1
|
Wang JB, Ding SL, Liu XS, Yu T, Wu ZA, Li YX. Hypoxia Affects Mitochondrial Stress and Facilitates Tumor Metastasis of Colorectal Cancer Through Slug SUMOylation. Curr Mol Med 2025; 25:27-36. [PMID: 38013443 DOI: 10.2174/0115665240271525231112121008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 11/29/2023]
Abstract
BACKGROUND Colorectal cancer (CRC) is a malignant tumor. Slug has been found to display a key role in diversified cancers, but its relevant regulatory mechanisms in CRC development are not fully explored. OBJECTIVE Hence, exploring the function and regulatory mechanisms of Slug is critical for the treatment of CRC. METHODS Protein expressions of Slug, N-cadherin, E-cadherin, Snail, HIF-1α, SUMO- 1, Drp1, Opa1, Mfn1/2, PGC-1α, NRF1, and TFAM were measured through western blot. To evaluate the protein expression of Slug and SUMO-1, an immunofluorescence assay was used. Cell migration ability was tested through transwell assay. The SUMOylation of Slug was examined through CO-IP assay. RESULTS Slug displayed higher expression and facilitated tumor metastasis in CRC. In addition, hypoxia treatment was discovered to upregulate HIF-1α, Slug, and SUMO-1 levels, as well as induce Slug SUMOylation. Slug SUMOylation markedly affected mitochondrial biosynthesis, fusion, and mitogen-related protein expression levels to trigger mitochondrial stress. Additionally, the induced mitochondrial stress by hypoxia could be rescued by Slug inhibition and TAK-981 treatment. CONCLUSION Our study expounded that hypoxia affects mitochondrial stress and facilitates tumor metastasis of CRC through Slug SUMOylation.
Collapse
Affiliation(s)
- Jin-Bao Wang
- Department of Surgery, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, 100102, China
| | - Shi-Lin Ding
- Department of Surgery, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, 100102, China
| | - Xiao-Song Liu
- Department of Surgery, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, 100102, China
| | - Tianren Yu
- Department of Surgery, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, 100102, China
| | - Zeng-An Wu
- Department of Surgery, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, 100102, China
| | - Yu-Xiang Li
- Department of Surgery, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, 100102, China
| |
Collapse
|
2
|
Voutsadakis IA. Gastric Adenocarcinomas with CDX2 Induction Show Higher Frequency of TP53 and KMT2B Mutations and MYC Amplifications but Similar Survival Compared with Cancers with No CDX2 Induction. J Clin Med 2024; 13:7635. [PMID: 39768557 PMCID: PMC11727917 DOI: 10.3390/jcm13247635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/07/2024] [Accepted: 12/13/2024] [Indexed: 01/16/2025] Open
Abstract
Background: Gastric cancer is one of the most prevalent gastrointestinal cancers. Mortality is high, and improved treatments are needed. A better understanding of the pathophysiology of the disease and discovery of biomarkers for targeted therapies are paramount for therapeutic progress. CDX2, a transcription factor of hindgut specification, is induced in several gastric cancers, especially with intestinal differentiation, and could be helpful for defining sub-types with particular characteristics. Methods: Gastric cancers with induced CDX2 mRNA expression were identified from the gastric cohort of The Cancer Genome Atlas (TCGA) and were compared with cancers that had no CDX2 mRNA induction. Induced CDX2 mRNA expression was defined as mRNA expression z-score relative to all samples above 0, and non-induced CDX2 mRNA expression was defined as mRNA expression z-score relative to all samples below -1. Results: Patients with gastric cancers with CDX2 mRNA induction were older, had less frequently diffuse histology, and more often had mutations in TP53 and KMT2B and amplifications in MYC. CDX2 induction was correlated with HNF4α induction and was reversely correlated with SOX2. Gastric cancers with CDX2 mRNA induction showed lower PD-L1 expression than cancers with lower CDX2 expression but did not differ in CLDN18 mRNA expression. Progression-free and overall survival of the two groups was also not significantly different. Conclusion: Gastric cancers with CDX2 mRNA induction displayed specific characteristics that differentiate them from cancers with no CDX2 induction and could be of interest for optimizing current and future therapies.
Collapse
Affiliation(s)
- Ioannis A. Voutsadakis
- Algoma District Cancer Program, Sault Area Hospital, 750 Great Northern Road, Sault Ste Marie, ON P6B 0A8, Canada; or
- Division of Clinical Sciences, Section of Internal Medicine, Northern Ontario School of Medicine, Sudbury, ON P3E 2C6, Canada
| |
Collapse
|
3
|
Novoa Díaz MB, Carriere P, Gentili C. How the interplay among the tumor microenvironment and the gut microbiota influences the stemness of colorectal cancer cells. World J Stem Cells 2023; 15:281-301. [PMID: 37342226 PMCID: PMC10277969 DOI: 10.4252/wjsc.v15.i5.281] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 03/06/2023] [Accepted: 04/17/2023] [Indexed: 05/26/2023] Open
Abstract
Colorectal cancer (CRC) remains the third most prevalent cancer disease and involves a multi-step process in which intestinal cells acquire malignant characteristics. It is well established that the appearance of distal metastasis in CRC patients is the cause of a poor prognosis and treatment failure. Nevertheless, in the last decades, CRC aggressiveness and progression have been attributed to a specific cell population called CRC stem cells (CCSC) with features like tumor initiation capacity, self-renewal capacity, and acquired multidrug resistance. Emerging data highlight the concept of this cell subtype as a plastic entity that has a dynamic status and can be originated from different types of cells through genetic and epigenetic changes. These alterations are modulated by complex and dynamic crosstalk with environmental factors by paracrine signaling. It is known that in the tumor niche, different cell types, structures, and biomolecules coexist and interact with cancer cells favoring cancer growth and development. Together, these components constitute the tumor microenvironment (TME). Most recently, researchers have also deepened the influence of the complex variety of microorganisms that inhabit the intestinal mucosa, collectively known as gut microbiota, on CRC. Both TME and microorganisms participate in inflammatory processes that can drive the initiation and evolution of CRC. Since in the last decade, crucial advances have been made concerning to the synergistic interaction among the TME and gut microorganisms that condition the identity of CCSC, the data exposed in this review could provide valuable insights into the biology of CRC and the development of new targeted therapies.
Collapse
Affiliation(s)
- María Belén Novoa Díaz
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca 8000, Buenos Aires, Argentina
- Instituto de Ciencias Biológicas y Biomédicas del Sur, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)- Universidad Nacional del Sur (UNS), Bahía Blanca 8000, Buenos Aires, Argentina
| | - Pedro Carriere
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca 8000, Buenos Aires, Argentina
- Instituto de Ciencias Biológicas y Biomédicas del Sur, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)- Universidad Nacional del Sur (UNS), Bahía Blanca 8000, Buenos Aires, Argentina
| | - Claudia Gentili
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca 8000, Buenos Aires, Argentina
- Instituto de Ciencias Biológicas y Biomédicas del Sur, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)- Universidad Nacional del Sur (UNS), Bahía Blanca 8000, Buenos Aires, Argentina
| |
Collapse
|
4
|
CircTMEM59 Serves as miR-410-3p Sponge to Inhibit the Proliferation and Metastasis of Colorectal Cancer by Regulating HOXD8. Biochem Genet 2022; 60:2399-2415. [DOI: 10.1007/s10528-022-10224-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 03/21/2022] [Indexed: 12/13/2022]
|
5
|
Liu B, Yao C, Li H. Laparoscopic Radical Resection of Colorectal Cancer in the Treatment of Elderly Colorectal Cancer and Its Effect on Gastrointestinal Function. Front Surg 2022; 9:840461. [PMID: 35284487 PMCID: PMC8907596 DOI: 10.3389/fsurg.2022.840461] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 01/06/2022] [Indexed: 12/01/2022] Open
Abstract
Objective To explore the efficacy and safety of laparoscopic radical resection of colorectal cancer in the elderly patients and its impact on gastrointestinal function. Methods A total of 122 elderly patients with colorectal cancer admitted to our hospital from March 2020 to June 2021 were selected as the research subjects, and they were divided into the control group (n = 61) and the observation group (n = 61). The control group was treated with traditional laparotomy, and the observation group was treated with laparoscopic radical resection of colorectal cancer. The clinical data of operation time, incision length, intraoperative bleeding volume, and hospitalization time in the two groups were recorded. Serum motilin (MTL) and gastrin (GAS) levels were measured pre- and post-operatively. The duration of abdominal distension, the time for the abdominal sound to return to normal, the time for the anal exhaust to normal, and the time for normal food intake were recorded after operation. The patients were followed up for 6 months post-operatively, and the complications during follow-up were recorded. Results The total response rate of the observation group (95.08%) was higher than that of the control group (81.97%) (P < 0.05). The operation time, incision length, intraoperative bleeding volume, and hospitalization time of the observation group were lower than those of the control group (P < 0.05). The duration of abdominal distension, the time for bowel sounds to return to normal, the time for the anus to exhaust gas to normal, and the normal eating time in the observation group were all lower than those in the control group (P < 0.05). After surgery, the levels of MTL and GAS in the two groups were lower than those before surgery, and those in the observation group were lower than those in the control group (P < 0.05). The total incidence of complications in the observation group (3.28%) was lower than that in the control group (13.12%) (P < 0.05). Conclusion Laparoscopic radical resection of colorectal cancer in the elderly patients has good effect, short operation time, less trauma, less blood loss during operation, short hospital stay, good recovery of gastrointestinal function, fewer complications, and high safety.
Collapse
Affiliation(s)
- Biao Liu
- The Third Department of Surgery, Cangxian Hospital, Cangzhou, China
- *Correspondence: Biao Liu
| | - Chuanhui Yao
- The First Department of Surgery, Cangxian Hospital, Cangzhou, China
| | - Haiying Li
- Department of Medical Affairs, Cangxian Hospital, Cangzhou, China
| |
Collapse
|
6
|
Wu L, Wang W, Tian J, Qi C, Cai Z, Yan W, Xuan S, Shang A. Combination therapy with Nab-paclitaxel and the interleukin-15 fused with anti-human serum albumin nanobody as a synergistic treatment for colorectal cancer. Bioengineered 2022; 13:1942-1951. [PMID: 35019820 PMCID: PMC8805949 DOI: 10.1080/21655979.2021.2023997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
This study determines the effect of Nab-paclitaxel in combination with IL-15 fusion protein, containing IL-15 and an anti-HSA nanobody domain, on colorectal cancer bearing mice. In vitro binding test of IL15 fusion protein to HSA and Nab-paclitaxel, as well as CTLL-2 cell stimulation assay were performed. The tumor inhibitory effects of Nab-paclitaxel in combination with IL-15 fusion protein was evaluated in the HCT116 bearing murine model. Moreover, the population and function of cytotoxic T cells and M1 macrophages, as well as MDSCs and Treg cells, were also further examined. As a result, combination therapy of Nab-paclitaxel and IL-15 fusion protein effectively inhibits the tumor growth and produced a 78% reduction in tumor size for HCT116, as compared to vehicle group. In the TDLN for the combination group, there were 18% of CD8+ IFN-γ + T-cells and 0.47% CD4+CD25+FOXP3+ regulatory T-cells, as opposed to 5.0% and 5.1%, respectively, for the model control group. Combination therapy further exhibited enhanced suppressive effects on the accumulation of CD11b+GR-1+ MDSC in spleen and bone marrow. Furthermore, Nab-paclitaxel and IL-15 fusion protein showed a significant suppression of NF-κB-mediated immune suppressive markers and increased expression of CD8, Granzyme B, CD62L, CD49b, and CD86 without obvious organ toxicity. In conclusion, combination therapy of Nab-paclitaxel and IL-15 fusion protein can effectively stimulate the antitumor activity of immune effector cells, thereby inhibiting immunosuppressive cells within the TME of colorectal cancer, and the overall therapeutic effect has a significant advantage over monotherapy.AbbreviationsInterleukin 15, IL-15; Human serum albumin, HSA; Myeloid-derived suppressor cells, MDSC; Albumin binding domain, ABD; Tumor drainage lymph node, TDLN; Natural killer (NK); Tumor-draining lymph node (TDLN); Tumor infiltrating lymphocyte, TIL; Immunogenic cell death, ICD; Enhanced permeability retention, EPR; Liposomal doxorubicin, Doxil; 5-fluorouracil, 5-FU.
Collapse
Affiliation(s)
- Lipei Wu
- Department of Laboratory Medicine, Dongtai People's Hospital & Dongtai Hospital of Nantong University, Yancheng, China.,Department of Laboratory Medicine, Shanghai Tongji Hospital, Shanghai, China
| | - Weiwei Wang
- Department of Pathology, Tinghu People's Hospital, Yancheng, China
| | - Jiale Tian
- Department of Laboratory Medicine, Shanghai Tongji Hospital, Shanghai, China
| | - Chunrun Qi
- Department of Pathology, Tinghu People's Hospital, Yancheng, China
| | - Zhengxin Cai
- Department of Laboratory Medicine, Tinghu People's Hospital of Yancheng City, Yancheng, China
| | - Wenhui Yan
- Department of Laboratory Medicine, Tinghu People's Hospital of Yancheng City, Yancheng, China
| | - Shihai Xuan
- Department of Laboratory Medicine, Dongtai People's Hospital & Dongtai Hospital of Nantong University, Yancheng, China
| | - Anquan Shang
- Department of Laboratory Medicine, Shanghai Tongji Hospital, Shanghai, China
| |
Collapse
|
7
|
Analysis of Efficacy, Safety, and Prognostic Factors of mFOLFOX6 Regimen Combined with Cetuximab and Simvastatin in the Treatment of K-RAS Mutant Colorectal Cancer. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:2280440. [PMID: 34557254 PMCID: PMC8455186 DOI: 10.1155/2021/2280440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/01/2021] [Indexed: 11/18/2022]
Abstract
Colorectal cancer (CRC) is one of the most common malignant tumors with high morbidity and mortality. The early symptoms are latent, and most patients are in the middle or late stage when they are diagnosed. The best opportunity for surgery has been lost, and surgical resection has failed to achieve good results. In clinical practice, targeted therapy or chemotherapy is usually the main treatment. The mFOLFOX6 regimen is a standardized regimen for the treatment of advanced CRC. The main drugs in this regimen are oxaliplatin and 5-fluorouracil (5-FU). Patients with advanced CRC combined with standard chemotherapy regimens can achieve a higher resection rate of liver metastases in unresectable patients, which can achieve significant survival improvement. Therefore, in this study, oxaliplatin + calcium folinate + 5-Fu + mFOLFOX6 regimen was combined with cetuximab and simvastatin to treat CRC patients, and the clinical efficacy and prognosis were analyzed, as well as the prognostic factors. The results showed that the addition of simvastatin on the basis of conventional mFOLFOX6 regimen combined with cetuximab chemotherapy could effectively improve the efficacy, reduce the total incidence of adverse reactions, improve the overall survival rate, and prolong the overall survival time of patients. Pathological grade and peritoneal metastasis were the factors affecting the mean survival time of CRC patients.
Collapse
|
8
|
Sin RWY, Foo DCC, Iyer DN, Fan MSY, Li X, Lo OSH, Law WL, Ng L. A Pilot Study Investigating the Expression Levels of Pluripotency-Associated Genes in Rectal Swab Samples for Colorectal Polyp and Cancer Diagnosis and Prognosis. Stem Cells Int 2021; 2021:4139528. [PMID: 34335790 PMCID: PMC8324395 DOI: 10.1155/2021/4139528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 12/11/2020] [Accepted: 06/09/2021] [Indexed: 02/06/2023] Open
Abstract
Change in gene expression is inevitable in cancer development. With more studies demonstrating the contributions of cancer stem cells (CSCs) in colorectal cancer (CRC) development, this study is aimed at investigating whether rectal swab specimen serves as a tool for detection of dysregulation of CSC or stem cell (SC) markers and at evaluating its potential as a new promising screening method for high-risk patients. Expression levels of 15 pluripotency-associated genes were assessed by quantitative PCR in 53 rectal swab specimens referred for endoscopic screening. Dysregulated genes and joint panels based on such genes were examined for their diagnostic potentials for both polyp and CRC. Out of 15 genes, Oct4, CD26, c-MYC, and CXCR4 showed significantly differential expression among normal, polyp, and CRC patients. A panel of Oct4 and CD26 showed an AUC value of 0.80 (p = 0.003) in identifying CRC patients from polyp/normal subjects, with sensitivity and specificity of 84.6% and 69.2%. A panel of c-MYC and CXCR4 achieved CRC/polyp identification with an AUC value of 0.79 (p = 0.002), with a sensitivity of 82.8% and specificity of 80.0%. The sensitivity for polyp and CRC was 80.0% and 85.7%, respectively. Further analysis showed that higher c-MYC and CXCR4 level was detected in normal subjects who developed polyps after 5-6 years, in comparison with subjects with no lesion developed, and the AUC of the c-MYC and CXCR4 panel increased to 0.88 (p < 0.001), with sensitivity and specificity of 84.4% and 92.3%, respectively, when these patients were included in the polyp group. This study suggests that the Oct4 and CD26 panel is a promising biomarker for distinguishing CRC from normal and polyp patients, whereas the c-MYC and CXCR4 panel may identify polyp and CRC from normal individuals.
Collapse
Affiliation(s)
- Ryan Wai-Yan Sin
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Dominic Chi-Chung Foo
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Deepak Narayanan Iyer
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - May Sau-Yee Fan
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Xue Li
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Oswens Siu-Hung Lo
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Wai-Lun Law
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Lui Ng
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
9
|
Arai H, Millstein J, Loupakis F, Stintzing S, Wang J, Battaglin F, Kawanishi N, Jayachandran P, Soni S, Zhang W, Mumenthaler SM, Cremolini C, Heinemann V, Falcone A, Lenz HJ. Germ line polymorphisms of genes involved in pluripotency transcription factors predict efficacy of cetuximab in metastatic colorectal cancer. Eur J Cancer 2021; 150:133-142. [PMID: 33901792 DOI: 10.1016/j.ejca.2021.03.048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/17/2021] [Accepted: 03/25/2021] [Indexed: 01/01/2023]
Abstract
BACKGROUND Cancer stem cells (CSCs) are primarily maintained by a network of pluripotency transcription factors (PTFs). Given a close relationship of CSC regulation with epidermal growth factor receptor and vascular endothelial growth factor signalling, we investigated whether single-nucleotide polymorphisms (SNPs) in PTF genes are related to the efficacy of cetuximab and/or bevacizumab in patients with metastatic colorectal cancer (mCRC). PATIENTS AND METHODS Genomic and clinical data from three independent clinical trial cohorts were tested: cetuximab cohort (FOLFIRI/cetuximab arm in FIRE-3, n = 129), bevacizumab cohort 1 (FOLFIRI/bevacizumab arm in FIRE-3, n = 107) and bevacizumab cohort 2 (FOLFIRI/bevacizumab arm in TRIBE, n = 215). Genomic DNA extracted from blood samples was genotyped, and ten SNPs were tested for association with clinical outcomes. RESULTS In the cetuximab cohort, four SNPs were significantly associated with progression-free survival in univariate analysis: NANOG rs11055767 (any A allele vs C/C, hazard ratio [HR] = 0.62, 95% confidence interval [CI] = 0.42-0.94, p = 0.02), NANOG rs10744044 (any A allele vs G/G, HR = 0.59, 95% CI = 0.39-0.90, p = 0.01), NANOGP8 rs2168958 (any C allele vs A/A, HR = 2.12, 95% CI = 1.36-3.29, p < 0.001) and NANOGP8 rs2279066 (any C allele vs T/T, HR = 1.80, 95% CI = 1.06-1.68, p = 0.03). Multivariate analysis confirmed the significant associations for NANOGP8 rs2168958 and NANOGP8 rs2279066. In either bevacizumab cohort, no significant associations were observed in univariate analysis. CONCLUSIONS Germ line polymorphisms in the PTF genes could be predictive markers for cetuximab in mCRC.
Collapse
Affiliation(s)
- Hiroyuki Arai
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Joshua Millstein
- Department of Preventive Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Fotios Loupakis
- Clinical and Experimental Oncology Department, Medical Oncology Unit 1, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Sebastian Stintzing
- Medical Department, Division of Hematology, Oncology, and Tumour Immunology (CCM), Charité - Universitaetsmedizin, Berlin, Germany
| | - Jingyuan Wang
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Francesca Battaglin
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Natsuko Kawanishi
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Priya Jayachandran
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Shivani Soni
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Wu Zhang
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Shannon M Mumenthaler
- Lawrence J. Ellison Institute for Transformative Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Chiara Cremolini
- Department of Translational Medicine, Division of Medical Oncology, University of Pisa, Pisa, Italy
| | - Volker Heinemann
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | - Alfredo Falcone
- Department of Translational Medicine, Division of Medical Oncology, University of Pisa, Pisa, Italy
| | - Heinz-Josef Lenz
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, USA.
| |
Collapse
|
10
|
Klepinina L, Klepinin A, Truu L, Chekulayev V, Vija H, Kuus K, Teino I, Pook M, Maimets T, Kaambre T. Colon cancer cell differentiation by sodium butyrate modulates metabolic plasticity of Caco-2 cells via alteration of phosphotransfer network. PLoS One 2021; 16:e0245348. [PMID: 33471801 PMCID: PMC7817017 DOI: 10.1371/journal.pone.0245348] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 12/28/2020] [Indexed: 12/12/2022] Open
Abstract
The ability of butyrate to promote differentiation of cancer cells has important implication for colorectal cancer (CRC) prevention and therapy. In this study, we examined the effect of sodium butyrate (NaBT) on the energy metabolism of colon adenocarcinoma Caco-2 cells coupled with their differentiation. NaBT increased the activity of alkaline phosphatase indicating differentiation of Caco-2 cells. Changes in the expression of pluripotency-associated markers OCT4, NANOG and SOX2 were characterized during the induced differentiation at mRNA level along with the measures that allowed distinguishing the expression of different transcript variants. The functional activity of mitochondria was studied by high-resolution respirometry. Glycolytic pathway and phosphotransfer network were analyzed using enzymatical assays. The treatment of Caco-2 cells with NaBT increased production of ATP by oxidative phosphorylation, enhanced mitochondrial spare respiratory capacity and caused rearrangement of the cellular phosphotransfer networks. The flexibility of phosphotransfer networks depended on the availability of glutamine, but not glucose in the cell growth medium. These changes were accompanied by suppressed cell proliferation and altered gene expression of the main pluripotency-associated transcription factors. This study supports the view that modulating cell metabolism through NaBT can be an effective strategy for treating CRC. Our data indicate a close relationship between the phosphotransfer performance and metabolic plasticity of CRC, which is associated with the cell differentiation state.
Collapse
Affiliation(s)
- Ljudmila Klepinina
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
- * E-mail:
| | - Aleksandr Klepinin
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | - Laura Truu
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | - Vladimir Chekulayev
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | - Heiki Vija
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | - Kaisa Kuus
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Indrek Teino
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Martin Pook
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Toivo Maimets
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Tuuli Kaambre
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| |
Collapse
|
11
|
Li W, Zhang N, Jin C, Long MD, Rajabi H, Yasumizu Y, Fushimi A, Yamashita N, Hagiwara M, Zheng R, Wang J, Kui L, Singh H, Kharbanda S, Hu Q, Liu S, Kufe D. MUC1-C drives stemness in progression of colitis to colorectal cancer. JCI Insight 2020; 5:137112. [PMID: 32427590 DOI: 10.1172/jci.insight.137112] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 05/06/2020] [Indexed: 12/28/2022] Open
Abstract
Colitis is associated with the development of colorectal cancer (CRC) by largely undefined mechanisms that are critical for understanding the link between inflammation and cancer. Intestinal stem cells (ISCs) marked by leucine-rich repeat-containing G protein-coupled receptor 5 (LGR5) expression are of importance in both the inflammatory response to colitis and progression to colitis-associated colon cancer (CACC). Here, we report in human mucin 1-transgenic (MUC1-transgenic) mouse models of CACC, targeting the MUC1-C oncogenic protein suppresses the (a) Lgr5+ ISC population, (b) induction of Myc and core pluripotency stem cell factors, and (c) severity and progression of colitis to dysplasia and cancer. By extension to human colon cancer cells, we demonstrate that MUC1-C drives MYC, forms a complex with MYC on the LGR5 promoter, and activates LGR5 expression. We also show in CRC cells that MUC1-C induces cancer stem cell (CSC) markers (BMI1, ALDH1, FOXA1, LIN28B) and the OCT4, SOX2, and NANOG pluripotency factors. Consistent with conferring the CSC state, targeting MUC1-C suppresses the capacity of CRC cells to promote wound healing, invasion, self-renewal, and tumorigenicity. In analysis of human tissues, MUC1 expression associates with activation of inflammatory pathways, development of colitis, and aggressiveness of CRCs. These results collectively indicate that MUC1-C is of importance for integrating stemness and pluripotency in colitis and CRC. Of clinical relevance, the findings further indicate that MUC1-C represents a potentially previously unrecognized target that is druggable for treating progression of colitis and CRC.
Collapse
Affiliation(s)
- Wei Li
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Ning Zhang
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Caining Jin
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Mark D Long
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Hasan Rajabi
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Yota Yasumizu
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Atsushi Fushimi
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Nami Yamashita
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Masayuki Hagiwara
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Rongbin Zheng
- Department of Bioinformatics, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Jin Wang
- Department of Bioinformatics, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Ling Kui
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Surender Kharbanda
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Qiang Hu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Song Liu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Donald Kufe
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
12
|
García-Cárdenas JM, Guerrero S, López-Cortés A, Armendáriz-Castillo I, Guevara-Ramírez P, Pérez-Villa A, Yumiceba V, Zambrano AK, Leone PE, Paz-y-Miño C. Post-transcriptional Regulation of Colorectal Cancer: A Focus on RNA-Binding Proteins. Front Mol Biosci 2019; 6:65. [PMID: 31440515 PMCID: PMC6693420 DOI: 10.3389/fmolb.2019.00065] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 07/23/2019] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is a major health problem with an estimated 1. 8 million new cases worldwide. To date, most CRC studies have focused on DNA-related aberrations, leaving post-transcriptional processes under-studied. However, post-transcriptional alterations have been shown to play a significant part in the maintenance of cancer features. RNA binding proteins (RBPs) are uprising as critical regulators of every cancer hallmark, yet little is known regarding the underlying mechanisms and key downstream oncogenic targets. Currently, more than a thousand RBPs have been discovered in humans and only a few have been implicated in the carcinogenic process and even much less in CRC. Identification of cancer-related RBPs is of great interest to better understand CRC biology and potentially unveil new targets for cancer therapy and prognostic biomarkers. In this work, we reviewed all RBPs which have a role in CRC, including their control by microRNAs, xenograft studies and their clinical implications.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - César Paz-y-Miño
- Facultad de Ciencias de la Salud Eugenio Espejo, Centro de Investigación Genética y Genómica, Universidad UTE, Quito, Ecuador
| |
Collapse
|