactor expansion of murine embryonic stem cells on microcarriers in serum-free medium. Biotechnol Prog 2011; 27:811-23. [DOI: 10.1002/btpr.591] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Revised: 01/31/2011] [Indexed: 12/15/2022]
|
29
|
Mason C, Dunnill P. Assessing the value of autologous and allogeneic cells for regenerative medicine. Regen Med 2010; 4:835-53. [PMID: 19903003 DOI: 10.2217/rme.09.64] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The advantages and disadvantages of autologous and allogeneic human cells for regenerative medicine are summarized. The comparison of relative advantages includes: ease and cost of treating large numbers of patients, the speed of availability of therapy and the differing complexity of the development pathways. The comparison of relative disadvantages deals with issues such as variability of source material, the risks of cell abnormality and of viral and prion contamination, and the sensitive issues surrounding use of embryo-derived cells. From the comparisons, several potentially decisive issues are drawn out, such as possible immune response and teratoma formation, the impact of patents and the virtues of hospital versus industry-centered development.
Collapse
Affiliation(s)
- Chris Mason
- Advanced Centre for Biochemical Engineering, University College London, London, UK.
| | | |
Collapse
|
30
|
Abstract
Regenerative medicine is a multidisciplinary field concerned with the replacement, repair or restoration of injured tissues. Cell therapy and tissue engineering are part of the broader remit of regenerative medicine. The ultimate aim is to provide safe and efficient therapies for a large number of clinical conditions. Novel regenerative therapies are already in use in initial clinical trials. The main components of regenerative medicine are cells and specially designed materials. A vast variety of cells types are currently used including: adult and stem cells. Equally a large number of natural and man-made materials have been investigated. Despite of considerable advances many challenges lie ahead. These are summarised in this review article. The field is slowly maturing and the initial unhelpful hype has been replaced by a more measured, mature and realistic outlook.
Collapse
Affiliation(s)
- Dame Julia M Polak
- Faculty of Medicine, Regenerative Medicine, Department of Chemical Engineering, Room 144, Roderic Hill Building, London SW7 2AZ, United Kingdom.
| |
Collapse
|