1
|
Bai C, Liu X, Wang F, Sun Y, Wang J, Liu J, Hao X, Zhou L, Yuan Y, Liu J. Identification of immune-related biomarkers for intracerebral hemorrhage diagnosis based on RNA sequencing and machine learning. Front Immunol 2024; 15:1421942. [PMID: 39281688 PMCID: PMC11392791 DOI: 10.3389/fimmu.2024.1421942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/16/2024] [Indexed: 09/18/2024] Open
Abstract
Background Intracerebral hemorrhage (ICH) is a severe stroke subtype with high morbidity, disability, and mortality rates. Currently, no biomarkers for ICH are available for use in clinical practice. We aimed to explore the roles of RNAs in ICH pathogenesis and identify potential diagnostic biomarkers. Methods We collected 233 individual blood samples from two independent cohorts, including 64 patients with ICH, 59 patients with ischemic stroke (IS), 60 patients with hypertension (HTN) and 50 healthy controls (CTRL) for RNA sequencing. Differentially expressed genes (DEGs) analysis, gene set enrichment analysis (GSEA), and weighted correlation network analysis (WGCNA) were performed to identify ICH-specific modules. The immune cell composition was evaluated with ImmuneCellAI. Multiple machine learning algorithms to select potential biomarkers for ICH diagnosis, and further validated by quantitative real-time polymerase chain reaction (RT-PCR). Receiver operating characteristic (ROC) curve analysis and decision curve analysis (DCA) were performed to evaluate the diagnostic value of the signature for ICH. Finally, we generated M1 and M2 macrophages to investigate the expression of candidate genes. Results In both cohorts, 519 mRNAs and 131 lncRNAs were consistently significantly differentially expressed between ICH patients and HTN controls. Gene function analysis suggested that immune system processes may be involved in ICH pathology. ImmuneCellAI analysis revealed that the abundances of 11 immune cell types were altered after ICH in both cohorts. WGCNA and GSEA identified 18 immune-related DEGs. Multiple algorithms identified an RNA panel (CKAP4, BCL6, TLR8) with high diagnostic value for discriminating ICH patients from HTN controls, CTRLs and IS patients (AUCs: 0.93, 0.95 and 0.82; sensitivities: 81.3%, 84.4% and 75%; specificities: 100%, 96% and 79.7%, respectively). Additionally, CKAP4 and TLR8 mRNA and protein levels decreased in RAW264.7 M1 macrophages and increased in RAW264.7 M2 macrophages, while BCL6 expression increased in M1 macrophages but not in M2 macrophages, which may provide potential therapeutic targets for ICH. Conclusions This study demonstrated that the expression levels of lncRNAs and mRNAs are associated with ICH, and an RNA panel (CKAP4, BCL6, TLR8) was developed as a potential diagnostic tool for distinguishing ICH from IS and controls, which could provide useful insight into ICH diagnosis and pathogenesis.
Collapse
Affiliation(s)
- Congxia Bai
- Department of Clinical Laboratory Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xinran Liu
- Department of Clinical Laboratory Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Fengjuan Wang
- Department of Clinical Laboratory Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yingying Sun
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Wang
- Department of Clinical Laboratory Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jing Liu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoyan Hao
- Department of Clinical Laboratory Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Lei Zhou
- Department of Clinical Laboratory Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yu Yuan
- Neurosurgery, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Jiayun Liu
- Department of Clinical Laboratory Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
2
|
Wang Y, Zhang H, Hao Y, Jin F, Tang L, Xu X, He Z, Wang Y. Expression profile of circular RNAs in blood samples of Northern Chinese males with intracerebral hemorrhage shows downregulation of hsa-circ-0090829. Heliyon 2024; 10:e35864. [PMID: 39220968 PMCID: PMC11365373 DOI: 10.1016/j.heliyon.2024.e35864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 07/25/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Circular RNAs (circRNAs) are involved in several neurological disorders; however, the mechanisms underlying their involvement remain to be clarified. We attempted to explore the expression profiles of circRNAs and their potential functions and mechanisms in the pathogenesis of intracerebral hemorrhage (ICH) in Northern Chinese males. The microarray results showed that 50 circRNAs were significantly upregulated, while 194 circRNAs were significantly downregulated in ICH patients compared with healthy controls (p < 0.05). After bioinformatics analysis, a circRNA-microRNA-messenger RNA network and a protein-protein interaction network were constructed. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses showed that the neurotrophin signaling pathway, long-term potentiation, and the mitogen-activated protein kinase pathway are potentially implicated in ICH pathophysiology. The quantitative real-time polymerase chain reaction results revealed that hsa-circ-0090829 was significantly downregulated in ICH. The receiver operating characteristic curve analysis showed that the area under the curve of hsa-circ-0090829 between ICH and healthy controls was 0.807. Furthermore, the dual-luciferase assay showed that hsa-circ-0090829 sponged miR-526b-5p. This study reports the altered expression of circRNAs and identifies the potential functions of these circRNAs in ICH. Our results may facilitate further mechanistic research on circRNAs in ICH and provide probable novel diagnostic biomarkers and therapeutic targets for ICH.
Collapse
Affiliation(s)
- Yuye Wang
- Department of Neurology, Key Laboratory for Neurological Big Data of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110001, China
- Department of Neurology, China-Japan Friendship Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100029, China
| | - Heyu Zhang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangdong, Guangzhou, 510080, China
| | - Yuehan Hao
- Department of Neurology, Key Laboratory for Neurological Big Data of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Feng Jin
- Department of Neurology, Key Laboratory for Neurological Big Data of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Ling Tang
- Department of Neurology, Key Laboratory for Neurological Big Data of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Xiaoxue Xu
- Department of Neurology, Key Laboratory for Neurological Big Data of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Zhiyi He
- Department of Neurology, Key Laboratory for Neurological Big Data of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Yanzhe Wang
- Department of Neurology, Key Laboratory for Neurological Big Data of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| |
Collapse
|
3
|
Chen K, Cheng X, Yuan S, Sun Y, Hao J, Tan Q, Lin Y, Li S, Yang J. Signature and function of plasma exosome-derived circular RNAs in patients with hypertensive intracerebral hemorrhage. Mol Genet Genomics 2024; 299:50. [PMID: 38734849 DOI: 10.1007/s00438-024-02144-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 04/19/2024] [Indexed: 05/13/2024]
Abstract
Intracerebral hemorrhage (ICH) is one of the major causes of death and disability, and hypertensive ICH (HICH) is the most common type of ICH. Currently, the outcomes of HICH patients remain poor after treatment, and early prognosis prediction of HICH is important. However, there are limited effective clinical treatments and biomarkers for HICH patients. Although circRNA has been widely studied in diseases, the role of plasma exosomal circRNAs in HICH remains unknown. The present study was conducted to investigate the characteristics and function of plasma exosomal circRNAs in six HICH patients using circRNA microarray and bioinformatics analysis. The results showed that there were 499 differentially expressed exosomal circRNAs between the HICH patients and control subjects. According to GO annotation and KEGG pathway analyses, the targets regulated by differentially expressed exosomal circRNAs were tightly related to the development of HICH via nerve/neuronal growth, neuroinflammation and endothelial homeostasis. And the differentially expressed exosomal circRNAs could mainly bind to four RNA-binding proteins (EIF4A3, FMRP, AGO2 and HUR). Moreover, of differentially expressed exosomal circRNAs, hsa_circ_00054843, hsa_circ_0010493 and hsa_circ_00090516 were significantly associated with bleeding volume and Glasgow Coma Scale score of the subjects. Our findings firstly revealed that the plasma exosomal circRNAs are significantly involved in the progression of HICH, and could be potent biomarkers for HICH. This provides the basis for further research to pinpoint the best biomarkers and illustrate the mechanism of exosomal circRNAs in HICH.
Collapse
Affiliation(s)
- Kejie Chen
- School of Public Health, Chengdu Medical College, Chengdu, Sichuan, 610500, People's Republic of China
| | - Xiaoyuan Cheng
- Department of Emergency, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, 610500, People's Republic of China
| | - Shanshan Yuan
- Department of Critical Care Medicine, The General Hospital of Western Theater Command, Chengdu, Sichuan, 610500, People's Republic of China
| | - Yang Sun
- Department of Emergency, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, 610500, People's Republic of China
| | - Junli Hao
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, Sichuan, 610500, People's Republic of China
| | - Quandan Tan
- Department of Neurology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, 610500, People's Republic of China
| | - Yapeng Lin
- Department of Neurology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, 610500, People's Republic of China
| | - Shuping Li
- Department of Emergency, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, 610500, People's Republic of China.
| | - Jie Yang
- Department of Neurology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, People's Republic of China.
| |
Collapse
|
4
|
Qi J, Meng C, Mo J, Shou T, Ding L, Zhi T. CircAFF2 Promotes Neuronal Cell Injury in Intracerebral Hemorrhage by Regulating the miR-488/CLSTN3 Axis. Neuroscience 2023; 535:75-87. [PMID: 37884088 DOI: 10.1016/j.neuroscience.2023.10.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/26/2023] [Accepted: 10/17/2023] [Indexed: 10/28/2023]
Abstract
BACKGROUND Intracerebral hemorrhage (ICH), a subtype of devastating stroke, carries high morbidity and mortality worldwide. CircRNA AFF2 (circAFF2) was significantly increased in ICH patients, but the underlying mechanism of circAFF2 is unknown. METHODS Hemin was employed to treat neuronal cells to mimic ICH in vitro. Mice were injected with collagenase VII-S to establish in vivo ICH models. Genes and protein expressions were detected using qRT-PCR and Western blotting. The interaction among circAFF2, miR-488, and CLSTN3 was validated by dual-luciferase reporter assay and RNA-RIP. Cell viability, MDA, iron, GSH, and lipid ROS were examined using the MTT, the commercial kits, and flow cytometry, respectively. ICH injury in mice was evaluated using neurological deficit scores and brain water measurements. RESULTS CircAFF2 was significantly increased in ICH in vivo and in vitro models. CircAFF2 bound to miR-488 and knockdown of circAFF2 or overexpression of miR-488 inhibited hemin-induced injury of neuronal cells as indicated by increased cell viability and reduced markers of oxidative stress and lipid peroxidation. CLSTN3 was the downstream target of miR-488. Silencing of circAFF2 or miR-488 overexpression reduced CLSTN3 expression and protected against the injury of neuronal cells. In vivo experiments finally confirmed that circAFF2 knockdown attenuated mice ICH injury via the miR-488/CLSTN3 axis. CONCLUSION CircAFF2 promotes the injury of neuronal cells and exacerbates ICH via increasing CLSTN3 by sponging miR-488, suggesting that circAFF2 may be a potential therapeutic target for ICH treatment.
Collapse
Affiliation(s)
- Juxing Qi
- Department of Neurosurgery, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, The First People's Hospital of Yancheng, Nanjing 224000, Jiangsu Province, China
| | - Chengjie Meng
- Department of Neurosurgery, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, The First People's Hospital of Yancheng, Nanjing 224000, Jiangsu Province, China
| | - Jianbing Mo
- Department of Neurosurgery, People's Hospital of Lezhi County, Ziyang 641500, Sichuan Province, China
| | - Taotao Shou
- Department of Neurosurgery, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, The First People's Hospital of Yancheng, Nanjing 224000, Jiangsu Province, China
| | - Liang Ding
- Department of Neurosurgery, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, The First People's Hospital of Yancheng, Nanjing 224000, Jiangsu Province, China
| | - Tongle Zhi
- Department of Neurosurgery, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, The First People's Hospital of Yancheng, Nanjing 224000, Jiangsu Province, China.
| |
Collapse
|
5
|
Feng X, Li X, Feng J, Xia J. Intracranial hemorrhage management in the multi-omics era. Heliyon 2023; 9:e14749. [PMID: 37101482 PMCID: PMC10123201 DOI: 10.1016/j.heliyon.2023.e14749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 03/08/2023] [Accepted: 03/16/2023] [Indexed: 03/29/2023] Open
Abstract
Intracranial hemorrhage (ICH) is a devastating disorder. Neuroprotective strategies that prevent tissue injury and improve functional outcomes have been identified in multiple animal models of ICH. However, these potential interventions in clinical trials produced generally disappointing results. With progress in omics, studies of omics data, including genomics, transcriptomics, epigenetics, proteomics, metabolomics, and the gut microbiome, may help promote precision medicine. In this review, we focused on introducing the applications of all omics in ICH and shed light on all of the considerable advantages to systematically analyze the necessity and importance of multiple omics technology in ICH.
Collapse
Affiliation(s)
- Xianjing Feng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xi Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Jie Feng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Jian Xia
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- Clinical Research Center for Cerebrovascular Disease of Hunan Province, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Corresponding author. Department of Neurology, Xiangya Hospital, Central South University, No.87, Xiangya Road, Changsha, 410008, China
| |
Collapse
|
6
|
Bai C, Hao X, Zhou L, Sun Y, Song L, Wang F, Yang L, Liu J, Chen J. Machine learning-based identification of the novel circRNAs circERBB2 and circCHST12 as potential biomarkers of intracerebral hemorrhage. Front Neurosci 2022; 16:1002590. [PMID: 36523430 PMCID: PMC9745062 DOI: 10.3389/fnins.2022.1002590] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/14/2022] [Indexed: 10/03/2023] Open
Abstract
BACKGROUND The roles and potential diagnostic value of circRNAs in intracerebral hemorrhage (ICH) remain elusive. METHODS This study aims to investigate the expression profiles of circRNAs by RNA sequencing and RT-PCR in a discovery cohort and an independent validation cohort. Bioinformatics analysis was performed to identify the potential functions of circRNA host genes. Machine learning classification models were used to assess circRNAs as potential biomarkers of ICH. RESULTS A total of 125 and 284 differentially expressed circRNAs (fold change > 1.5 and FDR < 0.05) were found between ICH patients and healthy controls in the discovery and validation cohorts, respectively. Nine circRNAs were consistently altered in ICH patients compared to healthy controls. The combination of the novel circERBB2 and circCHST12 in ICH patients and healthy controls showed an area under the curve of 0.917 (95% CI: 0.869-0.965), with a sensitivity of 87.5% and a specificity of 82%. In combination with ICH risk factors, circRNAs improved the performance in discriminating ICH patients from healthy controls. Together with hsa_circ_0005505, two novel circRNAs for differentiating between patients with ICH and healthy controls showed an AUC of 0.946 (95% CI: 0.910-0.982), with a sensitivity of 89.1% and a specificity of 86%. CONCLUSION We provided a transcriptome-wide overview of aberrantly expressed circRNAs in ICH patients and identified hsa_circ_0005505 and novel circERBB2 and circCHST12 as potential biomarkers for diagnosing ICH.
Collapse
Affiliation(s)
- Congxia Bai
- Department of Clinical Laboratory Medicine, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Xiaoyan Hao
- Department of Clinical Laboratory Medicine, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Lei Zhou
- Department of Clinical Laboratory Medicine, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Yingying Sun
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li Song
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fengjuan Wang
- Department of Clinical Laboratory Medicine, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Liu Yang
- Department of Clinical Laboratory Medicine, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Jiayun Liu
- Department of Clinical Laboratory Medicine, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Jingzhou Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Fuwai Central-China Hospital, Central-China Branch of National Center for Cardiovascular Diseases, Zhengzhou, China
| |
Collapse
|
7
|
Genetics and Epigenetics of Spontaneous Intracerebral Hemorrhage. Int J Mol Sci 2022; 23:ijms23126479. [PMID: 35742924 PMCID: PMC9223468 DOI: 10.3390/ijms23126479] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 12/15/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is a complex and heterogeneous disease, and there is no effective treatment. Spontaneous ICH represents the final manifestation of different types of cerebral small vessel disease, usually categorized as: lobar (mostly related to cerebral amyloid angiopathy) and nonlobar (hypertension-related vasculopathy) ICH. Accurate phenotyping aims to reflect these biological differences in the underlying mechanisms and has been demonstrated to be crucial to the success of genetic studies in this field. This review summarizes how current knowledge on genetics and epigenetics of this devastating stroke subtype are contributing to improve the understanding of ICH pathophysiology and their potential role in developing therapeutic strategies.
Collapse
|