1
|
Xu S, Wang W, Meng T, Wang F, Wang G, Huang F, Wang G, Yu X, Wu R, Hou L, Ye Z, Zhang X, Zhao H, Shen Y. Construction and validation of a immune-related prognostic gene DHRS1 in hepatocellular carcinoma based on bioinformatic analysis. Medicine (Baltimore) 2023; 102:e35268. [PMID: 37861541 PMCID: PMC10589603 DOI: 10.1097/md.0000000000035268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 08/25/2023] [Indexed: 10/21/2023] Open
Abstract
A member of the short-chain dehydrogenase/reductase superfamily (DHRS1, SDR19C1) is a member of the short-chain dehydrogenase/reductase superfamily and a potential predictor of hepatocellular carcinoma (HCC). However, the role of DHRS1 in HCC immunity remains unclear. We systematically analyzed the association between DHRS1 and HCC immunity with transcriptional and clinical data from the Tumor Immune Estimation Resource, an integrated repository portal for tumor immune system interactions, and cBioPortal databases. Six DHRS1-associated immunomodulators strongly correlated with survival and were uncovered by exploiting univariate and multivariate Cox analyses. We created a risk score for each patient by adding the points from each immunomodulator and then classified them into high and low risk categories. Survival analysis were used to compare the overall survival between the 2 groups, and the receiver operating characteristic curve was applied to assess the accuracy of the risk score. Data from our center were adopted as the external validation set, the risk score was calculated using the risk coefficient of the 6 genes in the training cohort, and survival analysis were executed to verify the experimental group results. A nomogram was ultimately constructed with the R package. Our data revealed a correlation between the levels of immune cell infiltration and either the DHRS1 gene copy numbers or mRNA levels in HCC. Second, we generated a signature based on the 6 DHRS1-related immunomodulators (KDR, TNFRSF4, CD276, TNFSF4, SLAMF6, and SIGLEC9). We postulate that the generated risk scores would serve as an independent indicator of HCC prognosis, with an area under the receiver operating characteristic curve for the risk score of 0.743. We further established external validation sets to reconfirm the predictive validity of the risk score. Finally, a prognostic nomogram and calibration curve were created. The DHRS1 gene may exert an impact on HCC immunity. We posit that the nominated immune signature based on DHRS1-associated immunomodulators could constitute a promising prognostic biomarker in HCC.
Collapse
Affiliation(s)
- Sa Xu
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Wei Wang
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, China
- Organ Transplant Center of The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Tao Meng
- Department of General Surgery, Third Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Fuyan Wang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Guoxing Wang
- Anhui BioX-Vision Biological Technology Co., Ltd, Hefei, China
| | - Fan Huang
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, China
- Organ Transplant Center of The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Guobin Wang
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, China
- Organ Transplant Center of The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiaojun Yu
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, China
- Organ Transplant Center of The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ruolin Wu
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, China
- Organ Transplant Center of The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Liujin Hou
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, China
- Organ Transplant Center of The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhenghui Ye
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, China
- Organ Transplant Center of The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xinghua Zhang
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, China
- Organ Transplant Center of The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Hongchuan Zhao
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, China
- Organ Transplant Center of The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yuxian Shen
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| |
Collapse
|
2
|
Ye J, Lin Y, Gao X, Lu L, Huang X, Huang S, Bai T, Wu G, Luo X, Li Y, Liang R. Prognosis-Related Molecular Subtypes and Immune Features Associated with Hepatocellular Carcinoma. Cancers (Basel) 2022; 14:cancers14225721. [PMID: 36428813 PMCID: PMC9688639 DOI: 10.3390/cancers14225721] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/29/2022] [Accepted: 11/01/2022] [Indexed: 11/23/2022] Open
Abstract
Bioinformatics tools were used to identify prognosis-related molecular subtypes and biomarkers of hepatocellular carcinoma (HCC). Differential expression analysis of four datasets identified 3330 overlapping differentially expressed genes (DEGs) in the same direction in all four datasets. Those genes were involved in the cell cycle, FOXO signaling pathway, as well as complement and coagulation cascades. Based on non-negative matrix decomposition, two molecular subtypes of HCC with different prognoses were identified, with subtype C2 showing better overall survival than subtype C1. Cox regression and Kaplan-Meier analysis showed that 217 of the overlapping DEGs were closely associated with HCC prognosis. The subset of those genes showing an area under the curve >0.80 was used to construct random survival forest and least absolute shrinkage and selection operator models, which identified seven feature genes (SORBS2, DHRS1, SLC16A2, RCL1, IGFALS, GNA14, and FANCI) that may be involved in HCC occurrence and prognosis. Based on the feature genes, risk score and recurrence models were constructed, while a univariate Cox model identified FANCI as a key gene involved mainly in the cell cycle, DNA replication, and mismatch repair. Further analysis showed that FANCI had two mutation sites and that its gene may undergo methylation. Single-sample gene set enrichment analysis showed that Th2 and T helper cells are significantly upregulated in HCC patients compared to controls. Our results identify FANCI as a potential prognostic biomarker for HCC.
Collapse
Affiliation(s)
- Jiazhou Ye
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning 530021, China
| | - Yan Lin
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning 530021, China
| | - Xing Gao
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning 530021, China
| | - Lu Lu
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning 530021, China
| | - Xi Huang
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning 530021, China
| | - Shilin Huang
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning 530021, China
| | - Tao Bai
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning 530021, China
| | - Guobin Wu
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning 530021, China
| | - Xiaoling Luo
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning 530021, China
| | - Yongqiang Li
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning 530021, China
- Correspondence: (Y.L.); (R.L.); Tel./Fax: +86-771-5335155 (Y.L. & R.L.)
| | - Rong Liang
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning 530021, China
- Correspondence: (Y.L.); (R.L.); Tel./Fax: +86-771-5335155 (Y.L. & R.L.)
| |
Collapse
|