1
|
Guo L, Zheng L, Dong Y, Wang C, Deng H, Wang Z, Xu Y. Miconazole induces aneuploidy-mediated tolerance in Candida albicans that is dependent on Hsp90 and calcineurin. Front Cell Infect Microbiol 2024; 14:1392564. [PMID: 38983116 PMCID: PMC11231705 DOI: 10.3389/fcimb.2024.1392564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/12/2024] [Indexed: 07/11/2024] Open
Abstract
Antifungal resistance and antifungal tolerance are two distinct terms that describe different cellular responses to drugs. Antifungal resistance describes the ability of a fungus to grow above the minimal inhibitory concentration (MIC) of a drug. Antifungal tolerance describes the ability of drug susceptible strains to grow slowly at inhibitory drug concentrations. Recent studies indicate antifungal resistance and tolerance have distinct evolutionary trajectories. Superficial candidiasis bothers millions of people yearly. Miconazole has been used for topical treatment of yeast infections for over 40 years. Yet, fungal resistance to miconazole remains relatively low. Here we found different clinical isolates of Candida albicans had different profile of tolerance to miconazole, and the tolerance was modulated by physiological factors including temperature and medium composition. Exposure of non-tolerant strains with different genetic backgrounds to miconazole mainly induced development of tolerance, not resistance, and the tolerance was mainly due to whole chromosomal or segmental amplification of chromosome R. The efflux gene CDR1 was required for maintenance of tolerance in wild type strains but not required for gain of aneuploidy-mediated tolerance. Heat shock protein Hsp90 and calcineurin were essential for maintenance as well as gain of tolerance. Our study indicates development of aneuploidy-mediated tolerance, not resistance, is the predominant mechanism of rapid adaptation to miconazole in C. albicans, and the clinical relevance of tolerance deserves further investigations.
Collapse
Affiliation(s)
- Liangsheng Guo
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Lijun Zheng
- Department of Ultrasound Medicine, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yubo Dong
- Department of Pharmacy, The 960th Hospital of PLA, Jinan, China
| | - Chen Wang
- Department of Pharmacy, The 960th Hospital of PLA, Jinan, China
| | - Huijie Deng
- Department of Pharmacy, The 960th Hospital of PLA, Jinan, China
| | - Zongjie Wang
- Department of Pharmacy, The 960th Hospital of PLA, Jinan, China
| | - Yi Xu
- Department of Pharmacy, The 960th Hospital of PLA, Jinan, China
| |
Collapse
|
2
|
Rasool M, Mazhar D, Afzal I, Zeb A, Khan S, Ali H. In vitro and in vivo characterization of Miconazole Nitrate loaded transethosomes for the treatment of Cutaneous Candidiasis. Int J Pharm 2023; 647:123563. [PMID: 37907141 DOI: 10.1016/j.ijpharm.2023.123563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/11/2023] [Accepted: 10/28/2023] [Indexed: 11/02/2023]
Abstract
This study aimed to fabricate Miconazole Nitrate transethosomes (MCZN TESs) embedded in chitosan-based gel for the topical treatment of Cutaneous Candidiasis. A thin film hydration method was employed to formulate MCZN TESs. The prepared MCZN TESs were optimized and analyzed for their physicochemical properties including particle size (PS), polydispersity index (PDI), zeta potential (ZP), entrapment efficiency (%EE), Fourier transform infrared spectroscopy (FTIR), Differential scanning calorimetry (DSC), deformability, and Transmission electron microscopy (TEM). In vitro release, skin permeation and deposition, skin irritation, antifungal assay, and in vivo efficacy against infected rats were evaluated. The optimized MCZN TESs showed PS of 224.8 ± 5.1 nm, ZP 21.1 ± 1.10 mV, PDI 0.207 ± 0.009, and % EE 94.12 ± 0.101 % with sustained drug release profile. Moreover, MCZN TESs Gel exhibited desirable pH, spreadability, and viscosity. Notably, the penetration and deposition capabilities of MCZN TESs Gel showed a 4-fold enhancement compared to MCZN TESs. Importantly, in vitro antifungal assay elaborated MCZN TESs Gel anti-fungal activity was 2.38-fold more compared to MCZN Gel. In vivo, studies showed a 1.5 times reduction in the duration of treatment MCZN TESs Gel treated animal group. Therefore, studies demonstrated that MCZN TESs could be a suitable drug delivery system with higher penetration and good antifungal potential.
Collapse
Affiliation(s)
- Maryam Rasool
- Department of Pharmacy, Quaid-i-Azam University Islamabad 45320, Pakistan
| | - Danish Mazhar
- Department of Pharmacy, Quaid-i-Azam University Islamabad 45320, Pakistan
| | - Iqra Afzal
- Department of Pharmacy, Quaid-i-Azam University Islamabad 45320, Pakistan
| | - Ahmad Zeb
- Department of Pharmacy, Quaid-i-Azam University Islamabad 45320, Pakistan
| | - Salman Khan
- Department of Pharmacy, Quaid-i-Azam University Islamabad 45320, Pakistan
| | - Hussain Ali
- Department of Pharmacy, Quaid-i-Azam University Islamabad 45320, Pakistan.
| |
Collapse
|
3
|
Hussain A, Altamimi MA, Ramzan M, Khuroo T. Hansen Solubility Parameters and QbD-Oriented HPLC Method Development and Validation for Dermatokinetic Study of a Miconazole-Loaded Cationic Nanoemulsion in Rat Model. ACS OMEGA 2023; 8:34746-34759. [PMID: 37780027 PMCID: PMC10536884 DOI: 10.1021/acsomega.3c03713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 09/04/2023] [Indexed: 10/03/2023]
Abstract
Miconazole (MCZ) is a potential antifungal drug to treat skin infections caused by Candida, Tinea pedis (athlete's foot fungal infection), Tinea cruris (jock itching in the groin and buttocks), and Tinea corporis (red scaly rash on the skin). The current study focused on Hansen parameter-based solvent selection (HSPiP software) and method development optimization using an experimental design tool for sensitive, accurate, reproducible, economic, rapid, robust, and precise methodology to quantify MCZ in rat plasma. Moreover, a Taguchi design was used for screening two independent factors (flow rate and ACN content). Quality by design (QbD) was employed to optimize and identify the right ratio of mobile phase composition and its impact on the peak and retention time. The elution of MCZ was achieved using methanol and acetonitrile (15:85 v/v ratio) at a retention time of 6 min and optimal flow rate (1 mL/min). Finally, the method was validated based on accuracy, precision, linearity, selectiveness, and high recovery at varied concentrations as per the International Council for Harmonization (ICH) guidelines. The method was linear (r2 = 0.999) over the explored concentration range (250-2000 ng/mL) at 270 nm detection wavelength. The optimized method was used to quantify in vivo pharmacokinetic (PK) study after transdermal application of MCZ-loaded formulations (MCNE11, MNE11, MCZ-Sol, and MCZ-MKT). HSP-oriented solvent selection and quality by design-based optimized process variables and composition in the optimized analytical methodology were quite convincing and have been a cutting-edge MCZ analysis method so far. The validated method was robust, economic, and rapid with high specificity and selectivity.
Collapse
Affiliation(s)
- Afzal Hussain
- Department
of Pharmaceutics, College of Pharmacy, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammad A. Altamimi
- Department
of Pharmaceutics, College of Pharmacy, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Mohhammad Ramzan
- School
of Pharmaceutical Sciences, Lovely Professional
University, Phagwada 144411, Punjab, India
| | - Tahir Khuroo
- Department
of Pharmaceutics, Irma lerma College of Pharmacy, Texas A & M University, Kingsville, Texas 78363, United States
| |
Collapse
|
4
|
Taing MW, Choong J, Suppiah V, El-Den S, Park JS, McCullough M, Teoh L. A Cross-Sectional Survey Exploring Australian Pharmacists' and Students' Management of Common Oral Mucosal Diseases. PHARMACY 2023; 11:139. [PMID: 37736911 PMCID: PMC10514864 DOI: 10.3390/pharmacy11050139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/30/2023] [Accepted: 08/30/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND Oral mucosal conditions are commonly experienced in the general population and can have a negative impact on one's quality of life. This study evaluated the ability of Australian pharmacists and final-year pharmacy students to recognise and manage these common oral mucosal diseases through the use of case vignettes. METHODS Australian pharmacists and final-year pharmacy students were invited through social media, university learning management systems, or email to complete an online questionnaire consisting of six case vignettes covering topics relating to common oral mucosal presentations. RESULTS A total of 65 pharmacists and 78 students completed the questionnaire. More than 50% of the participants reported having seen all types of oral mucosal presentations, except for denture stomatitis, in their practice. The provision of best practice recommendations was reported by only 14%, 15%, 8%, and 6% of the participants for geographic tongue, hairy tongue, angular cheilitis, and denture-associated stomatitis, respectively, whereas 82% offered an appropriate anti-viral treatment for cold sore and 33% provided the best practice recommendations for oral thrush. CONCLUSION This study emphasised the importance of further developing and integrating best practice oral healthcare training programs specifically tailored to the Australian pharmacy profession.
Collapse
Affiliation(s)
- Meng-Wong Taing
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia;
| | - Joshua Choong
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia;
| | - Vijayaprakash Suppiah
- Clinical and Health Sciences, University of South Australia, Adelaide, SA 5001, Australia;
| | - Sarira El-Den
- School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia;
| | - Joon Soo Park
- UWA Dental School, The University of Western Australia, Nedlands, WA 6009, Australia;
| | - Michael McCullough
- Melbourne Dental School, University of Melbourne, Carlton, VIC 3053, Australia; (M.M.); (L.T.)
| | - Leanne Teoh
- Melbourne Dental School, University of Melbourne, Carlton, VIC 3053, Australia; (M.M.); (L.T.)
| |
Collapse
|
5
|
Nicoletti G, White K. The Anti-Fungal Activity of Nitropropenyl Benzodioxole (NPBD), a Redox-Thiol Oxidant and Tyrosine Phosphatase Inhibitor. Antibiotics (Basel) 2022; 11:antibiotics11091188. [PMID: 36139967 PMCID: PMC9495065 DOI: 10.3390/antibiotics11091188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/28/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Phylogenetically diverse fungal species are an increasing cause of severe disease and mortality. Identification of new targets and development of new fungicidal drugs are required to augment the effectiveness of current chemotherapy and counter increasing resistance in pathogens. Nitroalkenyl benzene derivatives are thiol oxidants and inhibitors of cysteine-based molecules, which show broad biological activity against microorganisms. Nitropropenyl benzodioxole (NPBD), one of the most active antimicrobial derivatives, shows high activity in MIC assays for phylogenetically diverse saprophytic, commensal and parasitic fungi. NPBD was fungicidal to all species except the dermatophytic fungi, with an activity profile comparable to that of Amphotericin B and Miconazole. NPBD showed differing patterns of dynamic kill rates under different growth conditions for Candida albicans and Aspergillus fumigatus and was rapidly fungicidal for non-replicating vegetative forms and microconidia. It did not induce resistant or drug tolerant strains in major pathogens on long term exposure. A literature review highlights the complexity and interactivity of fungal tyrosine phosphate and redox signaling pathways, their differing metabolic effects in fungal species and identifies some targets for inhibition. A comparison of the metabolic activities of Amphotericin B, Miconazole and NPBD highlights the multiple cellular functions of these agents and the complementarity of many mechanisms. The activity profile of NPBD illustrates the functional diversity of fungal tyrosine phosphatases and thiol-based redox active molecules and contributes to the validation of tyrosine phosphatases and redox thiol molecules as related and complementary selective targets for antimicrobial drug development. NPBD is a selective antifungal agent with low oral toxicity which would be suitable for local treatment of skin and mucosal infections.
Collapse
|
6
|
Mijaljica D, Spada F, Harrison IP. Emerging Trends in the Use of Topical Antifungal-Corticosteroid Combinations. J Fungi (Basel) 2022; 8:812. [PMID: 36012800 PMCID: PMC9409645 DOI: 10.3390/jof8080812] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/29/2022] [Accepted: 07/29/2022] [Indexed: 12/10/2022] Open
Abstract
A broad range of topical antifungal formulations containing miconazole or terbinafine as actives are commonly used as efficacious choices for combating fungal skin infections. Their many benefits, owing to their specific mechanism of action, include their ability to target the site of infection, enhance treatment efficacy and reduce the risk of systemic side effects. Their proven efficacy, and positioning in the treatment of fungal skin infections, is enhanced by high patient compliance, especially when appropriate vehicles such as creams, ointments and gels are used. However, inflammation as a result of fungal infection can often impede treatment, especially when combined with pruritus (itch), an unpleasant sensation that elicits an urge to scratch. The scratching that occurs in response to pruritus frequently accelerates skin damage, ultimately aggravating and spreading the fungal infection. To help overcome this issue, a topical antifungal-corticosteroid combination consisting of miconazole or terbinafine and corticosteroids of varying potencies should be used. Due to their inherent benefits, these topical antifungal-corticosteroid combinations can concomitantly and competently attenuate inflammation, relieve pruritus and treat fungal infection.
Collapse
Affiliation(s)
| | | | - Ian P. Harrison
- Department of Scientific Affairs, Ego Pharmaceuticals Pty Ltd., 21–31 Malcolm Road, Braeside, VIC 3195, Australia; (D.M.); (F.S.)
| |
Collapse
|
7
|
Kim BY, Son Y, Cho HR, Lee D, Eo SK, Kim K. Miconazole Suppresses 27-Hydroxycholesterol-induced Inflammation by Regulating Activation of Monocytic Cells to a Proinflammatory Phenotype. Front Pharmacol 2021; 12:691019. [PMID: 34744703 PMCID: PMC8570190 DOI: 10.3389/fphar.2021.691019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 09/27/2021] [Indexed: 12/27/2022] Open
Abstract
Miconazole is effective in treating inflammatory skin conditions and has well-established antifungal effects. To elucidate the underlying mechanisms mediating its additional beneficial effects, we assessed whether miconazole influences the inflammation induced by 27-hydroxycholesterol (27OHChol), an oxygenated cholesterol derivative with high proinflammatory activity, using THP-1 monocytic cells. Miconazole dose-dependently inhibited the expression of proinflammatory markers, including CCL2 and CCR5 ligands such as CCL3 and CCL4, and impaired the migration of monocytic cells and CCR5-positive T cells. In the presence of 27OHChol, miconazole decreased CD14 surface levels and considerably weakened the lipopolysaccharide response. Furthermore, miconazole blocked the release of soluble CD14 and impaired the transcription of the matrix metalloproteinase-9 gene and secretion of its active gene product. Additionally, it downregulated the expression of ORP3 and restored the endocytic function of THP-1 cells. Collectively, these findings indicate that miconazole regulates the 27OHChol-induced expression of proinflammatory molecules in monocytic cells, thereby suppressing inflammation in an oxysterol-rich milieu.
Collapse
Affiliation(s)
- Bo-Young Kim
- Department of Pharmacology, Pusan National University-School of Medicine, Yangsan, Korea
| | - Yonghae Son
- Department of Pharmacology, Pusan National University-School of Medicine, Yangsan, Korea
| | - Hyok-Rae Cho
- Department of Neurosurgery, College of Medicine, Kosin University, Busan, Korea
| | - Dongjun Lee
- Department of Convergence Medicine, Pusan National University-School of Medicine, Yangsan, Korea
| | - Seong-Kug Eo
- College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan, Korea
| | - Koanhoi Kim
- Department of Pharmacology, Pusan National University-School of Medicine, Yangsan, Korea
| |
Collapse
|
8
|
Yan J, Wang X, Li F, Yang L, Shi G, Sun W, Shao L, Huang J, Wu K. Biocatalytic preparation of a key intermediate of antifungal drugs using an alcohol dehydrogenase with high organic tolerance. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Nagaraj S, Manivannan S, Narayan S. Potent antifungal agents and use of nanocarriers to improve delivery to the infected site: A systematic review. J Basic Microbiol 2021; 61:849-873. [PMID: 34351655 DOI: 10.1002/jobm.202100204] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 07/29/2021] [Accepted: 08/01/2021] [Indexed: 01/30/2023]
Abstract
There are four major classes of antifungals with the predominant mechanism of action being targeting of cell wall or cell membrane. As in other drugs, low solubility of these compounds has led to low bioavailability in target tissues. Enhanced drug dosages have effects such as toxicity, drug-drug interactions, and increased drug resistance by fungi. This article reviews the current state-of-the-art of antifungals, structure, mechanism of action, other usages, and toxic side effects. The emergence of nanoformulations to transport and uniformly release cargo at the target site is a boon in antifungal treatment. The article details research that lead to the development of nanoformulations of antifungals and potential advantages and avoidance of the lacunae characterizing conventional drugs. A range of nanoformulations based on liposomes, polymers are in various stages of research and their potential advantages have been brought out. It could be observed that under similar dosages, test models, and duration, nanoformulations provided enhanced activity, reduced toxicity, higher uptake and higher immunostimulatory effects. In most instances, the mechanism of antifungal activity of nanoformulations was similar to that of regular antifungal. There are possibilities of coupling multiple antifungals on the same nano-platform. Increased activity coupled with multiple mechanisms of action presents for nanoformulations a tremendous opportunity to overcome antifungal resistance. In the years to come, robust methods for the preparation of nanoformulations taking into account the repeatability and reproducibility in action, furthering the studies on nanoformulation toxicity and studies of human models are required before extensive use of nanoformulations as a prescribed drug.
Collapse
Affiliation(s)
- Saraswathi Nagaraj
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chennai, Tamilnadu, India
| | - Sivakami Manivannan
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chennai, Tamilnadu, India
| | - Shoba Narayan
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chennai, Tamilnadu, India
| |
Collapse
|
10
|
Synthesis and Antifungal Activity Evaluation of 1-(2-Benzyloxy-2-Phenylethyl)-1,2,3-Triazole Miconazole Analogs. Pharm Chem J 2021. [DOI: 10.1007/s11094-021-02440-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
11
|
Li W, Wang Z, Wang X, Cao X, Bi C, Jiang L, Cui S, Liu Y. Risk prediction of drug-drug interaction potential of phenytoin and miconazole topical formulations. Chem Biol Interact 2021; 343:109498. [PMID: 33961833 DOI: 10.1016/j.cbi.2021.109498] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/09/2021] [Accepted: 04/28/2021] [Indexed: 11/18/2022]
Abstract
The drug-drug interaction (DDI) risk of phenytoin with several topical formulations of miconazole is still unclear. The present investigation conducted in vitro-in vivo extrapolation to predict the potential risks. Our data indicated that miconazole potently inhibited phenytoin hydroxylation in both pooled human liver microsomes (HLMs) and recombinant cytochrome P450 2C9 (CYP2C9) with the Ki values of 125 ± 7 nM and 30 ± 2 nM, respectively. Quantitative prediction of DDI risk suggests that, beside intravenous administration or swallowed tablet, combination of phenytoin and miconazole high dose oral gel or buccal tablet may also result in a clinically significant increase of phenytoin AUC (>53%) by the inhibition of miconazole against phenytoin hydroxylation, consequently a higher frequency of adverse events, while the coadministration of miconazole vaginal formulation and phenytoin will be safe.
Collapse
Affiliation(s)
- Wei Li
- Translational Medicine Research Institute, College of Medicine, Yangzhou University, Yangzhou, 225001, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Zhen Wang
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, 124221, China
| | - Xiaoyu Wang
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, 124221, China
| | - Xiaowei Cao
- Translational Medicine Research Institute, College of Medicine, Yangzhou University, Yangzhou, 225001, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225001, China; Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou University, Yangzhou, 225001, China; The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou University, Yangzhou, 225001, China
| | - Caili Bi
- Translational Medicine Research Institute, College of Medicine, Yangzhou University, Yangzhou, 225001, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225001, China; Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou University, Yangzhou, 225001, China; The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou University, Yangzhou, 225001, China
| | - Lili Jiang
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, 124221, China
| | - Shuna Cui
- Translational Medicine Research Institute, College of Medicine, Yangzhou University, Yangzhou, 225001, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225001, China; Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou University, Yangzhou, 225001, China; The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou University, Yangzhou, 225001, China
| | - Yong Liu
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, 124221, China.
| |
Collapse
|
12
|
Cerra B, Gioiello A. Future medicinal chemists experience flow chemistry: optimization by experimental design of the limiting synthetic step to the antifungal drug econazole nitrate. J Flow Chem 2021. [DOI: 10.1007/s41981-020-00136-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
13
|
Abstract
In this review, the development of trifunctionalization methods for alkenes and alkynes, including arynes and allenes, over the last decade is disclosed.
Collapse
Affiliation(s)
- Sumit Ghosh
- Department of Chemistry
- Visva-Bharati (A Central University)
- Santiniketan 731235
- India
| | - Dipti Lai
- Department of Chemistry
- Visva-Bharati (A Central University)
- Santiniketan 731235
- India
| | - Alakananda Hajra
- Department of Chemistry
- Visva-Bharati (A Central University)
- Santiniketan 731235
- India
| |
Collapse
|
14
|
Faway É, Lambert de Rouvroit C, Poumay Y. In vitro models of dermatophyte infection to investigate epidermal barrier alterations. Exp Dermatol 2019; 27:915-922. [PMID: 29957851 DOI: 10.1111/exd.13726] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2018] [Indexed: 02/06/2023]
Abstract
Fungal infections of the skin, known as dermatophytoses, are initiated at the epidermal barrier and lead to dysfunctions of the stratum corneum and cornified skin appendages. Dermatophytosis affects a significant part of the human population and, despite the availability of effective treatments, its prevalence is still increasing. Numerous dermatophyte species are able to induce lesions in both animals and humans, with different clinical pictures and host inflammatory responses. The understanding of the infectious process and of tissue responses has been impeded by discrepancies between observations in vivo or in research models. Indeed, cells cultured as monolayers do not undergo the keratinization process required to study the adherence and invasion of dermatophytes. Animal models lack relevance to study human dermatophytosis because of species-specific differences in the development of lesions and inflammatory responses. This review focuses on the recent development of cultured human skin equivalents, which partly overcomes those limitations and allows improved understanding of the pathogenesis of dermatophytosis in human being, especially the impacts of infection on epidermal barrier integrity.
Collapse
Affiliation(s)
- Émilie Faway
- URPhyM-NARILIS, University of Namur, Namur, Belgium
| | | | - Yves Poumay
- URPhyM-NARILIS, University of Namur, Namur, Belgium
| |
Collapse
|
15
|
Biotransformation with a New Acinetobacter sp. Isolate for Highly Enantioselective Synthesis of a Chiral Intermediate of Miconazole. Catalysts 2019. [DOI: 10.3390/catal9050462] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
(R)-2-Chloro-1-(2,4-dichlorophenyl) ethanol is a chiral intermediate of the antifungal agent Miconazole. A bacterial strain, ZJPH1806, capable of the biocatalysis of 2-chloro-1-(2,4-dichlorophenyl) ethanone, to (R)-2-chloro-1-(2,4-dichlorophenyl) ethanol with highly stereoselectivity was isolated from a soil sample. It was identified as the Acinetobacter sp., according to its morphological observation, physiological-biochemical identification, and 16S rDNA sequence analysis. After optimizing the key reaction conditions, it was demonstrated that the bioreduction of 2-chloro-1-(2,4-dichlorophenyl) ethanone was effectively transformed at relatively high conversion temperatures, along with glycerol as cosubstrate in coenzyme regeneration. The asymmetric reduction of the substrate had reached 83.2% yield with an enantiomeric excess (ee) of greater than 99.9% at 2 g/L of 2-chloro-1-(2,4-dichlorophenyl) ethanone; the reaction was conducted at 40 °C for 26 h using resting cells of the Acinetobacter sp. ZJPH1806 as the biocatalyst. The yield had increased by nearly 2.9-fold (from 28.6% to 83.2%). In the present study, a simple and novel whole-cell-mediated biocatalytic route was applied for the highly enantioselective synthesis of (R)-2-chloro-1-(2,4-dichlorophenyl) ethanol, which allowed the production of a valuable chiral intermediate method to be transformed into a versatile tool for drug synthesis.
Collapse
|
16
|
Miconazole loaded chitosan-based nanoparticles for local treatment of vulvovaginal candidiasis fungal infections. Colloids Surf B Biointerfaces 2019; 174:409-415. [DOI: 10.1016/j.colsurfb.2018.11.048] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 10/25/2018] [Accepted: 11/19/2018] [Indexed: 12/15/2022]
|
17
|
Faway É, Cambier L, Mignon B, Poumay Y, Lambert de Rouvroit C. Modeling dermatophytosis in reconstructed human epidermis: A new tool to study infection mechanisms and to test antifungal agents. Med Mycol 2018; 55:485-494. [PMID: 27760830 DOI: 10.1093/mmy/myw111] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 09/30/2016] [Indexed: 01/13/2023] Open
Abstract
Dermatophytosis is a superficial fungal infection of keratinized structures that exhibits an increasing prevalence in humans and is thus requesting novel prophylactic strategies and therapies. However, precise mechanisms used by dermatophytes to adhere at the surface of the human epidermis and invade its stratum corneum are still incompletely identified, as well as the responses provided by the underlying living keratinocytes during the infection. We hereby report development of an in vitro model of human dermatophytosis through infection of reconstructed human epidermis (RHE) by arthroconidia of the anthropophilic Trichophyton rubrum species or of the zoophilic Microsporum canis and Arthroderma benhamiae species. By modulating density of arthroconidia in the inoculum and duration of exposure to such pathogens, fungal infection limited to the stratum corneum was obtained, mimicking severe but typical in vivo situation. Fungal elements in infected RHE were monitored over time by histochemical analysis using periodic-acid Schiff-staining or quantified by qPCR-detection of fungal genes inside RHE lysates. This model brings improvements to available ones, dedicated to better understand how dermatophytes and epidermis interact, as well as to evaluate preventive and therapeutic agents. Indeed, miconazole topically added to RHE was demonstrated to inhibit fungal infection in this model.
Collapse
Affiliation(s)
- Émilie Faway
- URPHYM-NARILIS, University of Namur, Namur, Belgium
| | - Ludivine Cambier
- FARAH, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Bernard Mignon
- FARAH, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Yves Poumay
- URPHYM-NARILIS, University of Namur, Namur, Belgium
| | | |
Collapse
|
18
|
Voget M, Lorenz D, Lieber-Tenorio E, Hauck R, Meyer M, Cieslicki M. Is transmission electron microscopy (TEM) a promising approach for qualitative and quantitative investigations of polymyxin B and miconazole interactions with cellular and subcellular structures of Staphylococcus pseudintermedius, Escherichia coli, Pseudomonas aeruginosa and Malassezia pachydermatis? Vet Microbiol 2015; 181:261-70. [PMID: 26527257 DOI: 10.1016/j.vetmic.2015.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 09/29/2015] [Accepted: 10/02/2015] [Indexed: 11/30/2022]
Abstract
Antimicrobial therapy using a combination of polymyxin B and miconazole is effective against the main bacterial pathogens associated with otitis externa in dogs, and a synergistic effect of both drugs has been shown previously. The objective of the present investigation was to visualize ultrastructural changes after exposure of Escherichia coli, Pseudomonas aeruginosa, Staphylococcus pseudintermedius and Malassezia pachydermatis to polymyxin B and miconazole by transmission electron microscopic (TEM). For this, cultures of E. coli, P. aeruginosa, S. pseudintermedius and M. pachydermatis were exposed to polymyxin B and miconazole, alone or in combination for 24 h. Ultrastructural changes were observed most frequently in the cell envelope of the four microorganisms. Exposure to polymyxin B seemed to cause more damage than miconazole within the range of concentrations applied. Treatment resulted in changes of the cell size: in E. coli, cell size increased significantly after treatment with either compound alone; in P. aeruginosa, cell size decreased significantly after treatment with polymyxin B and with miconazole; exposure of S. pseudintermedius to miconazole caused a decrease in cell size; in M. pachydermatis, cell size increased significantly after treatment with polymyxin B.; in E.coli, S. pseudintermedius and M. pachydermatis, cell size changed highly significant, in P. aeruginosa significantly after exposure to the combination of both compounds. In conclusion, by using a different approach than previous investigations, this study confirmed a clear combinatory effect of polymyxin B and miconazole against the tested microorganisms involved in canine otitis externa. It is the first time that visualization technologies were applied to compare the effect of single drugs to their combinatory effects on cellular and subcellular entities of selected bacterial and yeast species.
Collapse
Affiliation(s)
| | - Dorothea Lorenz
- Leibnitz Institut für molekulare Pharmakologie, Berlin, Germany
| | | | - Ruediger Hauck
- Freie Universität Berlin, Fachbereich Veterinärmedizin, Germany
| | | | | |
Collapse
|
19
|
Musaji N. Antifungal drug resistance: not all azoles are equal. Expert Rev Anti Infect Ther 2014; 8:515-6. [DOI: 10.1586/eri.10.27] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
20
|
Gratieri T, Gelfuso GM, Lopez RFV, Souto EB. Current efforts and the potential of nanomedicine in treating fungal keratitis. EXPERT REVIEW OF OPHTHALMOLOGY 2014. [DOI: 10.1586/eop.10.19] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
21
|
Veraldi S. Isoconazole nitrate: a unique broad-spectrum antimicrobial azole effective in the treatment of dermatomycoses, both as monotherapy and in combination with corticosteroids. Mycoses 2013; 56 Suppl 1:3-15. [DOI: 10.1111/myc.12054] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 01/02/2013] [Indexed: 11/27/2022]
Affiliation(s)
- Stefano Veraldi
- Department of Pathophysiology and Transplantation; University of Milan; I.R.C.C.S. Foundation; Cà Granda Ospedale Maggiore Policlinico; Milan; Italy
| |
Collapse
|
22
|
Dang NTT, Turner MS, Coombes AGA. Development of intra-vaginal matrices from polycaprolactone for sustained release of antimicrobial agents. J Biomater Appl 2012; 28:74-83. [DOI: 10.1177/0885328212437393] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Microporous poly(ɛ-caprolactone) matrices were loaded with an antibacterial agent, ciprofloxacin and an antifungal agent, miconazole nitrate, respectively, for investigations of their potential as controlled vaginal delivery devices. Ciprofloxacin loadings up to 15% w/w could be obtained by increasing the drug content of the poly(ɛ-caprolactone) solution, while the actual loadings of miconazole were much lower (1–3% w/w) due to drug partition into methanol during the solvent extraction. The kinetics of ciprofloxacin release in simulated vaginal fluid at 37℃ were characterised by a small burst release phase in the first 24 h, low drug release up to 7 days (10%) and gradual release of up to 80% of the drug content by day 30. Meanwhile, the release kinetics of miconazole-loaded matrices could be effectively described by the Higuchi model with 100% drug release from the highest loaded matrices (3.2% w/w) in 13 days. Ciprofloxacin or miconazole released over 30 and 13 days, respectively, from poly(ɛ-caprolactone) matrices into simulated vaginal fluid retained high levels of antimicrobial activity in excess of 80% of the activity of the free drug. This study confirms the potential of poly(ɛ-caprolactone) matrices for delivering antimicrobial agents in the form of an intra-vaginal device.
Collapse
Affiliation(s)
- Nhung TT Dang
- The University of Queensland, Pharmacy Australia Centre of Excellence, 20 Cornwall street, Wooloongabba, QLD, Australia
| | - Mark S Turner
- The University of Queensland, School of Agriculture and Food Sciences, St Lucia, QLD, Australia
| | - Allan GA Coombes
- The University of Queensland, Pharmacy Australia Centre of Excellence, 20 Cornwall street, Wooloongabba, QLD, Australia
| |
Collapse
|
23
|
Piérard GE, Hermanns-Lê T, Delvenne P, Piérard-Franchimont C. Miconazole, a pharmacological barrier to skin fungal infections. Expert Opin Pharmacother 2012; 13:1187-94. [PMID: 22568580 DOI: 10.1517/14656566.2012.687047] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Miconazole (MCZ) is a time-honored antifungal of the imidazole class. MCZ exerts a multipronged effect on fungi. It inhibits the cytochrome P450 complex, including the 14α-demethylase enzyme required for ergosterol biosynthesis, in fungal cell membranes. In addition, intracellular accumulation of toxic methylated sterols occurs and the synthesis of triglycerides and phospholipids is altered. Disturbances in oxidative and peroxidative enzyme activities lead to an intracellular toxic concentration of hydrogen peroxide. As a result, intracellular organelle destruction then leads to cell necrosis. Farnesol synthesis stimulated in Candida spp. prevents the yeast-to-mycelium formation. MCZ is further active against Gram-positive bacteria. AREAS COVERED This review aims at revisiting the MCZ antifungal activity in dermatomycoses. EXPERT OPINION MCZ's wide spectrum of activity appears noteworthy. The full pharmacological profile of MCZ indicates its fungistatic profile through its effect on ergosterol biosynthesis. In addition, it exhibits a fungicidal effect against a number of fungal species, due to hydrogen peroxide accumulation. MCZ is characterized by high safety, efficacy and versatility, and a unique, multifaceted nature of activity in the treatment of dermatomycoses.
Collapse
Affiliation(s)
- Gérald E Piérard
- University Hospital of Liège, Department of Dermatopathology, CHU Sart Tilman, B-4000 Liège, Belgium.
| | | | | | | |
Collapse
|
24
|
Won KJ, Lin HY, Jung S, Cho SM, Shin HC, Bae YM, Lee SH, Kim HJ, Jeon BH, Kim B. Antifungal Miconazole Induces Cardiotoxicity Via Inhibition of APE/Ref-1-Related Pathway in Rat Neonatal Cardiomyocytes. Toxicol Sci 2012; 126:298-305. [DOI: 10.1093/toxsci/kfr347] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
25
|
Carvalhinho S, Costa AM, Coelho AC, Martins E, Sampaio A. Susceptibilities of Candida albicans mouth isolates to antifungal agents, essentials oils and mouth rinses. Mycopathologia 2012; 174:69-76. [PMID: 22246961 DOI: 10.1007/s11046-012-9520-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 01/02/2012] [Indexed: 10/14/2022]
Abstract
Forty Candida albicans strains isolated from patient's mouth with fixed orthodontic appliances were analyzed to their susceptibilities to antifungal agents, mouth rinses and essential oils. Susceptibility to fluconazole, econazole, miconazole and ketoconazole, amphotericin B and nystatin was assessed by the disk diffusion (DD) method based on the Clinical and Laboratory Standards Institute M44-A protocol, and by Etest (fluconazole and amphotericin B). The susceptibilities to mouth rinses and essential oils were also determined by the DD technique. All isolates tested were susceptible (S) to amphotericin B, nystatin and fluconazole. The overall concordance between the DD and the Etest was 100% for amphotericin and fluconazole. One isolate was resistant to econazole (2.5%) and the other to ketoconazole (2.5%). Econazole and ketoconazole had the highest percentages of susceptible dose dependent (SDD), 55 and 95%, respectively. Regarding to the susceptibility isolates profile, seven phenotypes were detected, and the 3 more represented (90% of the isolates) of them were SDD to one, two or three azoles. The study of mouth rinses showed a high variability of efficacy against C. albicans. The results showed that the isolates susceptibility to essential oils differed (P < 0.05). The profile activity was: cinnamon > laurel > mint > eucalyptus > rosemary > lemon > myrrh > tangerine. The main finding was that the susceptibility to cinnamon and laurel varied among the three more representative antifungal phenotypes (P < 0.05). The susceptibility of econazole-SDD isolates to cinnamon and lemon was higher than those of the econazole-S yeasts (P < 0.05). In contrast, econazole-SDD isolates were less affected by laurel than econazole-S counterparts (P < 0.05).
Collapse
Affiliation(s)
- Sara Carvalhinho
- Department of Biology and Environment, University of Trás-os-Montes and Alto Douro (UTAD), PO Box 1013, 5001-911, Vila Real, Portugal
| | | | | | | | | |
Collapse
|
26
|
Snell SB, Foster TH, Haidaris CG. Miconazole induces fungistasis and increases killing of Candida albicans subjected to photodynamic therapy. Photochem Photobiol 2011; 88:596-603. [PMID: 22077904 DOI: 10.1111/j.1751-1097.2011.01039.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cutaneous and mucocutaneous Candida infections are considered to be important targets for antimicrobial photodynamic therapy (PDT). Clinical application of antimicrobial PDT will require strategies that enhance microbial killing while minimizing damage to host tissue. Increasing the sensitivity of infectious agents to PDT will help achieve this goal. Our previous studies demonstrated that raising the level of oxidative stress in Candida by interfering with fungal respiration increased the efficiency of PDT. Therefore, we sought to identify compounds in clinical use that would augment the oxidative stress caused by PDT by contributing to reactive oxygen species (ROS) formation themselves. Based on the ability of the antifungal miconazole to induce ROS in Candida, we tested several azole antifungals for their ability to augment PDT in vitro. Although miconazole and ketoconazole both stimulated ROS production in Candida albicans, only miconazole enhanced the killing of C. albicans and induced prolonged fungistasis in organisms that survived PDT using the porphyrin TMP-1363 and the phenothiazine methylene blue as photosensitizers. The data suggest that miconazole could be used to increase the efficacy of PDT against C. albicans, and its mechanism of action is likely to be multifactorial.
Collapse
Affiliation(s)
- Sara B Snell
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | | | | |
Collapse
|
27
|
Bouchaert P, Jardel P, Osdoit S, Bodard AG, Gangneux JP, Scotté F, Salino S, Bensadoun RJ. Candidoses oropharyngées en oncologie : enjeux diagnostiques. ONCOLOGIE 2011. [DOI: 10.1007/s10269-011-2006-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
28
|
Mangas-Sánchez J, Busto E, Gotor-Fernández V, Malpartida F, Gotor V. Asymmetric Chemoenzymatic Synthesis of Miconazole and Econazole Enantiomers. The Importance of Chirality in Their Biological Evaluation. J Org Chem 2011; 76:2115-22. [DOI: 10.1021/jo102459w] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Juan Mangas-Sánchez
- Departamento de Química Orgánica e Inorgánica, Instituto Universitario de Biotecnología de Asturias, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Eduardo Busto
- Departamento de Química Orgánica e Inorgánica, Instituto Universitario de Biotecnología de Asturias, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Vicente Gotor-Fernández
- Departamento de Química Orgánica e Inorgánica, Instituto Universitario de Biotecnología de Asturias, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Francisco Malpartida
- Centro Nacional de Biotecnología del CSIC, Darwin 3, 28049 Cantoblanco, Madrid, Spain
| | - Vicente Gotor
- Departamento de Química Orgánica e Inorgánica, Instituto Universitario de Biotecnología de Asturias, Universidad de Oviedo, 33006 Oviedo, Spain
| |
Collapse
|
29
|
Laudenbach JM, Epstein JB. Treatment strategies for oropharyngeal candidiasis. Expert Opin Pharmacother 2010; 10:1413-21. [PMID: 19505211 DOI: 10.1517/14656560902952854] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Oropharyngeal candidiasis (OPC) is a common oral disease that may cause oral symptoms, lead to regional infection (e.g., esophageal candidiasis) and increase the risk of systemic fungal infection in the compromised host. OBJECTIVE Critical review of the literature of prevention and therapy. METHODS The literature was reviewed using PubMed, and specific keywords from the MeSH Database were used. RESULTS/CONCLUSION Management of OPC requires that the underlying risk factors of infection be diagnosed and managed whenever possible. Antimicrobials may be provided as topical or systemic therapy. Topical therapies may provide effective management for candidiasis in the non-compromised host and increase the control of colonization in the compromised host. Advances in prevention and management include new agents and improved mechanisms of topical drug delivery.
Collapse
Affiliation(s)
- Joel M Laudenbach
- University of Illinois at Chicago College of Dentistry, Department of Oral Medicine and Diagnostic Sciences, 801 South Paulina Street (MC 838), Rm 554A, Chicago, IL 60612, USA.
| | | |
Collapse
|
30
|
Alvarez-Lorenzo C, Bucio E, Burillo G, Concheiro A. Medical devices modified at the surface by γ-ray grafting for drug loading and delivery. Expert Opin Drug Deliv 2010; 7:173-85. [DOI: 10.1517/17425240903483174] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
31
|
Siikala E, Richardson M, Pfaller MA, Diekema DJ, Messer SA, Perheentupa J, Saxén H, Rautemaa R. Candida albicans isolates from APECED patients show decreased susceptibility to miconazole. Int J Antimicrob Agents 2009; 34:607-9. [DOI: 10.1016/j.ijantimicag.2009.07.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Revised: 07/10/2009] [Accepted: 07/13/2009] [Indexed: 11/29/2022]
|
32
|
Radnai M, Whiley R, Friel T, Wright PS. Effect of antifungal gels incorporated into a tissue conditioning material on the growth of Candida albicans. Gerodontology 2009; 27:292-6. [DOI: 10.1111/j.1741-2358.2009.00337.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|