1
|
Rahimi A, Baghernejadan Z, Hazrati A, Malekpour K, Samimi LN, Najafi A, Falak R, Khorramdelazad H. Combination therapy with immune checkpoint inhibitors in colorectal cancer: Challenges, resistance mechanisms, and the role of microbiota. Biomed Pharmacother 2025; 186:118014. [PMID: 40157004 DOI: 10.1016/j.biopha.2025.118014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 03/17/2025] [Accepted: 03/24/2025] [Indexed: 04/01/2025] Open
Abstract
Colorectal cancer (CRC) is still one of the leading causes of cancer deaths worldwide. Even though there has been progress in cancer immunotherapy, the results of applying immune checkpoint inhibitors (ICIs) have been unsatisfactory, especially in microsatellite stable (MSS) CRC. Single-agent ICIs that target programmed cell death-1 (PD-1)/ PD-L1, cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), T cell Ig- and mucin-domain-containing molecule-3 (TIM-3), and lymphocyte activation gene (LAG)-3 have emerged as having specific benefits. However, many primary and secondary resistance mechanisms are available in the tumor microenvironment (TME) that prevent it from happening. Combination strategies, such as the use of anti-PD-1 and anti-CTLA-4, can be effective in overcoming these resistance pathways, but toxicities remain a significant concern. Moreover, ICIs have been integrated with various treatment modalities, including chemotherapy, radiotherapy, antibiotics, virotherapy, polyadenosine diphosphate-ribose polymerase (PARP) inhibitors, and heat shock protein 90 (HSP90) inhibitors. The outcomes observed in both preclinical and clinical settings have been encouraging. Interestingly, manipulating gut microbiota via fecal microbiota transplantation (FMT) has been identified as a new strategy to increase the efficacy of immunotherapy in CRC patients. Therefore, integrating ICIs with other treatment approaches holds promise in enhancing the prognosis of CRC patients. This review focuses on the unmet need for new biomarkers to select patients for combination therapies and the ongoing work to overcome resistance and immune checkpoint blockade.
Collapse
Affiliation(s)
- Ali Rahimi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zeinab Baghernejadan
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Hazrati
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Kosar Malekpour
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Alireza Najafi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Falak
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Hossein Khorramdelazad
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| |
Collapse
|
2
|
Song D, Hou S, Ma N, Yan B, Gao J. Efficacy and safety of PD-1/PD-L1 and CTLA-4 immune checkpoint inhibitors in the treatment of advanced colorectal cancer: a systematic review and meta-analysis. Front Immunol 2024; 15:1485303. [PMID: 39555073 PMCID: PMC11563947 DOI: 10.3389/fimmu.2024.1485303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/15/2024] [Indexed: 11/19/2024] Open
Abstract
Background The efficacy and safety of PD-1/PD-L1 inhibitors combined with CTLA-4 inhibitors in the treatment of advanced colorectal cancer is controversial. This meta-analysis aimed to evaluate the efficacy and safety of PD-1/PD-L1 inhibitors combined with CTLA-4 inhibitors for advanced colorectal cancer. Methods PubMed, Embase, the Cochrane Library, and Web of Science databases were systematically searched for relevant studies. Outcomes including median progression-free survival (mPFS), median overall survival (mOS), overall response rate (ORR), disease control rate (DCR), treatment-related adverse events (TRAEs) and ≥grade 3 TRAEs were extracted for further analysis. The risk of bias was assessed by subgroup analysis. Results 12 articles with 566 patients were identified and subjected to meta-analysis. With regard to survival analysis, the pooled mOS and mPFS were 6.66 months (95%CI 4.85-9.16) and 2.92 months (95%CI 2.23-3.83), respectively. In terms of tumor response, the pooled ORR and DCR were 21% (95%CI 6%-41%) and 49% (95%CI 27%-71%), respectively. The pooled AEs rate and ≥ grade 3 AEs rate were 94% (95%CI 86%-99%) and 44% (95%CI 30%-58%). Conclusion PD-1/PD-L1 inhibitors combined with CTLA-4 inhibitors have shown promising clinical responses in the treatment of colorectal cancer (CRC). Although the incidence of adverse reactions is high, they are generally tolerable. Systematic review registration https://inplasy.com/, identifier INPLASY202480030.
Collapse
Affiliation(s)
- Dandan Song
- Department of Neurology, Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shufu Hou
- Department of Gastrointestinal Surgery, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Ning Ma
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Bing Yan
- Department of Gastrointestinal Surgery, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jing Gao
- Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
3
|
Zhang P, Li X, Wang X, Yang Y, Wang J, Cao D. SHR-8068 combined with adebrelimab and bevacizumab in the treatment of refractory advanced colorectal cancer: study protocol for a single-arm, phase Ib/II study. Front Immunol 2024; 15:1450533. [PMID: 39445023 PMCID: PMC11496094 DOI: 10.3389/fimmu.2024.1450533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/13/2024] [Indexed: 10/25/2024] Open
Abstract
Background The third-line treatment for refractory colorectal cancer (CRC) has limited efficacy. This study aimed to evaluate the safety and efficacy of SHR-8068 (an anti-CTLA-4 antibody), combined with adebrelimab (an anti-PD-L1 antibody), and bevacizumab in refractory non-microsatellite instability-high (MSI-H) or proficient mismatch repair (pMMR) CRC. Method This study is a prospective, open-label, single-center phase Ib/II clinical trial. Patients with pathologically confirmed pMMR/non-MSI-H metastatic colorectal adenocarcinoma who have failed ≥2 lines prior standard systemic treatments will be enrolled (n=36). The Ib phase will evaluate two dosing regimens of SHR-8068 in combination therapy (n=9 each dosage): SHR-8068 (1 mg per kilogram, every six weeks, intravenously) or SHR-8068 (4 mg per kilogram, every twelve weeks, intravenously) combined with adebrelimab (1200 mg, every three weeks, intravenously) and bevacizumab (7.5 mg per kilogram, every three weeks, intravenously). The efficacy and adverse events (AEs) of these regimens will be assessed to determine the recommended phase II dose (RP2D) of SHR-8068. Those of RP2D group from the phase Ib will be included in the phase II. The study will go to include 18 additional patients according to the one-sample log-rank test design in the phase II. The primary endpoint of the Ib phase is safety, with secondary endpoints including the objective response rate (ORR), progression-free survival (PFS), overall survival (OS), disease control rate (DCR), and quality of life (QOL). The primary endpoint for phase II was PFS, with secondary endpoints including ORR, OS, DCR, safety, and QOL. Identifying biomarkers to predict the efficacy of this regimen is the exploratory study endpoint. Discussion This proof-of-concept study would provide safety and efficacy signals of this novel combination treatment for the MSS CRCs in the late-line setting. And it may offer new insights on the clinical application of dual immunotherapy combined with anti-angiogenic therapy in the MSS CRC.
Collapse
Affiliation(s)
- Pei Zhang
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaofen Li
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xin Wang
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yu Yang
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jianfei Wang
- Jiangsu Hengrui Pharmaceuticals Co., Ltd,
Shanghai, China
| | - Dan Cao
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Sandow L, Tsikitis L, Lopez CD, Brinkerhoff B, Kardosh A, Pegna G, Chen EY. Neoadjuvant immunotherapy leads to complete pathologic response in locally advanced colon cancer. Clin Case Rep 2024; 12:e9218. [PMID: 39114842 PMCID: PMC11303659 DOI: 10.1002/ccr3.9218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/29/2024] [Accepted: 05/14/2024] [Indexed: 08/10/2024] Open
Abstract
Immunotherapy is considered first line in patients with dMMR metastatic colorectal cancer (CRC). Recent studies have also shown promising results with neoadjuvant immunotherapy in locally advanced CRC. We report a case in which neoadjuvant immunotherapy with pembrolizumab resulted in complete pathologic response at time of resection as well as saved the patient the morbidity associated with a hepatectomy. We also completed a scoping review of the literature which suggests promising tumor responses with treatment in dMMR CRC. Further randomized control trials to determine the magnitude of response and optimal regimen are needed.
Collapse
Affiliation(s)
- Lyndsey Sandow
- Department of MedicineOregon Health and Science UniversityPortlandOregonUSA
| | - Liana Tsikitis
- Division of Gastrointestinal and General Surgery, Department of General SurgeryOregon Health and Science UniversityPortlandOregonUSA
| | - Charles D. Lopez
- Division of Hematology and Medical OncologyOregon Health and Science University, Knight Cancer InstitutePortlandOregonUSA
| | - Brian Brinkerhoff
- Department of PathologyOregon Health and Science UniversityPortlandOregonUSA
| | - Adel Kardosh
- Division of Hematology and Medical OncologyOregon Health and Science University, Knight Cancer InstitutePortlandOregonUSA
| | - Guillaume Pegna
- Division of Hematology and Medical OncologyOregon Health and Science University, Knight Cancer InstitutePortlandOregonUSA
| | - Emerson Y. Chen
- Division of Hematology and Medical OncologyOregon Health and Science University, Knight Cancer InstitutePortlandOregonUSA
| |
Collapse
|
5
|
Ding M, Gao J, Wang J, Li Z, Gong X, Cui Z, Li C, Xue H, Li D, Wang Y. Colorectal cancer subtyping and immune landscape analysis based on natural killer cell-related genes. Arab J Gastroenterol 2024; 25:150-159. [PMID: 38719664 DOI: 10.1016/j.ajg.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 01/29/2024] [Accepted: 03/20/2024] [Indexed: 06/03/2024]
Abstract
BACKGROUND AND STUDY AIMS The prognosis of colorectal cancer (CRC) is related to natural killer (NK) cells, but the molecular subtype features of CRC based on NK cells are still unknown. This study aimed to identify NK cell-related molecular subtypes of CRC and analyze the survival status and immune landscape of patients with different subtypes. PATIENTS/MATERIAL AND METHODS mRNA expression data, single nucleotide variant (SNV) data, and clinical information of CRC patients were obtained from The Cancer Genome Atlas. Differentially expressed genes (DEGs) were obtained through differential analysis, and the intersection was taken with NK cell-associated genes to obtain 103 NK cell-associated CRC DEGs (NCDEGs). Based on NCDEGs, CRC samples were divided into three clusters through unsupervised clustering analysis. Survival analysis, immune analysis, Gene Set Enrichment Analysis (GSEA), and tumor mutation burden (TMB) analysis were performed. Finally, NCDEG-related small-molecule drugs were screened using the CMap database. RESULTS Survival analysis revealed that cluster2 had a lower survival rate than cluster1 and cluster3 (p < 0.05). Immune infiltration analysis found that the immune infiltration levels and immune checkpoint expression levels of cluster1_3 were substantially higher than those of cluster2, and the tumor purity was the opposite (p < 0.05). GSEA presented that cluster1_3 was significantly enriched in the chemokine signaling pathway, ECM receptor interaction, and antigen processing and presentation pathways (p < 0.05). The TMB of cluster1_3 was significantly higher than that of cluster2 (p < 0.05). Genes with the highest mutation rate in CRC were APC, TP53, TTN, and KRAS. Drug prediction results showed that small-molecule drugs that reverse the upregulation of NCDEGs, deoxycholic acid, dipivefrine, phenformin, and other drugs may improve the prognosis of CRC. CONCLUSION NK cell-associated CRC subtypes can be used to evaluate the tumor characteristics of CRC patients and provide an important reference for CRC patients.
Collapse
Affiliation(s)
- Mei Ding
- Surgical Research Division, Tangshan Vocational & Technical College, Tangshan, Hebei 063000, China; Department of Laparoscopy and Colorectal Surgery, Tangshan Central Hospital, Tangshan, Hebei 063000, China
| | - Jianchao Gao
- Department of Laparoscopy and Colorectal Surgery, Tangshan Central Hospital, Tangshan, Hebei 063000, China
| | - Jinyan Wang
- Department of Laparoscopy and Colorectal Surgery, Tangshan Central Hospital, Tangshan, Hebei 063000, China
| | - Zongfu Li
- Surgical Research Division, Tangshan Vocational & Technical College, Tangshan, Hebei 063000, China
| | - Xiangliang Gong
- Department of Laparoscopy and Colorectal Surgery, Tangshan Central Hospital, Tangshan, Hebei 063000, China
| | - Zhiyu Cui
- Department of Laparoscopy and Colorectal Surgery, Tangshan Central Hospital, Tangshan, Hebei 063000, China
| | - Changjun Li
- Department of Laparoscopy and Colorectal Surgery, Tangshan Central Hospital, Tangshan, Hebei 063000, China
| | - Hongjun Xue
- Department of Laparoscopy and Colorectal Surgery, Tangshan Central Hospital, Tangshan, Hebei 063000, China
| | - Dandan Li
- Department of Pathology, Tangshan Central Hospital, Tangshan, Hebei 063000, China
| | - Yigang Wang
- Department of Laparoscopy and Colorectal Surgery, Tangshan Central Hospital, Tangshan, Hebei 063000, China.
| |
Collapse
|
6
|
Candelli M, Franceschi F. New Advances in Gastroenterology: The Crucial Role of Molecular Medicine. Int J Mol Sci 2023; 24:14907. [PMID: 37834355 PMCID: PMC10573855 DOI: 10.3390/ijms241914907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023] Open
Abstract
The significant progress we have recently observed in the field of gastroenterology, both in the understanding of pathophysiological mechanisms and in the diagnosis and treatment of diseases, is closely related to the improvement and discovery of new biomolecular techniques [...].
Collapse
Affiliation(s)
- Marcello Candelli
- Department of Emergency, Anesthesiological and Reanimation Sciences, Fondazione Policlinico Universitario A. Gemelli–IRCCS, 000135 Rome, Italy;
| | | |
Collapse
|
7
|
Shen M, Lu C, Gao J. Prognostic influence of PD-1/PD-L1 suppressors in combination with chemotherapeutic agents for non-small cell pulmonary carcinoma: system review and meta-analysis. Front Oncol 2023; 13:1137913. [PMID: 37152014 PMCID: PMC10154692 DOI: 10.3389/fonc.2023.1137913] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/20/2023] [Indexed: 05/09/2023] Open
Abstract
Background Lung cancer is a common malignant tumor, which is seriously harmful to human life and health. Nowadays, it has gradually become one of the best treatments for non-small cell lung cancer (NSCLC) to combine immunotherapy and chemotherapy, and its clinical efficacy is preliminary. Nevertheless, substantial differences exist between various studies and various indicators. Despite their unconvincing results, high-quality research evidence is needed to support them. In this case, further correlative studies are necessary to investigate the prognostic outcomes of PD-1/PD-L1 suppressors in combination with chemotherapeutic drugs in NSCLC. Methods The online public databases were searchable for the clinical trials that consisted of NSCLC patients who had concluded their chemotherapy and who had accepted PD-1/PD-L1 suppressors. The time-span of the search spanned from the beginning to the end of the database. Two investigators retrieved the data independently. RevMan 5.3 statistical software was utilized for the assessment of bias risk. The software followed the Cochrane Handbook 5.3 guidelines. Results There were seven clinically controlled studies with 2781 NSCLC samples finally included in this study. A meta-analysis of the post-treatment overall response rate (ORR) was undertaken. A remarkably higher ORR rate was observed in the study group (p<0.05). Study participants had a noticeably longer PFS (HR=0.61, 95% CI=0.54-0.70, P<0.00001). Study participants had markedly longer overall survival (OS) (HR=0.651, 95% CI=0.52-0.82, P<0.05). The incidence of adverse events (AEs) of Grade 3 or above was not clinically clearly different (P>0.05), as demonstrated by the incidence of AEs. The funnel plots were separately charted in accordance with ORR rate, PFE, OS, and Grade 3 AEs. The majority of the funnel plots were symmetrical and a minority of funnel plots were asymmetrical, indicating the heterogeneity of research and the limited evidence available may lead to some publication bias in the contained literature. Conclusion The combined PD-1/PD-L1 inhibitors with conventional chemotherapy can dramatically elevate the prognosis of NSCLC patients, obviously enhancing the ORR rate and prolonging their PFS and OS. Furthermore, it was found that adding PD-1/PD-L1 inhibitors to conventional chemotherapy did not result in any additional adverse effects.
Collapse
Affiliation(s)
| | - Chunxia Lu
- Department of Respiratory and critical care, Qidong People’s Hospital/Qidong Liver Cancer Institute/Affiliated Qidong Hospital of Nantong University, Qidong, China
| | | |
Collapse
|
8
|
Tang Q, Chen Y, Li X, Long S, Shi Y, Yu Y, Wu W, Han L, Wang S. The role of PD-1/PD-L1 and application of immune-checkpoint inhibitors in human cancers. Front Immunol 2022; 13:964442. [PMID: 36177034 PMCID: PMC9513184 DOI: 10.3389/fimmu.2022.964442] [Citation(s) in RCA: 257] [Impact Index Per Article: 85.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
Programmed cell death protein-1 (PD-1) is a checkpoint receptor expressed on the surface of various immune cells. PD-L1, the natural receptor for PD-1, is mainly expressed in tumor cells. Studies have indicated that PD-1 and PD-L1 are closely associated with the progression of human cancers and are promising biomarkers for cancer therapy. Moreover, the interaction of PD-1 and PD-L1 is one of the important mechanism by which human tumors generate immune escape. This article provides a review on the role of PD-L1/PD-1, mechanisms of immune response and resistance, as well as immune-related adverse events in the treatment of anti-PD-1/PD-L1 immunotherapy in human cancers. Moreover, we summarized a large number of clinical trials to successfully reveal that PD-1/PD-L1 Immune-checkpoint inhibitors have manifested promising therapeutic effects, which have been evaluated from different perspectives, including overall survival, objective effective rate and medium progression-free survival. Finally, we pointed out the current problems faced by PD-1/PD-L1 Immune-checkpoint inhibitors and its future prospects. Although PD-1/PD-L1 immune checkpoint inhibitors have been widely used in the treatment of human cancers, tough challenges still remain. Combination therapy and predictive models based on integrated biomarker determination theory may be the future directions for the application of PD-1/PD-L1 Immune-checkpoint inhibitors in treating human cancers.
Collapse
Affiliation(s)
- Qing Tang
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Clinical and Basic Research Team of Traditional Chinese Medicine (TCM) Prevention and Treatment of Non small cell lung cancer (NSCLC), Department of Oncology, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yun Chen
- Department of Organ Transplantation, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaojuan Li
- Institute of Rehabilitation Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shunqin Long
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Clinical and Basic Research Team of Traditional Chinese Medicine (TCM) Prevention and Treatment of Non small cell lung cancer (NSCLC), Department of Oncology, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yao Shi
- Department of Cerebrovascular Disease, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yaya Yu
- Department of Oncology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Wanyin Wu
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Clinical and Basic Research Team of Traditional Chinese Medicine (TCM) Prevention and Treatment of Non small cell lung cancer (NSCLC), Department of Oncology, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Wanyin Wu, ; Ling Han, ; Sumei Wang,
| | - Ling Han
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Wanyin Wu, ; Ling Han, ; Sumei Wang,
| | - Sumei Wang
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Clinical and Basic Research Team of Traditional Chinese Medicine (TCM) Prevention and Treatment of Non small cell lung cancer (NSCLC), Department of Oncology, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Wanyin Wu, ; Ling Han, ; Sumei Wang,
| |
Collapse
|