1
|
Minowa K, Seki M, Nagai Y, Yamashita S. Cancer-Type-Specific DNA Methylation Is a Source of Vulnerability in Liver Cancer Cells. Cancer Sci 2025. [PMID: 40313132 DOI: 10.1111/cas.70092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/14/2025] [Accepted: 04/24/2025] [Indexed: 05/03/2025] Open
Abstract
DNA methylation, a pivotal epigenetic mechanism, plays a critical role in various pathological conditions, including cancers. Notably, cancer-type-specific DNA methylation can be advantageous for survival only in specific environments while being disadvantageous in others. To investigate the role of cancer-type-specific methylation as a vulnerability in cancer cells, we bioinformatically profiled genome-wide DNA methylation in 1165 human cancer cell lines across 25 cancer types. The number of cancer-type-specific methylated cytosines varied significantly by organ, with exceptionally high numbers observed in blood cancers. A total of 73 genes were identified as potential liver cancer-specific methylation-silenced genes, and four genes, ASNS, NQO1, FXYD5, and BCAT2, were subjected to experimental further analysis. Silencing of BCAT2 was found to contribute to the vulnerability of liver cancer cells to BCAT1 inhibition by gabapentin. Additionally, the silencing of the other three genes also rendered liver cancer cells vulnerable under different environmental conditions. These findings enhance our understanding of the biological and clinical significance of DNA methylation and provide a basis for developing diagnostic markers for cancer. (169 words).
Collapse
Affiliation(s)
- Karen Minowa
- Division of Biotechnology, Graduate School of Engineering, Maebashi Institute of Technology, Maebashi, Gunma, Japan
| | - Miho Seki
- Division of Biotechnology, Graduate School of Engineering, Maebashi Institute of Technology, Maebashi, Gunma, Japan
| | - Yui Nagai
- Department of Biotechnology, Maebashi Institute of Technology, Maebashi, Gunma, Japan
| | - Satoshi Yamashita
- Division of Biotechnology, Graduate School of Engineering, Maebashi Institute of Technology, Maebashi, Gunma, Japan
- Department of Biotechnology, Maebashi Institute of Technology, Maebashi, Gunma, Japan
| |
Collapse
|
2
|
Kanai Y. Molecular pathological approach to cancer epigenomics and its clinical application. Pathol Int 2024; 74:167-186. [PMID: 38482965 PMCID: PMC11551818 DOI: 10.1111/pin.13418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/15/2024] [Accepted: 02/26/2024] [Indexed: 04/11/2024]
Abstract
Careful microscopic observation of histopathological specimens, accumulation of large numbers of high-quality tissue specimens, and analysis of molecular pathology in relation to morphological features are considered to yield realistic data on the nature of multistage carcinogenesis. Since the morphological hallmark of cancer is disruption of the normal histological structure maintained through cell-cell adhesiveness and cellular polarity, attempts have been made to investigate abnormalities of the cadherin-catenin cell adhesion system in human cancer cells. It has been shown that the CDH1 tumor suppressor gene encoding E-cadherin is silenced by DNA methylation, suggesting that a "double hit" involving DNA methylation and loss of heterozygosity leads to carcinogenesis. Therefore, in the 1990s, we focused on epigenomic mechanisms, which until then had not received much attention. In chronic hepatitis and liver cirrhosis associated with hepatitis virus infection, DNA methylation abnormalities were found to occur frequently, being one of the earliest indications that such abnormalities are present even in precancerous tissue. Aberrant expression and splicing of DNA methyltransferases, such as DNMT1 and DNMT3B, was found to underlie the mechanism of DNA methylation alterations in various organs. The CpG island methylator phenotype in renal cell carcinoma was identified for the first time, and its therapeutic targets were identified by multilayer omics analysis. Furthermore, the DNA methylation profile of nonalcoholic steatohepatitis (NASH)-related hepatocellular carcinoma was clarified in groundbreaking studies. Since then, we have developed diagnostic markers for carcinogenesis risk in NASH patients and noninvasive diagnostic markers for upper urinary tract cancer, as well as developing a new high-performance liquid chromatography-based diagnostic system for DNA methylation diagnosis. Research on the cancer epigenome has revealed that DNA methylation alterations occur from the precancerous stage as a result of exposure to carcinogenic factors such as inflammation, smoking, and viral infections, and continuously contribute to multistage carcinogenesis through aberrant expression of cancer-related genes and genomic instability. DNA methylation alterations at the precancerous stages are inherited by or strengthened in cancers themselves and determine the clinicopathological aggressiveness of cancers as well as patient outcome. DNA methylation alterations have applications as biomarkers, and are expected to contribute to diagnosis, as well as preventive and preemptive medicine.
Collapse
Affiliation(s)
- Yae Kanai
- Department of PathologyKeio University School of MedicineTokyoJapan
| |
Collapse
|
3
|
Hamada K, Tian Y, Fujimoto M, Takahashi Y, Kohno T, Tsuta K, Watanabe SI, Yoshida T, Asamura H, Kanai Y, Arai E. DNA hypermethylation of the ZNF132 gene participates in the clinicopathological aggressiveness of 'pan-negative'-type lung adenocarcinomas. Carcinogenesis 2021; 42:169-179. [PMID: 33152763 PMCID: PMC7905838 DOI: 10.1093/carcin/bgaa115] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 10/12/2020] [Accepted: 10/29/2020] [Indexed: 11/26/2022] Open
Abstract
Although some previous studies have examined epigenomic alterations in lung adenocarcinomas, correlations between epigenomic events and genomic driver mutations have not been fully elucidated. Single-CpG resolution genome-wide DNA methylation analysis with the Infinium HumanMethylation27 BeadChip was performed using 162 paired samples of adjacent normal lung tissue (N) and the corresponding tumorous tissue (T) from patients with lung adenocarcinomas. Correlations between DNA methylation data on the one hand and clinicopathological parameters and genomic driver mutations, i.e. mutations of EGFR, KRAS, BRAF and HER2 and fusions involving ALK, RET and ROS1, were examined. DNA methylation levels in 12 629 probes from N samples were significantly correlated with recurrence-free survival. Principal component analysis revealed that distinct DNA methylation profiles at the precancerous N stage tended not to induce specific genomic driver aberrations. Most of the genes showing significant DNA methylation alterations during transition from N to T were shared by two or more driver aberration groups. After small interfering RNA knockdown of ZNF132, which showed DNA hypermethylation only in the pan-negative group and was correlated with vascular invasion, the proliferation, apoptosis and migration of cancer cell lines were examined. ZNF132 knockdown led to increased cell migration ability, rather than increased cell growth or reduced apoptosis. We concluded that DNA hypermethylation of the ZNF132 gene participates in the clinicopathological aggressiveness of ‘pan-negative’ lung adenocarcinomas. In addition, DNA methylation alterations at the precancerous stage may determine tumor aggressiveness, and such alterations that accumulate after driver mutation may additionally modify clinicopathological features through alterations of gene expression.
Collapse
Affiliation(s)
- Kenichi Hamada
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
- Division of Thoracic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Ying Tian
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Mao Fujimoto
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Yoriko Takahashi
- Bioscience Department, Solution Knowledge Center, Mitsui Knowledge Industry Co., Ltd., Tokyo, Japan
| | - Takashi Kohno
- Division of Genome Biology, National Cancer Center Research Institute, Tokyo, Japan
| | - Koji Tsuta
- Department of Pathology & Laboratory Medicine, Kansai Medical University, Osaka, Japan
| | - Shun-ichi Watanabe
- Department of Thoracic Surgery, National Cancer Center Hospital, Tokyo, Japan
| | - Teruhiko Yoshida
- Fundamental Innovative Oncology Core Center, National Cancer Center Research Institute, Tokyo, Japan
| | - Hisao Asamura
- Division of Thoracic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Yae Kanai
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Eri Arai
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
- To whom correspondence should be addressed. Tel: +81 3 3353 1211; Fax: +81 3 3353 3290;
| |
Collapse
|
4
|
Fujimoto M, Arai E, Tsumura K, Yotani T, Yamada Y, Takahashi Y, Maeshima AM, Fujimoto H, Yoshida T, Kanai Y. Establishment of diagnostic criteria for upper urinary tract urothelial carcinoma based on genome-wide DNA methylation analysis. Epigenetics 2020; 15:1289-1301. [PMID: 32498593 PMCID: PMC7678936 DOI: 10.1080/15592294.2020.1767374] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The aim of this study was to develop a less invasive and accurate diagnostic system for upper urinary tract urothelial carcinoma (UTUC) based on genome-wide DNA methylation profiling. Genome-wide DNA methylation screening was performed using the Infinium HumanMethylation450 BeadChip, and DNA methylation quantification was verified using pyrosequencing. We analysed 26 samples of normal control urothelial tissue (C), an initial cohort of 62 samples (31 samples of non-cancerous urothelium [N] from UTUC patients and 31 samples of the corresponding UTUCs), a validation cohort of 82 samples (41 N and 41 UTUC samples), and 14 samples of urinary bladder urothelial carcinoma (BUC). In the initial cohort, we identified 2,448 CpG sites showing significant differences in DNA methylation levels between both C and UTUC and N and UTUC, but not showing differences between C and N. Among these CpG sites, 10 were located within CpG islands or their shores and shelves included in genomic domains where DNA methylation levels are stably controlled, allowing discrimination of UTUC even from BUC. Receiver operating characteristic curve analysis for discrimination of UTUC from N in these 10 CpG and neighbouring sites (37 diagnostic panels in total) yielded area under the curve values of 0.959-1.000, with a sensitivity and specificity of 86.6-100% and 93.5-100%, respectively. The diagnostic impact was successfully confirmed in the validation cohort. Our criteria were useful for diagnosis of UTUC, regardless of its clinicopathological features. Application of our criteria to voided urine samples will ultimately allow non-invasive DNA methylation diagnosis of UTUC.
Collapse
Affiliation(s)
- Mao Fujimoto
- Department of Pathology, Keio University School of Medicine , Tokyo, Japan
| | - Eri Arai
- Department of Pathology, Keio University School of Medicine , Tokyo, Japan
| | - Koji Tsumura
- Department of Urology, Graduate School of Medicine, the University of Tokyo , Tokyo, Japan
| | - Takuya Yotani
- Tsukuba Research Institute, Research and Development Division, Sekisui Medical Co., Ltd ., Ryugasaki, Japan
| | - Yuriko Yamada
- Tsukuba Research Institute, Research and Development Division, Sekisui Medical Co., Ltd ., Ryugasaki, Japan
| | - Yoriko Takahashi
- Bioscience Department, Solution Knowledge Center, Mitsui Knowledge Industry Co., Ltd ., Tokyo, Japan
| | - Akiko Miyagi Maeshima
- Department of Pathology and Clinical Laboratories, National Cancer Center Hospital , Tokyo, Japan
| | - Hiroyuki Fujimoto
- Department of Urology, National Cancer Center Hospital , Tokyo, Japan
| | - Teruhiko Yoshida
- Fundamental Innovative Oncology Core Center, National Cancer Center Research Institute , Tokyo, Japan
| | - Yae Kanai
- Department of Pathology, Keio University School of Medicine , Tokyo, Japan
| |
Collapse
|