1
|
Bertalan G, Hainc N, Von Dehn FD, Hortobágyi T, Bink A, Le Rhun E, Weller M, Kulcsar Z. Advanced Distance-Resolved Evaluation of the Perienhancing Tumor Areas with FLAIR Hyperintensity Indicates Different ADC Profiles by MGMT Promoter Methylation Status in Glioblastoma. AJNR Am J Neuroradiol 2025; 46:302-310. [PMID: 39848779 DOI: 10.3174/ajnr.a8493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 08/02/2024] [Indexed: 01/25/2025]
Abstract
BACKGROUND AND PURPOSE Whether differences in the O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation status of glioblastoma (GBM) are reflected in MRI markers remains largely unknown. In this work, we analyze the ADC in the perienhancing infiltration zone of GBM according to the corresponding MGMT status by using a novel distance-resolved 3D evaluation. MATERIALS AND METHODS One hundred one patients with IDH wild-type GBM were retrospectively analyzed. GBM was segmented in 3D with deep learning. Tissue with FLAIR hyperintensity around the contrast-enhanced tumor was divided into concentric distance-resolved subvolumes. Mean ADC was calculated for the 3D tumor core and for the distance-resolved volumes around the core. Differences in group mean ADC between patients with MGMT promoter methylated (mMGMT, n = 43) and MGMT promoter unmethylated (uMGMT, n = 58) GBM was analyzed with Wilcoxon signed rank test. RESULTS For both mMGMT and uMGMT GBM, mean ADC values around the tumor core significantly increased as a function of distance from the core toward the periphery of the perienhancing FLAIR hyperintensity (approximately 10% increase within 5 voxels with P < 001). While group mean ADC in the tumor core was not significantly different, the distance-resolved ADC profile around the core was approximately 10% higher in mMGMT than in uMGMT GBM (P < 10-8 at 5 voxel distance from the tumor core). CONCLUSIONS Distance-resolved volumetric ADC analysis around the tumor core reveals tissue signatures of GBM imperceptible to the human eye on conventional MRI. The different ADC profiles around the core suggest epigenetically influenced differences in perienhancing tissue characteristics between mMGMT and uMGMT GBM.
Collapse
Affiliation(s)
- Gergely Bertalan
- From the Department of Neuroradiology (G.B., N.H., F.D.v.D., A.B., Z.K.), University Hospital Zürich, Zürich, Switzerland
| | - Nicolin Hainc
- From the Department of Neuroradiology (G.B., N.H., F.D.v.D., A.B., Z.K.), University Hospital Zürich, Zürich, Switzerland
| | - Fabian Dominik Von Dehn
- From the Department of Neuroradiology (G.B., N.H., F.D.v.D., A.B., Z.K.), University Hospital Zürich, Zürich, Switzerland
| | - Tibor Hortobágyi
- Institute of Neuropathology (T.H.), University Hospital Zürich, Zürich, Switzerland
| | - Andrea Bink
- From the Department of Neuroradiology (G.B., N.H., F.D.v.D., A.B., Z.K.), University Hospital Zürich, Zürich, Switzerland
| | - Emilie Le Rhun
- Department of Neurology (E.L.R., M.W.), University Hospital Zürich, Zürich, Switzerland
| | - Michael Weller
- Department of Neurology (E.L.R., M.W.), University Hospital Zürich, Zürich, Switzerland
| | - Zsolt Kulcsar
- From the Department of Neuroradiology (G.B., N.H., F.D.v.D., A.B., Z.K.), University Hospital Zürich, Zürich, Switzerland
| |
Collapse
|
2
|
Jaju A, Li Y, Dahmoush H, Gottardo NG, Laughlin S, Mirsky D, Panigrahy A, Sabin ND, Shaw D, Storm PB, Poussaint TY, Patay Z, Bhatia A. Imaging of pediatric brain tumors: A COG Diagnostic Imaging Committee/SPR Oncology Committee/ASPNR White Paper. Pediatr Blood Cancer 2023; 70 Suppl 4:e30147. [PMID: 36519599 PMCID: PMC10466217 DOI: 10.1002/pbc.30147] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 12/16/2022]
Abstract
Tumors of the central nervous system are the most common solid malignancies in children and the most common cause of pediatric cancer-related mortality. Imaging plays a central role in diagnosis, staging, treatment planning, and response assessment of pediatric brain tumors. However, the substantial variability in brain tumor imaging protocols across institutions leads to variability in patient risk stratification and treatment decisions, and complicates comparisons of clinical trial results. This White Paper provides consensus-based imaging recommendations for evaluating pediatric patients with primary brain tumors. The proposed brain magnetic resonance imaging protocol recommendations balance advancements in imaging techniques with the practicality of deployment across most imaging centers.
Collapse
Affiliation(s)
- Alok Jaju
- Department of Medical Imaging, Ann and Robert H Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
| | - Yi Li
- UCSF Department of Radiology and Biomedical Imaging, San Francisco, California, USA
| | - Hisham Dahmoush
- Department of Radiology, Lucile Packard Children's Hospital at Stanford, Palo Alto, California, USA
| | - Nicholas G Gottardo
- Department of Paediatric and Adolescent Oncology and Haematology, Perth Children's Hospital, Brain Tumour Research Programme, Telethon Kids Institute, Perth, Western Australia, Australia
| | - Suzanne Laughlin
- Department of Diagnostic Imaging, The Hospital for Sick Children and Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
| | - David Mirsky
- Department of Radiology, Children's Hospital Colorado, Aurora, Colorado, USA
| | - Ashok Panigrahy
- Department of Radiology, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Noah D Sabin
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Dennis Shaw
- Department of Radiology, Seattle Children's Hospital, Seattle, Washington, USA
| | - Phillip B Storm
- Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Tina Young Poussaint
- Department of Radiology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Zoltan Patay
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Aashim Bhatia
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| |
Collapse
|
3
|
Wijethilake N, MacCormac O, Vercauteren T, Shapey J. Imaging biomarkers associated with extra-axial intracranial tumors: a systematic review. Front Oncol 2023; 13:1131013. [PMID: 37182138 PMCID: PMC10167010 DOI: 10.3389/fonc.2023.1131013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 03/27/2023] [Indexed: 05/16/2023] Open
Abstract
Extra-axial brain tumors are extra-cerebral tumors and are usually benign. The choice of treatment for extra-axial tumors is often dependent on the growth of the tumor, and imaging plays a significant role in monitoring growth and clinical decision-making. This motivates the investigation of imaging biomarkers for these tumors that may be incorporated into clinical workflows to inform treatment decisions. The databases from Pubmed, Web of Science, Embase, and Medline were searched from 1 January 2000 to 7 March 2022, to systematically identify relevant publications in this area. All studies that used an imaging tool and found an association with a growth-related factor, including molecular markers, grade, survival, growth/progression, recurrence, and treatment outcomes, were included in this review. We included 42 studies, comprising 22 studies (50%) of patients with meningioma; 17 studies (38.6%) of patients with pituitary tumors; three studies (6.8%) of patients with vestibular schwannomas; and two studies (4.5%) of patients with solitary fibrous tumors. The included studies were explicitly and narratively analyzed according to tumor type and imaging tool. The risk of bias and concerns regarding applicability were assessed using QUADAS-2. Most studies (41/44) used statistics-based analysis methods, and a small number of studies (3/44) used machine learning. Our review highlights an opportunity for future work to focus on machine learning-based deep feature identification as biomarkers, combining various feature classes such as size, shape, and intensity. Systematic Review Registration: PROSPERO, CRD42022306922.
Collapse
Affiliation(s)
- Navodini Wijethilake
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Oscar MacCormac
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- Department of Neurosurgery, King’s College Hospital NHS Foundation Trust, London, United Kingdom
| | - Tom Vercauteren
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Jonathan Shapey
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- Department of Neurosurgery, King’s College Hospital NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
4
|
MR Imaging of Pediatric Brain Tumors. Diagnostics (Basel) 2022; 12:diagnostics12040961. [PMID: 35454009 PMCID: PMC9029699 DOI: 10.3390/diagnostics12040961] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/02/2022] [Accepted: 04/05/2022] [Indexed: 02/04/2023] Open
Abstract
Primary brain tumors are the most common solid neoplasms in children and a leading cause of mortality in this population. MRI plays a central role in the diagnosis, characterization, treatment planning, and disease surveillance of intracranial tumors. The purpose of this review is to provide an overview of imaging methodology, including conventional and advanced MRI techniques, and illustrate the MRI appearances of common pediatric brain tumors.
Collapse
|
5
|
Meyers SP. Intracranial Abnormalities with Diffusion Restriction. Magn Reson Imaging Clin N Am 2021; 29:137-161. [PMID: 33902900 DOI: 10.1016/j.mric.2021.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Multiple pathologic conditions can cause changes in the random movement of water, which can be detected with diffusion-weighted imaging (DWI). DWI plays a powerful clinical role in detecting restricted diffusion associated with acute brain infarction. Other disorders can also result in restricted diffusion. This article focuses on showing examples of common and uncommon disorders that have restricted diffusion secondary to cytotoxic and/or intramyelinic edema. These disorders include ischemia, infection, noninfectious demyelinating diseases, genetic mutations affecting metabolism, acquired metabolic disorders, toxic or drug exposures, neoplasms and tumorlike lesions, radiation treatment, trauma, and denervation.
Collapse
Affiliation(s)
- Steven P Meyers
- Department of Radiology/Imaging Sciences, University of Rochester Medical Center, University Medical Imaging, 4901 Lac de Ville Boulevard, Building D - Suite 140, Rochester, NY 14618, USA.
| |
Collapse
|
6
|
Perfusion and diffusion in meningioma tumors: a preliminary multiparametric analysis with Dynamic Susceptibility Contrast and IntraVoxel Incoherent Motion MRI. Magn Reson Imaging 2020; 67:69-78. [DOI: 10.1016/j.mri.2019.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 11/15/2019] [Accepted: 12/05/2019] [Indexed: 12/19/2022]
|
7
|
Tetsuka S. Reversible lesion in the splenium of the corpus callosum. Brain Behav 2019; 9:e01440. [PMID: 31588684 PMCID: PMC6851813 DOI: 10.1002/brb3.1440] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/15/2019] [Accepted: 09/18/2019] [Indexed: 12/17/2022] Open
Abstract
AIM OF REVIEW The presence of isolated, reversible lesions in the splenium of the corpus callosum (SCC) is essential to confirm the diagnosis of mild encephalitis/encephalopathy. The lesions usually heal within a month after the onset of neurological symptoms. Magnetic resonance imaging (MRI) has increasingly been used as a diagnostic tool, which has led to the publication of an increasing number of case reports. These have highlighted some inconsistencies about encephalitis/encephalopathy. First, the condition is not always mild and may be severe. Second, reversible lesions in the SCC have been identified in various diseases and conditions other than viral encephalitis/encephalopathy. Third, lesions in SCC are not always completely reversible. On this note, this review describes the specific clinical and radiological features of encephalitis/encephalopathy. FINDINGS The reversible lesion in SCC is an MRI finding observable in a wide variety of diseases and conditions. Thus, it should be considered as a secondary change rather than a peculiar feature associated with mild encephalitis/encephalopathy. If reversible lesions are present in the SCC, the symptoms and prognosis are not necessarily favorable, with manifestations of encephalitis/encephalopathy varying from absent to severe. Neuroradiological features that appear as isolated high-intensity signals on diffusion-weighted images and a decreased apparent diffusion coefficient of the lesion might indicate a diagnosis of cytotoxic edema. Findings of previous studies suggest that cytokine-mediated cytotoxic edema of the SCC may be an important pathophysiological manifestation of this condition. CONCLUSION The reversible lesions in the SCC found on MRI are not exclusive to encephalitis/encephalopathy but may be secondary to other disorders.
Collapse
Affiliation(s)
- Syuichi Tetsuka
- Department of Neurology, International University of Health and Welfare Hospital, Nasushiobara, Japan
| |
Collapse
|
8
|
Vanfleteren MJEGW, Dingemans AMC, Surmont VF, Vermaelen KY, Postma AA, Oude Lashof AML, Pitz CCM, Hendriks LEL. Invasive Aspergillosis Mimicking Metastatic Lung Cancer. Front Oncol 2018; 8:188. [PMID: 29922593 PMCID: PMC5996088 DOI: 10.3389/fonc.2018.00188] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 05/11/2018] [Indexed: 01/29/2023] Open
Abstract
In a patient with a medical history of cancer, the most probable diagnosis of an 18FDG-avid pulmonary mass combined with intracranial abnormalities on brain imaging is metastasized cancer. However, sometimes a differential diagnosis with an infectious cause such as aspergillosis can be very challenging as both cancer and infection are sometimes difficult to distinguish. Pulmonary aspergillosis can present as an infectious pseudotumour with clinical and imaging characteristics mimicking lung cancer. Even in the presence of cerebral lesions, radiological appearance of abscesses can look like brain metastasis. These similarities can cause significant diagnostic difficulties with a subsequent therapeutic delay and a potential adverse outcome. Awareness of this infectious disease that can mimic lung cancer, even in an immunocompetent patient, is important. We report a case of a 65-year-old woman with pulmonary aspergillosis disseminated to the brain mimicking metastatic lung cancer.
Collapse
Affiliation(s)
- Michiel J E G W Vanfleteren
- Department of Respiratory Medicine, University Hospital Ghent, Ghent, Belgium.,Department of Respiratory Medicine, Maastricht University Medical Centre (MUMC+), Maastricht, Netherlands.,Department of Respiratory Medicine, Sint-Jozefskliniek Izegem, Izegem, Belgium
| | - Anne-Marie C Dingemans
- Department of Respiratory Medicine, Maastricht University Medical Centre (MUMC+), Maastricht, Netherlands
| | - Veerle F Surmont
- Department of Respiratory Medicine, University Hospital Ghent, Ghent, Belgium
| | - Karim Y Vermaelen
- Department of Respiratory Medicine, University Hospital Ghent, Ghent, Belgium
| | - Alida A Postma
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre (MUMC +), Maastricht, Netherlands
| | - Astrid M L Oude Lashof
- Department of Medical Microbiology, Section Infectious Diseases, Maastricht University Medical Centre (MUMC +), Maastricht, Netherlands
| | - Cordula C M Pitz
- Department of Respiratory Medicine, Laurentius Hospital Roermond, Roermond, Netherlands
| | - Lizza E L Hendriks
- Department of Respiratory Medicine, Maastricht University Medical Centre (MUMC+), Maastricht, Netherlands
| |
Collapse
|
9
|
Landi A, Innocenzi G, Grasso G, Meschini A, Fabbiano F, Castri P, Delfini R. Diagnostic potential of the diffusion tensor tractography with fractional anisotropy in the diagnosis and treatment of cervical spondylotic and posttraumatic myelopathy. Surg Neurol Int 2016; 7:S705-S707. [PMID: 27843690 PMCID: PMC5054632 DOI: 10.4103/2152-7806.191082] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 08/10/2016] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Diffusion tensor imaging (DTI) is a magnetic resonance imaging (MRI)-based methodology widely used for the evaluation of microstructural integrity of the central nervous system (CNS), particularly of brain white matter fibers and bundles. METHODS The most common parameters evaluated in a DTI study are the fractional anisotropy (FA) and mean diffusivity (MD). Combining FA and MD analyses is commonly used in the evaluation of various types of brain pathologies, such as brain tumors, where a combined analysis allows an accurate tumor characterization. RESULTS Recent studies have shown that FA and MD could be of value in non-oncologic spinal pathology. In this regard, it has been demonstrated that DTI can provide new insights into the diagnosis and prognosis of cervical spondylotic myelopathy and cervical spinal cord injury. CONCLUSIONS Further studies are needed to assess the role of DTI in such a new clinical scenario.
Collapse
Affiliation(s)
- Alessandro Landi
- Department of Neurology and Psychiatry, Division of Neurosurgery, Sapienza University of Rome, Rome, Italy
| | | | - Giovanni Grasso
- Department of Experimental Biomedicine and Clinical Neurosciences, Neurosurgical Clinic, University of Palermo, Palermo, Italy
| | - Alessandro Meschini
- Department of Diagnostic and Therapeutic Neuroradiology, INM Neuromed, Pozzilli, Italy
| | - Francesco Fabbiano
- Department of Diagnostic and Therapeutic Neuroradiology, INM Neuromed, Pozzilli, Italy
| | - Paola Castri
- Department of Pediatric Neurology, UTHSC (University of Tennessee Health Science Center), Memphis, Tennessee, USA
| | - Roberto Delfini
- Department of Neurology and Psychiatry, Division of Neurosurgery, Sapienza University of Rome, Rome, Italy
| |
Collapse
|