1
|
Rehman S, Ikram M, Khan A, Khan A, Farzia, Khan R, Sinnokrot MO, Puduvalli VK, Jadoon A. Triethylammonium Salts of Dicoumarol: Synthesis, Characterization, Human Antiglioblastoma, Antimicrobial and Antioxidant Studies. Cell Biochem Biophys 2025; 83:999-1008. [PMID: 39306823 DOI: 10.1007/s12013-024-01532-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2024] [Indexed: 11/03/2024]
Abstract
The most typical primary brain tumor, glioblastoma multiforme (GBM), has a dismal prognosis. They are removed through arduous, potentially fatal operations. The primary cause of tumor recurrence following surgery is glioblastoma stem cells (GSCs). In order to combat the recurrent glioblastoma malignant cells, medications have been developed. Chemotherapies now in use are expensive and encounter resistance. To combat inherent and developed resistance, new and powerful chemotherapeutics are being synthesized. In this regard, dicoumarols were deprotonated by triethylamine to produce corresponding salts which are reported and used for the first time for human antiglioblastoma activity. Spectroscopic characterizations like 1H and 13C-NMR were carried out. The cytotoxicity of normal human astrocytes (NHA) and human glioblastoma cells (A172 and LN229) were both examined in terms of dose and time dependence. The range of the IC50 value for all the deprotonated derivatives against A172 was found to be 2.81-0.24 µM, whereas the range against LN229 was found to be 2.50-0.85 µM. According to cytotoxicity results, malignant cell death was seen in GBM cells treated with triethylamine salts of dicoumarols compared to the control group, which suggested that salts may cause apoptosis in GBM cells. Antimicrobial and antifungal activities were also investigated for all the triethylamine salts of dicoumarols suggesting that salt formation enhances antimicrobial potentials manyfolds compared to the standard drug used. Free radical activities were also investigated using DPPH free radicals.
Collapse
Affiliation(s)
- Sadia Rehman
- Department of Chemistry, Abdul Wali Khan University, Mardan, Pakistan.
| | - Muhammad Ikram
- Department of Chemistry, Abdul Wali Khan University, Mardan, Pakistan
| | - Afzal Khan
- Department of Chemistry, Abdul Wali Khan University, Mardan, Pakistan
- Department of Microbiology, Abbotabad University of Science and Technology, Abbotabad, Pakistan
- Department of Neuro-Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Adnan Khan
- School of Physics & the Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, Nankai University, Tianjin, 300071, PR China
| | - Farzia
- Department of Chemistry, Abdul Wali Khan University, Mardan, Pakistan
| | - Rizwan Khan
- Department of Zoology, Abdul Wali Khan University, Mardan, Pakistan
| | - Mutasem Omar Sinnokrot
- College of Arts and Sciences, American University of IraqBaghdad, Airport Road, Baghdad, Iraq
| | - Vinay K Puduvalli
- Department of Neuro-Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ayub Jadoon
- Department of Microbiology, Abbotabad University of Science and Technology, Abbotabad, Pakistan
| |
Collapse
|
2
|
Nasal Drug Delivery of Anticancer Drugs for the Treatment of Glioblastoma: Preclinical and Clinical Trials. Molecules 2019; 24:molecules24234312. [PMID: 31779126 PMCID: PMC6930669 DOI: 10.3390/molecules24234312] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/22/2019] [Accepted: 11/24/2019] [Indexed: 12/18/2022] Open
Abstract
Glioblastoma (GBM) is the most lethal form of brain tumor, being characterized by the rapid growth and invasion of the surrounding tissue. The current standard treatment for glioblastoma is surgery, followed by radiotherapy and concurrent chemotherapy, typically with temozolomide. Although extensive research has been carried out over the past years to develop a more effective therapeutic strategy for the treatment of GBM, efforts have not provided major improvements in terms of the overall survival of patients. Consequently, new therapeutic approaches are urgently needed. Overcoming the blood–brain barrier (BBB) is a major challenge in the development of therapies for central nervous system (CNS) disorders. In this context, the intranasal route of drug administration has been proposed as a non-invasive alternative route for directly targeting the CNS. This route of drug administration bypasses the BBB and reduces the systemic side effects. Recently, several formulations have been developed for further enhancing nose-to-brain transport, mainly with the use of nano-sized and nanostructured drug delivery systems. The focus of this review is to provide an overview of the strategies that have been developed for delivering anticancer compounds for the treatment of GBM while using nasal administration. In particular, the specific properties of nanomedicines proposed for nose-to-brain delivery will be critically evaluated. The preclinical and clinical data considered supporting the idea that nasal delivery of anticancer drugs may represent a breakthrough advancement in the fight against GBM.
Collapse
|
3
|
Zattra CM, Zhang DY, Broggi M, Velz J, Vasella F, Seggewiss D, Schiavolin S, Bozinov O, Krayenbühl N, Sarnthein J, Ferroli P, Regli L, Stienen MN. Repeated craniotomies for intracranial tumors: is the risk increased? Pooled analysis of two prospective, institutional registries of complications and outcomes. J Neurooncol 2018; 142:49-57. [PMID: 30474767 PMCID: PMC6399174 DOI: 10.1007/s11060-018-03058-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 11/21/2018] [Indexed: 11/28/2022]
Abstract
Purpose Deciding whether to re-operate patients with intracranial tumor recurrence or remnant is challenging, as the data on safety of repeated procedures is limited. This study set out to evaluate the risks for morbidity, mortality, and complications after repeated operations, and to compare those to primary operations. Methods Retrospective observational two-center study on consecutive patients undergoing microsurgical tumor resection. The data derived from independent, prospective institutional registries. The primary endpoint was morbidity at 3 months (M3), defined as significant decrease on the Karnofsky Performance Scale (KPS). Secondary endpoints were mortality, rate and severity of complications according to the Clavien–Dindo Grade (CDG). Results 463/2403 (19.3%) were repeated procedures. Morbidity at M3 occurred in n = 290 patients (12.1%). In univariable analysis, patients undergoing repeated surgery were 98% as likely as patients undergoing primary surgery to experience morbidity (OR 0.98, 95% CI 0.72–1.34, p = 0.889). In multivariable analysis adjusted for age, sex, tumor size, histology and posterior fossa location, the relationship remained stable (aOR 1.25, 95% CI 0.90–1.73, p = 0.186). Mortality was n = 10 (0.4%) at discharge and n = 95 (4.0%) at M3, without group differences. At least one complication occurred in n = 855, and the rate (35.5% vs. 35.9%, p = 0.892) and severity (CDG; p = 0.520) was similar after primary and repeated procedures. Results were reproduced in subgroup analyses for meningiomas, gliomas and cerebral metastases. Conclusions Repeated surgery for intracranial tumors does not increase the risk of morbidity. Mortality, and both the rate and severity of complications are comparable to primary operations. This information is of value for patient counseling and the informed consent process. Electronic supplementary material The online version of this article (10.1007/s11060-018-03058-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Costanza Maria Zattra
- Department of Neurosurgery, University Hospital Zurich and Clinical Neuroscience Center, University of Zurich, Frauenklinikstrasse 10, 8091, Zurich, Switzerland
- Neurosurgical Unit 2, Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - David Y Zhang
- Department of Neurosurgery, University Hospital Zurich and Clinical Neuroscience Center, University of Zurich, Frauenklinikstrasse 10, 8091, Zurich, Switzerland
| | - Morgan Broggi
- Neurosurgical Unit 2, Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Julia Velz
- Department of Neurosurgery, University Hospital Zurich and Clinical Neuroscience Center, University of Zurich, Frauenklinikstrasse 10, 8091, Zurich, Switzerland
| | - Flavio Vasella
- Department of Neurosurgery, University Hospital Zurich and Clinical Neuroscience Center, University of Zurich, Frauenklinikstrasse 10, 8091, Zurich, Switzerland
| | - Dominik Seggewiss
- Department of Neurosurgery, University Hospital Zurich and Clinical Neuroscience Center, University of Zurich, Frauenklinikstrasse 10, 8091, Zurich, Switzerland
| | - Silvia Schiavolin
- Public Health and Disability Unit, Department of Neurology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Oliver Bozinov
- Department of Neurosurgery, University Hospital Zurich and Clinical Neuroscience Center, University of Zurich, Frauenklinikstrasse 10, 8091, Zurich, Switzerland
| | - Niklaus Krayenbühl
- Department of Neurosurgery, University Hospital Zurich and Clinical Neuroscience Center, University of Zurich, Frauenklinikstrasse 10, 8091, Zurich, Switzerland
| | - Johannes Sarnthein
- Department of Neurosurgery, University Hospital Zurich and Clinical Neuroscience Center, University of Zurich, Frauenklinikstrasse 10, 8091, Zurich, Switzerland
| | - Paolo Ferroli
- Neurosurgical Unit 2, Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Luca Regli
- Department of Neurosurgery, University Hospital Zurich and Clinical Neuroscience Center, University of Zurich, Frauenklinikstrasse 10, 8091, Zurich, Switzerland
| | - Martin N Stienen
- Department of Neurosurgery, University Hospital Zurich and Clinical Neuroscience Center, University of Zurich, Frauenklinikstrasse 10, 8091, Zurich, Switzerland.
| |
Collapse
|